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Abstract

Background: The pancreatic exocrine cell line AR42J-B13 can be reprogrammed to hepatocytes following treatment with
dexamethasone. The question arises whether dexamethasone also has the capacity to induce ductal cells as well as
hepatocytes.

Methodology/Principal Findings: AR42J-B13 cells were treated with and without dexamethasone and analyzed for the
expression of pancreatic exocrine, hepatocyte and ductal markers. Addition of dexamethasone inhibited pancreatic amylase
expression, induced expression of the hepatocyte marker transferrin as well as markers typical of ductal cells: cytokeratin 7
and 19 and the lectin peanut agglutinin. However, the number of ductal cells was low compared to hepatocytes. The
proportion of ductal cells was enhanced by culture with dexamethasone and epidermal growth factor (EGF). We established
several features of the mechanism underlying the transdifferentiation of pancreatic exocrine cells to ductal cells. Using a
CK19 promoter reporter, we show that a proportion of the ductal cells arise from differentiated pancreatic exocrine-like
cells. We also examined whether C/EBPb (a transcription factor important in the conversion of pancreatic cells to
hepatocytes) could alter the conversion from acinar cells to a ductal phenotype. Overexpression of an activated form of C/
EBPb in dexamethasone/EGF-treated cells provoked the expression of hepatocyte markers and inhibited the expression of
ductal markers. Conversely, ectopic expression of a dominant-negative form of C/EBPb, liver inhibitory protein, inhibited
hepatocyte formation in dexamethasone-treated cultures and enhanced the ductal phenotype.

Conclusions/Significance: These results indicate that hepatocytes and ductal cells may be induced from pancreatic
exocrine AR42J-B13 cells following treatment with dexamethasone. The conversion from pancreatic to hepatocyte or ductal
cells is dependent upon the expression of C/EBPb.
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Introduction

Transdifferentiation belongs to the wider class of cell type

conversions known as reprogramming [1]. One example of

reprogramming is the conversion of pancreatic cells to hepato-

cytes. The appearance of hepatic foci in adult pancreas has been

observed in rodent models and cancer patients [2,3,4,5].

We previously developed an in vitro model for studying the

reprogramming of pancreatic cells to hepatocytes based on the

addition of the synthetic glucocorticoid dexamethasone (Dex) to

AR42J-B13 (B13) cells [6,7]. B13 cells are derived from a rat

pancreatic tumour [8] and display both exocrine and neuroendo-

crine properties [9]. When cultured with Dex for 14 days,

pancreatic AR42J-B13 cells begin to express markers typical of

hepatocytes [6,7]. We have recently shown that the phosphoino-

side 3-kinase pathway is important in the transdifferentiation of

pancreatic acinar cells to hepatocytes and that the hepatocytes

arise from acinar cells via an intermediate expressing the ATP-

binding cassette sub-family G member 2 (ABCG2) [10]. In

addition to hepatocytes, AR42J cells may be induced to also form

insulin-producing b-cells following treatment with hepatocyte

growth factor (HGF) and activin [11] suggesting the cells may

exhibit a progenitor phenotype. The question arises whether other

types of cells (apart from hepatocytes), are induced following Dex

treatment of AR42J-B13 cells. The reason for specifically

examining the ductal phenotype is two-fold. First, during liver

development, bipotential hepatoblasts can differentiate towards

either hepatocyte or biliary lineages [12]. Second, acinar-ductal
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transdifferentiation is clinically significant because it may predis-

pose to the development of neoplasia [13]. Transdifferentiation of

primary acinar cells to ductal cells occurs when the cells are placed

in primary culture [14,15] Acinar-to-ductal transdifferentiation

may occur in experimental pancreatitis and in the progression to

pancreatic neoplasia [16,17,18,19].

In models of adult pancreatic regeneration, exocrine acini are

found to transdifferentiate to duct-like complexes in a process

called acinar-ductal metaplasia (reviewed in [20]). This form of

metaplasia is also observed in a model of pancreatic ductal ligation

[21]. In the present study we have investigated the potential of

AR42J-B13 cells to differentiate towards other cell types (apart

from hepatocytes) following Dex treatment. We show that (i)

ductal cells are formed in Dex-treated B13 cells, (ii) the number of

ductal cells can be increased by treatment with Dex and epidermal

growth factor (Dex/EGF) in combination (iii) ductal cells can arise

from exocrine (amylase-positive) cells and (iv) overexpression of

CCAAT enhancer binding protein b (C/EBPb), a transcription

factor previously shown to mediate hepatocyte transdifferentiation

of pancreatic cells, inhibits conversion to a ductal phenotype.

Results

Expression of ductal markers in adult rat liver and
pancreas

In order to test the utility of our antibodies in adult rat liver and

pancreas tissue (rat tissue was used because B13 cells are also of rat

origin [8]), we determined initially the expression pattern of the

markers CK7, CK19, CK20 and OV6 (Figure 1). As expected, the

antibodies to the ductal markers CK7, CK19 and CK20 stained

the intrahepatic bile ducts (but not hepatocytes) in the liver,

whereas the oval cell marker OV6 was only expressed in the

Figure 1. Expression of ductal markers in adult rat liver and pancreas tissue. Immunohistochemistry for cytokeratin 7 (CK7), cytokeratin 19
(CK19), cytokeratin 20 (CK20), OV6 and Peanut Agglutinin (PNA) in adult rat liver and pancreas sections. A control (no primary antibody) is also shown.
All scale bars, 100 mm.
doi:10.1371/journal.pone.0013650.g001
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smaller bile duct cells as reported previously [20,21]. In the

pancreas, ducts (but not acinar or endocrine cells) were positive for

CK7, CK19 and CK20 and OV6 (Figure 1). Ducts in the liver and

the pancreas were also positive for the epitope recognised by the

lectin Peanut Agglutinin (PNA). Thus PNA can be used as a ductal

marker along with cytokeratins 7 and 19 (Figure 1). We did not

observe any non-specific staining in the absence of primary

antibody (Figure 1).

Dex treatment of AR42J-B13 cells induces both
hepatocyte and ductal phenotypes

We cultured B13 cells with or without Dex a period of 10 days

and examined the expression of pancreatic exocrine, hepatocyte

and ductal markers (Figure 2). The majority of control AR42J-B13

cells co-expressed the exocrine marker amylase and CK20, which

labels both progenitor-like and ductal cells [22]. The cells were

also weakly positive for OV6 and PNA. Control B13 cells did not

express the hepatocyte marker transferrin (TFN) (Figure 2) or the

ductal-specific markers CK7 and Connexin 43 (Cx43) (Figure 2).

During Dex treatment, amylase expression is lost in AR42J-B13

cells which also begin to express the hepatocyte marker TFN

(Figure 3A), as reported previously [6]. After treatment with Dex

for 3 days a small number of cells expressing the ductal markers

CK7 and CK19 were detected and expression of CK20, OV6 and

the binding sites for PNA were enhanced (data not shown). Some

cells still expressed CK7, CK20, OV6 and PNA following

treatment with Dex for 10 days (Figure 2, Figure 3B). However,

only around 2% of the cells were positive for CK7 compared with

16.5% for transferrin in Dex-treated cultures (Figure 3B).

EGF enhances the number of ductal-like cells in Dex-
treated cultures

As the incidence of ductal cells (based on immunostaining for

CK7) is uncommon in Dex-treated cultures, we tried to enhance

the number of ductal cells by addition of extracellular factors. EGF

is one such candidate factor since EGF receptor stimulation in

pancreatic tissue induces an acinar to ductal metaplasia [23,24].

We tried different combinations of Dex and EGF treatment on

B13 cells. When treated with 1 mM Dex for 4 days followed by

20 ng/ml EGF treatment for 6 days (the combined treatment will

be referred to as Dex/EGF from now on), the percentage of cells

staining positive for CK7, CK20 and the lectin PNA, increased

compared to cells treated with EGF or Dex for 10 days (Figure 2,

Figure 3B). In addition the ductal markers Cx43 and GSTp were

detected only in Dex/EGF-treated cells by immunostaining (Cx43)

and RT-PCR (Cx43 and GSTp) (Figure 2 and Figure 4A

respectively). Cx43 expression was localised in a punctate pattern

on membranes of opposing cells (Figure 2). When B13 cells were

treated for 10 days with EGF alone, amylase expression was lost in

a proportion of cells (Figure 3A; 53.6% in EGF treated compared

to 86.6% in control cells), but only a few cells weakly expressed the

ductal markers CK7 or CK20. However, no transferrin positive

cells were observed, suggesting the absence of cells with a

hepatocyte phenotype (Figure 2 and Figure 3A).

In order to determine the number of cells expressing ductal

markers, we counted the total number of cells in randomly chosen

fields and calculated the percentage of those cells expressing the

markers CK7, CK20, PNA and OV6 (Figure 3B). In Dex/EGF

samples there was a significant increase in the percentage of cells

expressing CK20 (p = 0.0043), PNA (p = 0.0098) and OV-6

(p,0.0001) compared to treatment with Dex or EGF alone. The

percentage of cells expressing CK7 was also higher in Dex/EGF

treated samples compared to controls (Figure 3B).

Since the combined treatment of Dex and EGF considerably

enhanced the binding sites for PNA, we focused on quantifying the

percentage of cells expressing high levels of PNA in Dex/EGF-

treated cultures using a FACScanto cell sorter. PNA was used to

sort the cells as this cell surface marker allows labelling of the cells

without compromising cell integrity. Cells were labelled with a

FITC-conjugated PNA antibody and sorted according to the

FITC intensity. Approximately 24% of cells treated with Dex/

EGF were intensely FITC positive (Figure 3C) and likely represent

the ductal cells exhibiting strong PNA by immunostaining. In

order to determine the expression of ductal markers in a more

homogeneous population of cells, we used Magnetic activated cell

sorting (MACS) to enrich for a population of ductal cells. Cells

were labelled with biotinylated-PNA and sorted using the

MiniMACS system. Both positive and negative cell fractions were

collected and the cells returned to culture in the presence of EGF.

Sorted cells were immunostained for CK7 and Sox9. PNA

directed enrichment of ductal cells was confirmed in the positive

cell fraction in which 25% of cells stained positive for the ductal

marker CK7 (p = 0.0079) and 82% for the ductal specific

transcription factor Sox9 (p = 0.0028) (Figure 3C).

To confirm the increase in ductal cells was due to the specific

affect of EGF treatment, we added the EGF receptor inhibitor

AG1478 to pancreatic cells from day 1 of EGF treatment. We

were able to inhibit ductal cell formation as indicated by the loss of

CK7 expression in inhibitor-treated samples (Figure 4C).

We have also tested the ability of primary acinar cells and

additional pancreatic cell lines such as Capan1 and Panc-1 to

differentiate towards hepatocyte and ductal cell phenotypes. Our

preliminary data suggests that neither Capan1 nor Panc1 cells can

be induced with Dex to generate hepatocytes (unpublished

observations). In contrast, primary mouse acinar cells transdiffer-

entiate to generate transferrin and C/EBPb-positive hepatocytes

[10]. However, due to contamination of the primary cultures with

ductal cells we were unable to determine the ability of the acinar

cells to transdifferentiate to ductal-like cells.

To determine the affect of Dex/EGF treatment on the hepatic

phenotype, we analysed the protein levels of the liver markers

alpha-fetoprotein, albumin, transferrin and the transcription factor

C/EBPb by Western blotting (Figure 4B). Albumin, AFP and TFN

were induced in both Dex and Dex/EGF treated cells (Figure 4B),

however, liver protein levels were much higher in Dex-treated

compared to those treated with Dex/EGF. Furthermore, the liver

enriched transcription factor C/EBPb was detected only in the

Dex treated cells (data shown for 10 day treatment only).

Ultrastructure of Ductal-like Cells
We examined the ultrastructural characteristics of the Dex and

EGF treated cells by electron microscopy to identify the subcellular

morphology of ductal type cells. The presence of prominent

microvilli along the plasma membrane in isolated and cultured adult

ducts has been described [25] and such structures are essential to the

normal function of these cells in vivo [26]. Control and Dex-treated

cells possessed only small sparse microvilli while we observed well-

formed microvilli projecting from the surface of Dex/EGF treated

cells (Figure 5A). Given that our cultures are heterogeneous

(containing undifferentiated B13 cells, reprogrammed hepatocytes

as well as ductal cells) and the sample size for EM analysis is very

small, it was not possible to quantify cell numbers to directly

compare with immunostaining data.

Stability of the Ductal Phenotype
We were interested to know whether the ductal phenotype was

dependent upon the continued presence of Dex and EGF or

Ductal Cell Reprogramming
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whether the reprogrammed ductal cells are stable and unable to

revert to the parent cell of origin. To address this question, we

examined the stability of the ductal cells after withdrawal of Dex

and EGF. B13 cells were treated initially for 4 days with Dex and 6

days with EGF, the EGF was then withdrawn and cells fixed at 3,

5 and 7 days later and stained for amylase, CK7 and CK20. Cells

positive for CK7 and CK20 were still present 7 days after

discontinuing EGF treatment as judged by immunofluoresence

(Figure 5B) and the amylase-expressing cells did not increase

significantly. This suggests that, once induced, the ductal

phenotype is stable (at least for the time points examined) in the

absence of Dex and EGF.

Exocrine cells are precursors of the ductal cells
Since Dex treatment also induced the hepatocyte phenotype,

ductal cells might arise from these cells or directly from exocrine

cells. To distinguish some of these possibilities and determine the

origin of these cells, we co-stained for exocrine and hepatocyte or

ductal markers. A transitional expression of both markers would

be expected if the ductal cells arise from the exocrine cells by direct

conversion. Due to the requirement for different fixatives we were

unable to stain cells for amylase (paraformaldehyde fixation) and

CK7 (acetone:methanol fixation). Therefore, we used an alterna-

tive approach to determine the ductal cell lineage. Ductal cells

were traced using an adenoviral reporter construct in which the

CK19 promoter was used to drive GFP expression. Since CK7

and CK19 occur as a heterotypic pair and both exhibit specificity

for ductal cells types (Figure1), we used the CK19 promoter to

drive the GFP reporter. The fidelity of expression of the CK19

promoter construct was tested by infection of control B13 cells

(negative control) and HepG2 cells. HepG2 cells were used as a

positive control since the hepatoma expresses CK19 [27]. HepG2

Figure 3. EGF enhances the ductal phenotype at the expense of the hepatic phenotype. Bar charts showing the percentage of cells
expressing (A) Amylase and Transferrin (B) CK7, CK20, PNA and OV-6 in control, EGF, Dex/EGF and Dex treated cells. (C) Scatter plot from the
FACSCanto showing the intensity of PNA staining in Dex/EGF treated cells and bar charts showing percentage of cells positive for CK7 and Sox9
(positive fraction) following MACS isolation. Scale bars, top and middle row, 20 mm; lower row, 50 mm.
doi:10.1371/journal.pone.0013650.g003

Figure 2. Differentiation of B13 cells to ductal and hepatic phenotypes. Immunostaining for Amylase (red)/CK20 (green), TFN (red)/CK20
(green), PNA, OV6, CK7, Cx43 (green) in untreated (control, CTL), DEX, Dex/EGF and EGF treated B13 cells. Scale bars, first and second row, 20 mm; all
others 40 mm.
doi:10.1371/journal.pone.0013650.g002
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cells were positive for GFP suggesting the promoter is active in

these cells (Figure 6A) while the control B13 cells (which do not

normally express CK19) were negative for GFP (Figure 6A), thus

confirming there was no ‘leakiness’ of promoter expression. GFP

expression was detected in Dex/EGF treated cells indicating that

cells with a ductal phenotype are present and capable of activating

the CK19 promoter. The adenoviral vector was introduced into

B13 cells after 4 days of Dex and 2 days of EGF treatment

presumably when the cells were just switching from one phenotype

to another. B13 cells infected with AdCK19-nucGFP were

cultured for up to 4 days, then fixed and stained for the exocrine

marker amylase. We found that a subpopulation of GFP-

expressing cells still expressed amylase (Figure 6B). While no

GFP positive cells were found to express the hepatic marker TFN.

Although we cannot exclude the possibility that EGF is causing

proliferation of existing ductal cells within the culture, this data

suggests that at least some of the ductal cells may arise directly

from exocrine cells but not from hepatocytes. We also observed

GFP positive/amylase negative cells. These cells may have lost

their amylase expression at the time of analysis.

Role of CCAAT enhancer binding protein b in formation
of ductal cells

The CCAAT enhancer binding proteins (C/EBP) are basic

region/leucine zipper (bZIP) transcription factors expressed

during differentiation of adipose tissue and liver [28]. One

member of the C/EBP family, C/EBPb, is transcribed into one

mRNA which can be translated into three distinct isoforms

designated C/EBPb, Liver Activating Protein (LAP) and Liver

Inhibitor Protein (LIP) [29]. The 21 kDa LIP lacks the

transactivation domain of LAP and acts as a dominant-negative

form of C/EBPb by heterodimerizing with the full length C/

EBPb. We showed previously that C/EBPb is required for the

transdifferentiation of pancreatic B13 cells to hepatocytes

[6,7,30]. To determine whether C/EBPb is required for the

formation of ductal cells, we stained control, Dex, EGF and Dex/

EGF-treated cells for C/EBPb. C/EBPb was absent in control

(Figure. 7A) and EGF-treated cells (data not shown), but present

at very low levels in Dex/EGF cultures. Robust staining for C/

EBPb was detected in Dex treated cells staining positive for the

liver marker TFN but not in cells staining for PNA (Figure 7A).

Western blotting for C/EBPb confirmed that C/EBPb was

expressed in Dex treated cells at a higher level than in control

cells and cells treated with Dex/EGF (Figure 4B). To test whether

overexpression or inhibition of C/EBPb can influence the

direction of reprogramming (i.e. hepatocyte vs ductal), we

infected control, Dex and Dex/EGF-treated cells with the

adenoviral vectors containing either LAP or LIP (Ad-CMV-

LAP or Ad-CMV-LIP) and determined the expression of the

hepatocyte marker TFN or the ductal marker PNA. The C/

EBPb antibody used in these experiments recognises the carboxyl

terminus and therefore detects all three forms of C/EBPb. In

agreement with previous observations [6], LAP induced the liver

marker TFN in control B13 cells and enhanced the expression of

the hepatocyte marker in Dex-treated cultures. Dex/EGF treated

cells (which do not normally express TFN in many cells) were

induced to do so following infection with Ad-CMV-LAP

(Figure 7A). Cells expressing the transgene, did not express the

ductal marker PNA suggesting that overexpression of C/EBPb
can inhibit the formation of ductal cells and induce a hepatocyte

phenotype. Conversely, overexpression of LIP in Dex-treated

cultures inhibits hepatocyte formation and induces the ductal

phenotype (Figure 7B). This suggests that LIP might inhibit

endogenous C/EBPb activity and enhance the ductal phenotype.

Figure 4. Expression of ductal markers and inhibition of the ductal phenotype. (A) RT-PCR for Cx43 and GSTp (B) Western blotting analysis
for Albumin, TFN, AFP and the liver enriched transcription factor C/EBPb in control, EGF, Dex/EGF and Dex treated cells. b-actin and a-tubulin are also
shown as loading controls. (C) Immunostaining for CK7 in control and Dex/EGF treated cells in the presence and absence and absence of the EGF
receptor inhibitor AG1478. The inhibitor was added at a final concentration of 25 mM.
doi:10.1371/journal.pone.0013650.g004
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Discussion

Acinar-ductal transdifferentiation is clinically significant as it is

present in pancreatitis. The switch from acinar to ductal cell can be

induced in vivo by pancreatic ductal ligation [21], overexpression of

Pdx1 [31], or in vitro by the addition of external factors (DMSO) [32]

or EGF [19,24]. In the present study, we demonstrate that cells

resembling a ductal phenotype are also induced following treatment

of pancreatic B13 cells with Dex. The efficiency of conversion to a

ductal phenotype is very low but can be enhanced by a combined

treatment of Dex followed by EGF. Dex treatment has been shown

previously to induce the conversion of pancreatic cells towards a

hepatocyte phenotype [6,7,30,33]. Remarkably, the conversion to

ductal cells is stable as ductal cells maintained their phenotype for at

least for 7 days after withdrawal of EGF. These observations suggest

a bistable switch operates in which pancreatic B13 cells can generate

either hepatocytes or ductal cells following Dex treatment. Due to

the acinar nature (amylase-expression) of the B13 cells it is possible

that the cells can undergo acinar-ductal metaplasia similar to that

described in a number of other systems [20,32,34]. The evidence for

a genuine acinar-ductal conversion in the B13 cell model is threefold.

First, the typical duct cytokeratin CK7 is induced after treatment and

are not present in control cells. Moreover, other duct and progenitor

markers such as CK20, OV-6 and PNA are increased in Dex treated

Figure 5. Electron microscopy and stability of the ductal phenotype. (A) Electron micrographs of control, Dex and Dex/EGF treated B13 cells.
(B) Immunostaining for amylase, CK20 and CK7 following withdrawal of Dex and EGF in treated B13 cells. Control B13 cells are also shown (B). Scale
bars for electron micrographs are (from left to right); 2, 2, 1 and 0.5 mm. Scale bars in second row, 20 mm and 40 mm for all others.
doi:10.1371/journal.pone.0013650.g005
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compared to untreated cultures. Second, morphological and

ultrastructural features reminiscent of ductal cells (such as well-

formed microvilli) are present. Third, we were able to identify a

population of cells co-expressing amylase and CK19 (as shown by a

GFP reporter construct) which indicates an intermediate population

of amylase expressing cells may generate at least some of the ductal

cells. At the same time there were no cells co-staining for hepatocyte

markers and CK19. Therefore, we propose that ductal cells can arise

from amylase-positive acinar cells following treatment with Dex and

that ductal cells form a separate population of cells independent of

the reprogrammed hepatocytes (Figure 8).

The question arises: what is the mechanism of the increase in

ductal cells following EGF treatment? At least three possibilities

exist. The first is that EGF acts directly on ductal cells formed

during reprogramming of acinar cells to promote proliferation. The

second is that EGF promotes cell death of non-ductal cells

increasing the overall proportion of ductal cells. The third possibility

is that EGF directly promotes the reprogramming of pancreatic

acinar cells to ductal cells. Using the existing model it is not possible

to distinguish which of these mechanisms are in operation. Further

studies are required to elucidate the cellular basis underpinning the

role of EGF in enhancing ductal cell numbers.

Previous studies have revealed the role of transcription factors

inducing acinar-ductal conversion in vivo and in vitro. For example,

ectopic expression of Pdx1 in acinar cells has been shown to

reprogram cells to a ductal phenotype through activation of the

Stat3 pathway in the mouse [31]. In our model, we were

particularly interested in the role of the liver-enriched transcrip-

tion factor C/EBPb. Previous work by our lab [6] suggested that

C/EBPb is required for transdifferentiation of pancreatic B13 cells

to hepatocytes. As expected, C/EBPb levels were much higher in

cells treated with Dex compared to Dex/EGF treated cells. This

difference is probably due to the fact that fewer hepatocyte-like

cells are induced following treatment with Dex/EGF.

We found that the C/EBPb splice variants LAP and LIP (liver-

activating and inhibitory proteins) play important roles in

switching B13 cells towards a ductal or hepatic cell type.

Adenoviral-mediated overexpression of LAP reprogrammed B13

cells towards a hepatocyte phenotype. PNA stained cells were

devoid of LAP suggesting that LAP suppresses the ductal

phenotype and promotes the hepatic phenotype. In contrast, cells

overexpressing LIP were PNA positive suggesting that LIP

promotes ductal rather than hepatic differentiation under Dex-

treated conditions. LIP, which lacks the transactivation domain of

LAP, may antagonize the effect of low levels of endogenous C/

EBPb present in B13 cells and promote their ductal differentiation.

We propose that in addition to hepatocytes, ductal-like cells are

formed following Dex treatment of pancreatic B13 cells. Ductal-

Figure 6. Lineage trace of ductal phenotype. (A) Infection of HepG2, control B13 and Dex/EGF treated B13 cells with Ad-CK19-nucGFP and (B)
immunostaining for amylase and TFN in Dex/EGF treated B13 cells infected with Ad-CK19-nucGFP.
doi:10.1371/journal.pone.0013650.g006
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like cells expressed CK7, CK19, CK20, Cx43, PNA and OV6. We

demonstrated that Dex/EGF treatment activated the CK19

promoter in amylase expressing cells suggesting an ancestor-

descendent relationship between amylase-positive cells and ductal

cells. Furthermore, the hepatic master switch gene C/EBPb
appears to be reduced during the induction of ductal cells and

when overexpressed inhibits the ductal phenotype. This data

suggests that C/EBPb is the master gene for hepatocytes.

Materials and Methods

Ethics Statement: Animals
All animal experiments were performed under the UK Home

Office guidelines. The handling of animals involved Schedule 1

killing by authorised personnel and thus did not require protocol

review.

Cell culture conditions
AR42J-B13 cells were a generous gift from Professor Itaru

Kojima (Institute for Molecular and Cellular Regulation Gunma

University, Gunma, Japan. AR42J-B13 cells were cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma) as

described previously [6]. For immunostaining, cells were seeded

at 10–15% confluency on sterile glass coverslips (22 mm622 mm).

Cells were cultured at 37uC in a humidified incubator with 5%

CO2 and 95% air. To induce transdifferentiation, cells were

treated with 1 mM Dex (Sigma, Poole, UK) for 10 or 14 days,

1 mM Dex for 4 days then with 20 ng/ml of EGF (R&D systems,

Abingdon, UK) for 6 days, or 20 ng/ml EGF alone for 10 days.

To inhibit the EGF signalling pathway the EGF receptor inhibitor

AG1478 (Calbiochem) (final concentration of 25 mM) was added

to cultures at the same time as EGF and cultured for 6 days.

Immunofluorescent staining of cell cultures
B13 cells were immunostained as described previously [35,36]

with the following modifications. Cells were fixed either with 4%

paraformaldehyde (PFA) (Fisher scientific, Leicestershire, UK) in

PBS, pH 7.4 for 20–30 mins at room temperature or ice cold

acetone:methanol (Ac:Me, 1:1) for 5 mins depending on the

antibody under investigation. In some cases, PFA-fixed cells were

post-fixed with Ac:Me for 5 minutes. Prior to immunostaining, PFA

fixed cells were permeabilised in 0.1% (v/v) Triton X-100 (Sigma,

Poole, UK) for 30 min. Permeabilisation was not necessary for cells

fixed with Ac:Me. Antigen retrieval was then performed on Ac:Me

fixed cells using either 1x (v/v) EDTA or citrate buffer (Lab vision,

Newmarket, UK) at 37uC. Non-specific binding sites were blocked

for 30 min in 2% blocking buffer (Roche) or 10% normal goat

serum (NGS). Primary antibodies and dilutions used were: rabbit-

anti-amylase (1:100, Sigma, Poole, UK), mouse-anti-cytokeratin

(CK) 7 (used neat, a generous gift from Dr. Birgit Lane or Abcam

1:40, Cambridge, UK), mouse-anti-CK20 (1:50, DAKO, High

Wycombe, UK), mouse and rabbit-anti-C/EBPb (1:100, Santa

Cruz Biotechnology, CA, USA), mouse-anti-OV6 (1:3000, a

generous gift from Dr. Stewart Sell, Albany Medical College) and

rabbit-anti-transferrin (TFN) (1:200, DAKO, High Wycombe, UK),

mouse-anti-Connexin 43 (Cx43) (1:25, Sigma, UK). The fluorescein

conjugated lectin, peanut agglutinin (PNA) (1:100, Vector Labora-

tories, Peterborough, UK), was also used to stain cells. Secondary

antibodies used were rabbit-anti-sheep-Texas Red, horse-anti-

mouse-fluorescein isothiocyanate (FITC), goat-anti-rabbit-FITC,

horse-anti-mouse-Texas Red and goat-anti-rabbit-Texas Red (all

1:200, Vector Laboratories, Peterborough, UK). Images were

collected on a Zeiss LSM 510 confocal microscope and collated into

Figures in Adobe Photoshop 7.0. Cells were counted manually as

percentages of positive cells per field. Five fields were counted per

sample and each sample was performed in triplicate. Statistical

differences between treatments was determined using the un-paired

Student t-test in GraphPad Prism software version 4.03 (GraphPad

Software, San Diego, CA, USA).

Immunohistochemistry of adult rat tissue
Following cervical dislocation, adult rat pancreatic and liver tissue

were removed, washed in PBS and fixed with either Ac:Me for

1 hour or 4% PFA over night. The tissue samples were then washed

again three times in PBS and left in 70% ethanol for 1 to 3 hours

before processing. Fixed tissue was paraffin embedded, sectioned,

dewaxed and rehydrated. PFA fixed pancreas and liver sections were

permeabilised with 0.5% (v/v) Triton X-100 for 30 minutes. Antigen

retrieval was then performed using either 1x (v/v) EDTA or citrate

buffer for 30 minutes at 90uC. Afterwards, the slides were allowed to

cool for a further 30 minutes at room temperature. Sections were

incubated with peroxidase block solution (DAKO Envision perox-

idase system, DAKO) to prevent endogenous peroxidase activity.

Non-specific binding was blocked by either adding 2% blocking

buffer or 10% (v/v) NGS and 0.5% (v/v) bovine serum albumin

(BSA) in PBS. Primary antibodies were diluted as follows: mouse-anti-

CK7 (1:50), mouse-anti-CK20 (1:50), mouse-anti-OV6 (1:5000) all

diluted in 1% (v/v) normal goat serum and 0.5% (v/v) BSA in PBS.

The signal was detected using the 3,39 Diaminobenzidine (DAB)

substrate-chromogen kit specific for mouse or rabbit (DAKO

Envision peroxidase system, DAKO) and the sections were

counterstained with hematoxylin before mounting.

Figure 8. Schematic representation of the possible pathways of
differentiation of B13 cells into hepatocytes and ductal cells.
Diagram illustrating the potential relationship between pancreatic
acinar cells, ductal cells and hepatocytes.
doi:10.1371/journal.pone.0013650.g008

Figure 7. CEBPb controls the switch in phenotype from pancreatic B13 cells to hepatocyte or ductal cells. Immunostaining for C/EBPb/
TFN and C/EBPb/PNA in control, Dex and Dex/EGF treated cells (A) and after infection with Ad-CMV-LAP (B) and Ad-CMV-LIP (C). In A only the induced
endogenous C/EBPb is visible. Scale bars, 20m m.
doi:10.1371/journal.pone.0013650.g007
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Western blotting
Protein samples were prepared from cells by freeze-thawing 4

times in a Tris-HCl lysis buffer containing 1:100 dilution of

protease inhibitor cocktail (Sigma, UK). 10 mg of each sample was

run on a 10% Tris-HCl CriterionTM precast gel and subsequently

transferred to nitrocellulose membrane using the Bio-Rad

Criterion blotter system as described previously [7]. Blots were

probed with the following antibodies diluted in 3% marvel in

PBST (PBS with 0.1% v/v Tween-20, Sigma, UK); mouse-anti-a-

tubulin (1:2000, Sigma,UK), sheep-anti-albumin (1:4000, Biogen-

esis), rabbit-anti-alpha fetoprotein (1:1000, DAKO), rabbit-anti-

TFN (1:2000) and mouse-anti-C/EBPb (1:2000). Secondary

antibodies used were rabbit-anti-sheep Horse radish peroxidase

(HRP) (1:2000, Abcam), goat-anti rabbit HRP (1:2000, Vector)

and horse-anti-mouse HRP (1:2000, Vector).

RT-PCR
Total RNA was isolated using Tri-reagent according to the

manufacturer’s instructions. cDNA synthesis from 2 mg RNA was

carried out using the SuperscriptTM First strand Synthesis System

(Invitrogen). PCR was performed using 1 ml of cDNA, Red-

dyMixTM Master mix (ABgene) and primers for b-actin

(F:TCCGTAAAGACCTCTATGCC, R: AAAGCCATGCCA

AAT GTC TC – 56uC) GSTp (F:TGGAAGGAGGAGGTGGT-

TAC, R: TGTCCCTTCGTCCACTACTG – 54uC) and Cx43

(F:TCTTCATGCTGGTGTC R: TAACCAGCTTGTACC-

CAGG – 60uC). The conditions for amplification were as follows:

initial denaturation at 95uC for 2 min, 25–35 cycles of 94uC for

1 min, 54–60uC for 1 min, 72uC for 1 min, and a final extension

at 72uC for 10 min.

Fluorescence Activated Cell Sorting (FACS) and Magnetic
Activated Cell Sorting (MACS)

The BD FACScanto was used to determine the percentage of

cells with the highest intensity of staining for PNA. Cells were

labelled with FITC-conjugated PNA (1:10) for 15 min prior to

counting in the BD FACScanto. Cells are non-recoverable

following analysis using this protocol, therefore using the

appropriate dilution of PNA:buffer ratio determined by the BD

FACScanto (1:10) the cells were sorted using the MiniMACS

separation system. Briefly, cells were labelled with biotinylated-

PNA (1:10) in MACS buffer (2 mM EDTA, 0.5% BSA in PBS) for

15 min at 4uC, washed in MACS buffer and collected by

centrifugation at 1126g for 4 min. The cell pellet was resuspended

in MACS microbeads conjugated to mouse anti-biotin and

incubated for 15 min at 4uC. The cells were then washed and

resuspended in MACS buffer. The MiniMACS column and

separator were set up according to manufacturers’ instructions and

the microbead/cell mixture added to the column. The negative

fraction was allowed to flow through and collected for further

analysis. The column containing the PNA positive cells was

washed 3 times with MACS buffer. To collect the positive fraction

the column was removed from the magnetic field and 1 ml of

MACS buffer added. The column plunger was used to force the

cells out of the column. Both negative and positive fractions

collected were returned to culture for 2–3 days in the presence of

EGF as described above.

Construction of a CK19-promoter GFP adenovirus
A replication-defective first-generation adenovirus was generat-

ed to express green fluorescent protein (GFP) under the control of

a ductal-specific CK19 promoter [37,38]. To clone the adenoviral

vector, the CMV promoter from pcDNA3 CMV nucGFP plasmid

(GFP under the control of a nuclear localization signal) was

replaced by a 2.1 kb BamHI fragment containing the CK19

promoter elements. A CK19-nucGFP SalI, XbaI fragment of the

resulting construct was then subcloned into a promoterless

pShuttle vector (AdEasy kit, Stratagene) digested with XhoI and

XbaI. The resulting 9.6 kb construct was recombined into a

33.5 kb pAdEasy plasmid (Stratagene) containing the majority of

the adenoviral genome. Recombinants were selected according to

the manufacturer’s instructions. The Ad-CK19-nucGFP adenovi-

rus was transfected and propagated in the human embryonic

kidney (HEK) 293 cell line and purified as previously described

[39]. The virus was titered using the Adeno-XTM Rapid Titer Kit

(Clontech, CA, USA).

Viral infection of B13 cells
B13 cells were infected with the adenovirus Ad-nucCK19-

nGFP after 6 days of treatment (Dex 4 days then EGF 2 days) at a

multiplicity of infection (MOI) of 200 and incubated overnight in

95% air, 5% CO2 at 37uC. The next day the media was changed

and EGF treatment of the cells continued for a further 3 days.

Following 4 days of Dex treatment B13 cells were also infected

overnight with either the liver activating protein (LAP) or the

liver inhibitory protein (LIP) both at an MOI of 50. Dex

treatment was either continued or switched to EGF for an

additional 6 days. The cells were then PFA fixed and

permeabilised with 0.1% (v/v) Triton X-100 for 30 minutes

before staining.

Electron Microscopy
Control and treated B13 cells were processed for electron

microscopy. Samples were fixed in 2.5% (v/v) glutaraldehyde

(Agar Scientific, Essex, UK) in culture medium without serum for

2 hours. Postfixation took place in a solution of 1% (w/v)

potassium ferrocyanide in 1% (v/v) aqueous osmium tetroxide

(both from Agar Scientific, Essex, UK). Cell pellets were

encapsulated in agarose (Sigma, Poole, UK) and stained in 1%

(w/v) aqueous uranyl acetate (Agar Scientific, Essex, UK). After

dehydration in acetone (Fisher Scientific, Leicestershire, UK)

samples were embedded in epoxy resin (TAAB Laboratories

Equipment, Berks, UK). Sections were viewed in a JEOL 1200Ex

transmission electron microscope (JEOL, Tokyo, Japan) operating

at 80 kv.
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