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Abstract

The mitochondrial protein repertoire varies depending on the cellular state. Protein component modifications caused by
mitochondrial DNA (mtDNA) depletion are related to a wide range of human diseases; however, little is known about how
nuclear-encoded mitochondrial proteins (mt proteome) changes under such dysfunctional states. In this study, we
investigated the systemic alterations of mtDNA-depleted (r0) mitochondria by using network analysis of gene expression
data. By modularizing the quantified proteomics data into protein functional networks, systemic properties of mitochondrial
dysfunction were analyzed. We discovered that up-regulated and down-regulated proteins were organized into two
predominant subnetworks that exhibited distinct biological processes. The down-regulated network modules are involved
in typical mitochondrial functions, while up-regulated proteins are responsible for mtDNA repair and regulation of mt
protein expression and transport. Furthermore, comparisons of proteome and transcriptome data revealed that r0 cells
attempted to compensate for mtDNA depletion by modulating the coordinated expression/transport of mt proteins. Our
results demonstrate that mt protein composition changed to remodel the functional organization of mitochondrial protein
networks in response to dysfunctional cellular states. Human mt protein functional networks provide a framework for
understanding how cells respond to mitochondrial dysfunctions.
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Introduction

Proteomics and expression profiling have been widely applied to

understand the cellular processes [1]. Proteins with significant

changes in expression have particular interest as markers for

various diseases and cellular phenotypes [2]. While there are useful

information encoded in the list of differentially expressed proteins,

identifying the molecular mechanism of cellular processes from the

long list of candidate proteins is challenging [3]. Data-integrative

approaches have been successfully applied to address the challenge

of interpreting lists of differentially expressed proteins by mapping

them onto the protein functional network [4,5].

A protein functional network describes the functional and

physical associations among proteins and provides a framework

for understanding how individual protein work together to

perform critical cellular functions and how protein compositions

respond to changes in cellular environments [6]. Proteins rarely

act alone but rather interact with other proteins and comprise

specific functional modules in the network [7]. Functional module

is a group of proteins which are related by one or more cellular

and genetic interactions such as co-regulation, co-expression, and

the member of a biological pathway or a protein complex [8].

Such module is the building block of cellular organization and

carries out unique biological process [9]. Therefore, understand-

ing the modular structure of protein functional network should be

useful for characterizing the dynamic organization of cellular

systems.

In eukaryotic cells, mitochondria are involved in many cellular

processes including energy production, apoptosis, ion homeostasis,

and the metabolism of glucose, lipids, and amino acids [10].

Although mitochondria possess their own DNA, it is estimated that

at least 98% of the 1,500–2,000 mitochondrial proteins are

encoded by nuclear genes and shuttled posttranslationally into the

mitochondria [11,12]. In addition, the majority of human mt

disorders are known to be related with nuclear genome defects

[13]. Thus, compiling a comprehensive list of mt proteins is

essential to understand mitochondrial biogenesis and pathology.

Large-scale approaches such as mass spectrometry (MS)-based

proteomics [14], epitope tagging combined with microscopy [15],

genome-wide predictions of protein subcellular localizations [16],

and comparative genomics analyses [17,18,19] have revealed the

localization of the mt protein inventory.
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The mt protein inventory is dynamically changed depending on

the cellular state, tissue type, and species [11,20]. For example, the

compositions of mt proteins are different across various tissues and

organs in mice [21,22] and changed by fermentation states in yeast

[18] or environmental stresses in plants [23]. Additionally, in

humans, dynamic changes in the mt proteome affect the functional

organizations of mt proteins and disease susceptibilities [24].

Genetic or biochemical abnormalities in mitochondria caused by

complete or partial mtDNA depletion have been linked to a wide

range of human diseases including metabolic syndrome, neurode-

generative disorders, mitochondrial myopathy, and cancer

[12,25]. We have previously reported that mtDNA depletion can

lead to impairments of glucose metabolism [26], insulin signaling

[27], and apoptosis [28]. However, the changes of the mt protein

functional network in response to mt dysregulation remain to be

revealed.

Here, we investigated the systemic alterations of human mt

protein functional network under normal and dysfunctional mt

states through a data-integrative computational biology approach

and quantitative proteomic analysis. Specifically, a systematic

data-integrative analysis was devised to evaluate the reliability of

mt proteomics data and cluster the identified proteins into the

modules of mt protein functional network. Our results revealed

that human mt proteins comprise specific network modules to

control unique biological processes in cells exposed to dysfunc-

tional mt states. Furthermore, network clustering suggests that cells

respond to pathological conditions by modulating the coordinated

expression and transport of mitochondrial proteins. We believe

that our results may provide critical information to gain better

understanding of mitochondria function in the cell.

Results

Systemic properties of mitochondria under an mtDNA-
depleted dysfunctional state

We investigated the systemic alterations of mitochondria by

using network analysis of quantified proteomics data. A data-

integrative approach was devised to select reliable mt proteins for

network analysis.

First, we applied the isotope-coded affinity tag (cICAT)

quantitative analysis [29] to compare protein abundances in

mitochondria isolated from normal (r+) and mtDNA-depleted (r0)

osteosarcoma cells. MtDNA-depleted (r0) osteosarcoma cell has

been used as an important tool to investigate dysfunctional

mitochondria. The r0 cell was established by long-term treatment

of ethidium bromide (EtBr) which intercalated into mtDNA

without any detectable effect on nuclear DNA division [30] and

led to the inhibition of mtDNA replication and transcription [31].

Thus, we examined a set of nuclear-encoded mt proteins as mt

proteome. To quantify protein abundance ratios of mt proteins in

r0 versus r+ mitochondria, we labeled mt proteins with cICAT

containing light (12C) and heavy (13C) isotope signatures, which

react with thiol groups of cysteines in proteins. The experimental

scheme is summarized in Figure S1 (see Materials and Methods for

details). From the cICAT analysis, we identified 1,121 proteins

(Table S1). According to the mt protein abundance ratios (r0/r+),

we classified all proteins into three classes: up-regulated, down-

regulated, and not significantly changed proteins in r0 mitochon-

dria. The number of up-regulated proteins with r0/r+$1.5 was

201, while the number of down-regulated proteins with r0/

r+#0.67 was 313.The thresholds of 1.5 represents the 1.5-fold

increase, whereas the threshold of 0.67 represents 1.5-fold

decrease under dysfunctional r0 state. Meanwhile, 607 not

significantly changed proteins were present in both r0 and r+

mitochondria with similar abundances (0.67,r0/r+,1.5).

Next, the 1,121 proteins identified via cICAT analysis were

evaluated by a systematic data-integrative approach to select more

reliable mt proteins (Figure 1A). First, we examined the Gene

Ontology (GO) cellular component annotation for the identified

proteins and compiled 13 reference mt protein datasets from seven

mt proteins databases and six mt proteomics datasets (see Materials

and Methods for details). In total, 569 out of 1,121 proteins

(50.76%) were annotated as mitochondrial proteins and observed

from at least one reference mt protein dataset (Figure 1B). Then,

we assessed the physical and functional links of reference mt

proteins based on the assumption that protein pairs that interact or

share similar functions tend to cluster within the same subcellular

organelle [15]. A total of 201 proteins were physically (82 proteins,

7.31%) or functionally (119 proteins, 10.62%) linked to the 569

reference mt proteins (Figure 1B). Physical link represents protein-

protein interaction. Meanwhile, functional link represents a

relationship between two proteins if they shared a substrate in a

metabolic pathway, co-expressed, co-regulated, or involved in the

same protein complex. We listed these 770 mt proteins

(569+82+119) in Table S1 as a reliable mt protein dataset. Among

the 770 mt proteins, the numbers of down-regulated, up-regulated,

and not significantly changed proteins were 288, 122, and 360,

respectively (Figure 1C). The remaining proteins (351 proteins,

31.31%) were assigned as non-referenced mt proteins that might be

either novel mt proteins or proteins with localizations that were

affected by mtDNA depletion.

Different cellular states change the expression and localization

of proteins targeting mitochondria [22]. To analyze the systemic

properties of the mt proteome under the dysfunctional r0 state, we

constructed a network of reliable mt proteins. By using information

about the physical and functional links of these proteins, we could

map 726 out of 770 reliable mt proteins into a major network (right

panel in Figure 1A; see Materials and Methods for details). The

remaining 44 proteins disconnected from the major network were

excluded from further network analysis. We discovered that the

network is divided into two prominent subnetworks of up-

regulated (green) and down-regulated proteins (red) based on

abundance ratios (Figure 2A). Interestingly, more links were made

Author Summary

Mitochondria are dynamic organelles that are essential for
energy production and cellular processes in eukaryotic
cells, and their functional failure is a major cause of age-
associated degenerative diseases. To meet the specific
needs of different cellular states, mitochondrial protein
repertoires are adjusted. It is critical to characterize the
systemic alterations of mitochondria to different cellular
states to understand the dynamic organization of mito-
chondrial systems. In this study, we modularized the
quantified proteomics data into protein functional net-
works to characterize gene expression changes under
dysfunctional mitochondrial conditions. Our results dem-
onstrate that mitochondrial protein repertoires changed to
compensate for dysfunctional cellular states by reorganiz-
ing mitochondrial protein functional network. Through
network clustering analysis, we discovered that cells
respond to pathological conditions by modulating the
coordinated expression/transport of mitochondrial pro-
teins. Network analysis of mt proteins can advance our
understanding of dysfunctional mitochondrial systems and
elucidate the candidate mt proteins involved in human
mitochondrial diseases.

Network Clustering of Mitochondrial Proteins
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within up-regulated or down-regulated proteins (intraregulatory

links) than between up- and down-regulated proteins (interregu-

latory links). Among the 5,713 links in the network, the majority

(4,854 links, 84.96%) were intraregulatory links (Figure 2B). When

we measured the fraction of links per protein, intraregulatory links

were 3-fold more common than interregulatory links (Whitney-

Mann U test, p-value = 7.55610278; Figure 2C). Furthermore, the

shortest path length of proteins connected within intraregulatory

links was smaller than that of proteins connected within interre-

gulatory links (Whitney-Mann U test, p-value = 7.556102156;

Figure 2D). Shortest path length is the minimum number of links

connecting one protein to another protein in the network, thus a

smaller shortest path length implies that two proteins are more

closely related [6]. This result indicates that up-regulated and

Figure 1. Analysis of the human mt proteomics data. (A) Reliability evaluation of mt proteomics data and functional module identification.
(B) Compositions of the mt proteins from the cICAT proteomics data. (C) Distributions of protein abundance ratios (r0/r+) in reliable mt proteins.
Down-regulated, not significantly changed, and up-regulated proteins were shown.
doi:10.1371/journal.pcbi.1002093.g001

Network Clustering of Mitochondrial Proteins
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down-regulated proteins tend to cluster themselves and might have

distinct functional roles in the protein functional network.

To examine whether up-regulated and down-regulated proteins

participate in different biological processes, we examined the enriched

function of proteins according to abundance ratios. We discovered

that significant biases exist between the two groups when they were

classified by GO biological process terms (Table S2). Functions of up-

regulated proteins were involved in mRNA metabolism and cytosolic

ribosome-mediated translation, whereas down-regulated proteins

were involved in mt ribosome-mediated translation, oxidative

phosphorylation, and the TCA cycle (p-value ,161023).

Functional composition of mt proteome changes under
the dysfunctional mt state

To identify significantly altered functional groups under the

dysfunctional r0 state, we organized mt proteins into functional

modules (right panel in Figure 1A). We identified modules by

examining whether a group of proteins was physically connected

or functionally linked. We used hierarchical average-linkage

clustering with the STRING confidence scores as a similarity

measure (Materials and Methods for details). Then, we assigned

the biological function to the module by examining the

representative functional annotations from proteins in each

module. Finally, we identified 13 functional modules that were

enriched either within up-regulated or down-regulated protein

groups (p-value ,0.01; Table S3). As shown in Figure 3A, five

functional groups were up-regulated (shown in green boxes),

whereas eight functional groups were down-regulated (shown in

red boxes) under the dysfunctional r0 state. The five up-regulated

groups contain 59 out of 89 (66.29%) up-regulated proteins. They

are linked to the function of cytosolic ribosome, ribonucleoprotein

complex, protein folding on mt surface, DNA repair, and

proteolysis, which are associated with the regulation of mt protein

expression in response to mtDNA damage (Figure 3B). Conversely,

Figure 2. Human mt protein functional network. (A) Global functional network of human mt proteins. Nodes are color coded according to the
r0/r+ ratio. Green and red nodes represent up-regulated mt proteins and down-regulated mt proteins under the dysfunctional r0 state, respectively.
(B) Number of links according to the link types. An intraregulatory link is a link between proteins with the same regulatory pattern: up- and up-
regulated or down- and down-regulated proteins. An interregulatory link is a link between up- and down-regulated proteins. (C) The fraction of link
types per single protein. (D) The shortest path length according to the link types.
doi:10.1371/journal.pcbi.1002093.g002

Network Clustering of Mitochondrial Proteins
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the eight down-regulated groups include 138 out of 175 (78.86%)

down-regulated proteins. They were associated with basal mt

functions, such as mitochondrial energy production, metabolism,

and protein folding in mitochondria (Figure 3C). Our result

suggests that the expression control of mt proteins that are involved

in different functional modules is regulated separately under

dysfunctional mt states.

Expression profile analysis of mt protein and mRNA
under a dysfunctional mt state

Eukaryotic cells can monitor and respond to changes in mt

conditions through alterations of nuclear gene expression [32].

To understand how cells respond to the dysfunctional r0 state

to facilitate survival, we analyzed the expression profiles of mt

proteins and mRNAs. We found that 40% of mt proteins

(274 = 127+147) exhibited a positive correlation between

protein and mRNA abundances, while 43% of mt proteins

(296 = 78+218) exhibited a negative correlation between

protein and mRNA abundances (Figure 4A). By using the k-

means clustering algorithm, the mRNA and protein-expression

profiles were divided into five groups depending on the

abundance ratios of mt protein-mRNA: up-up (127), down-

down (147), up-down (78), down-up (218), and unchanged (118)

groups (Figure 4A and Table S4 for protein list). We found that

up-regulated and down-regulated functional modules exhibited

distinctive patterns in expression profiles (Figure 4B and C;

details in Table S3). Specifically, both protein and mRNA

abundances increased in the five up-regulated functional

modules (Figure 4B). Conversely, mRNA abundances in-

creased, but mt protein levels were decreased in the eight

down-regulated functional modules (Figure 4C). The up-

regulated functional modules were involved in mtDNA main-

tenance and control of mt protein transport. The down-

regulated functional modules were associated with mitochon-

drial energy production and metabolism. These results suggest

that cells actively modulate the expression and transport of mt

proteins depending on the functions necessary to survival under

pathological conditions.

Validation of the abundance and localization of mt
proteins

To validate protein abundance ratios measured by cICAT, we

performed western blot analysis by using isolated r+ and r0

mitochondria and confirmed that the tested protein abundances

were largely consistent with those measured by cICAT (Figure 5).

We selected eight up-regulated and nine down-regulated proteins

from each functional module, of which antibodies were commer-

cially available. We found that the levels of seven out of the eight

up-regulated proteins were increased in r0 mitochondria

(Figure 5A). The up-regulated proteins were eIF4A1, PLG,

HNRPM, XRCC6 (Ku70), XRCC5 (Ku80), APEX1, and

STUB1. Likewise, the levels of all tested down-regulated proteins

were decreased in r0 mitochondria, consistent with the cICAT

quantifications (Figure 5B). The down-regulated proteins were

GTPBP3, NDUFS6, ATP5A1, ALDH6A1, GLUD1, MTRF1,

TFAM, HSPD1 (HSP60), and ALDH2. The change of PARP1

levels was not detected by western blot. Additionally, the reliability

of the protein expression patterns of cICAT was further confirmed

by comparing the expression patterns of previously reported 2DE

proteomic analyses [33]. Thirty of the 33 mt proteins (90.91%)

identified from the 2DE proteomic analyses showed similar

expression patterns compared to those obtained from the cICAT

analysis (Figure S2). The difference between protein expression

patterns of cICAT and 2DE was insignificant (p-value was only

0.08).

To verify the localizations of the identified mt proteins, we

selected five proteins and cloned their cDNAs to express GFP-

hybrid proteins. We examined the localization annotations of 264

proteins involved in functional modules and found 20 proteins that

have not been annotated their localization in GO database. Then,

we chose five proteins that have available antibodies, which were

significantly changed under r0 mitochondria. Specifically, ZCD1

in mitochondrial ribosome function, GPT2 and PYCR2 in amino

acid metabolism, CTSD in proteolysis, and HSPBP1 in protein

folding on mt surface modules were tested. We confirmed that all

five proteins localized in mitochondria and merged perfectly with

the red fluorescence of the proteins with mt signal sequence

(Figure 6).

Discussion

Mitochondrial dysfunction caused by mtDNA damage is

involved in many diseases and is likely to be a driving force

behind aging and apoptosis [34]. Here, we investigated the

systemic alterations of mt protein expressions by using a data-

integrative network analysis. Respiratory-deficient r0 cells have

been studied to characterize retrograde signaling, which is a

controlling mechanism of information flow from the mitochondria

to the nucleus and cytoplasm [35], but the systems property of

dysfunctional mt state has not been studied extensively. Through

network clustering analysis, we discovered that cells respond to

pathological conditions by modulating the coordinated expres-

sion/transport of mt proteins.

Using a network analysis of proteomics data, we were able to

find modules reflecting differentially regulated functions between

normal and dysfunctional mt states. We found that up-regulated

and down-regulated proteins of dysfunctional mt states were

organized into two predominant subnetworks that exhibited

distinct biological processes. It has been suggested that proteins

cooperate with other proteins as a part of functional module which

tend to physically associated or share similar expressions to deliver

a certain biological function [36,37]. Network analyses of

molecular pathways or complexes elucidated the collective

behavior of differentially expressed proteins and provided

complementary information to conventional single gene-based

analysis which routinely performed in proteomic analyses [38,39].

We discovered that not only the relevant proteins changed their

expression under dysfunctional mt state, but also the subnetworks

composed of multiple functional protein groups changed their

expression cooperatively to regulate biological processes. These

network-module alterations are particular importance for relating

an altered phenotype with dysfunctional mt state at molecular level

because phenotypic alterations are more closely related with

pathway remodeling than individual gene expression changes [38].

We found that functional modules controlling mt protein

translation, folding, proteolysis, and mtDNA repair were up-

regulated in the dysfunctional r0 state (Figure 3). To properly

respond to changes in cellular states, these processes may require

retrograde regulation [35]. Retrograde signaling regulates many

cellular activities under pathophysiological conditions by changing

the protein inventories of subcellular organelles. It may be possible

that up-regulated mt proteins shuttle between the mitochondria

and other organelles for intracellular communication [40]. Indeed,

we found that the proteins of up-regulated functional modules

tended to have multiple annotations of subcellular localization and

to be involved in processes occurring inside and outside of

mitochondria (Table S1). For example, AP-endonuclease 1

Network Clustering of Mitochondrial Proteins

PLoS Computational Biology | www.ploscompbiol.org 5 June 2011 | Volume 7 | Issue 6 | e1002093



(APEX1) of the DNA repair module is known to shuttle from

mitochondria to the nucleus in response to oxidative stress [41].

Heterogeneous nuclear ribonucleoprotein K (HNRPK), a member

of the ribonucleoprotein complex associated with mtDNA

transcription, has been detected in the nucleus, cytoplasm, and

mitochondria [42]. These observations suggest that up-regulated

functional modules act as cross-talk components connecting

mitochondria with other organelles to sense and propagate the

Figure 3. Thirteen significantly changed functional modules under mtDNA-depleted dysfunctional state. (A) Five up-regulated
functional modules (green boxes) and eight down-regulated functional modules (red boxes) were shown. (B) Distributions of protein abundance
ratios in five up-regulated functional modules. (C) Distributions of protein abundance ratios in eight down-regulated functional modules.
doi:10.1371/journal.pcbi.1002093.g003

Network Clustering of Mitochondrial Proteins
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Figure 4. Mitochondrial proteome-transcriptome profiles in the dysfunctional r0 state. (A) Expression patterns of mt proteins and mRNAs.
As abundance ratios of proteins and mRNAs increased, the colors changed to blue (mt protein) and yellow (mRNA). (B) Box-plots of protein and
mRNA abundance ratios for the up-regulated functional modules. Abundance ratios of protein and mRNA were colored as blue and light blue,
respectively. The error bars indicate the standard deviations of protein and mRNA abundance ratios. The black dots represent the average protein
and mRNA abundance ratios. (C) Box-plots of protein and mRNA abundance ratios for the down-regulated functional modules.
doi:10.1371/journal.pcbi.1002093.g004

Network Clustering of Mitochondrial Proteins

PLoS Computational Biology | www.ploscompbiol.org 7 June 2011 | Volume 7 | Issue 6 | e1002093



retrograde signal upon mtDNA depletion stress to facilitate

mitochondrial survival.

We observed that up-regulated and down-regulated functional

modules contain a small fraction of proteins with opposite protein

expression patterns (Figure 3). On average, levels of 5.5% of the

proteins in down-regulated functional modules were increased,

while levels of 4.7% of the proteins in up-regulated functional

modules were decreased under the dysfunctional r0 state. Proteins

with opposite expression patterns in the functional module could

act as negative regulators of the module [43]. For example, in the

Figure 5. Validations of expression changes of mt proteins. Expression of (A) eight up-regulated proteins and (B) nine down-regulated
proteins from the different functional modules were examined. Mitochondrial lysates (10 mg) were resolved using 12% SDS-PAGE and analyzed by
western blot. Numbers in parenthesis are the protein abundance ratios. b-actin served as a loading control.
doi:10.1371/journal.pcbi.1002093.g005

Figure 6. Validating mitochondrial localizations of mt proteins. SK-Hep1 cells expressing DsRed2-mito were transfected with GFP-hybrid
plasmids of ZCD1, GPT2, PYCR2, CTSD, and HSPBP1. The transfected cells were fixed, mounted, and imaged using a confocal microscope. The
functional module of each protein is presented on the top. Merged images of EGFP and DsRed signals represent the mt localization of the proteins.
Scale bar = 10 mm.
doi:10.1371/journal.pcbi.1002093.g006

Network Clustering of Mitochondrial Proteins
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TCA cycle module, acetolactate synthase (AHAS) was up-

regulated, while other proteins were down-regulated. It has been

reported that upregulation of AHAS decreases the activity of the

TCA cycle by reducing pyruvate flow into the cycle [44]. In

addition, ATP6V1B2 and ATP6V1G1 in the ATP synthesis

module were up-regulated, while other proteins were down-

regulated. Upregulation of these proteins is known to participate in

ATP hydrolysis, leading to the downregulation of ATP synthesis

[45]. Moreover, two heat shock proteins, HSP90AA1 and

HSP90AB1, involved in protein folding on the mt surface were

down-regulated, while other proteins were up-regulated. The heat

shock proteins regulate chaperone activity in response to ATP

concentrations in the cell [46]. Under the dysfunctional r0 state,

ATP reduction could induce the disruption of HSP90 chaperone

activity. Thus, we suspect that oppositely expressed proteins may

compensate for the function of other proteins in the same modules.

The expression of up- and down-regulated proteins was

controlled in several different levels. From the comparisons

between protein and mRNA abundance under the dysfunctional

r0 state, we found that most up- and down-regulated mt proteins

had increased mRNA expression levels (Figure 4). This indicated

that up-regulated proteins were successfully recruited into r0

mitochondria. It has been proposed that there is a compensatory

mt protein import pathway independent from the dissipated

membrane potential [47]. This pathway is known to facilitate the

translocations of proteins involved in mt protein folding and

mtDNA repair to the mitochondria [48]. It implies that

‘‘emergency’’ proteins are increasingly imported to dysfunctional

r0 mitochondria to repair pathophysiological mt conditions. The

cross-talk properties of up-regulated functional modules support

this idea.

One might expect that protein abundances in cytoplasm and

mitochondria to be correlated with mRNA expression levels.

However, we found that the functional modules of down-regulated

proteins have up-regulated mRNA levels, suggesting that down-

regulated proteins might experience difficulties in protein import

into r0 mitochondria. To understand the differences of mRNA

and protein expression of those proteins, we examined the levels of

protein expression in r0 cytoplasm and mitochondria by using

western blot analyses. The tested proteins, GLUD1, GTPBP3,

ATP5A1, TFAM, and NDUFS6, were selected from each down-

regulated functional module. We found that the cytoplasmic

protein levels of GLUD1 (amino acid metabolism), GTPBP3

(tRNA metabolism), and ATP5A1 (ATP synthesis) were increased,

whereas the mitochondrial levels of those proteins were found to

be decreased (Figure S3), suggesting that those proteins remained

in the cytoplasm and did not properly transport into mitochondria.

Meanwhile, both cytoplasmic and mitochondrial protein levels of

TFAM (mtDNA replication) and NDUFS6 (electron transport)

were decreased (Figure S3). It might be possible that these proteins

degraded more rapidly than synthesized in r0 cell, consequently

showed down-regulated protein expression levels.

Mitochondrial protein compositions change to remodel the

organization of mt protein functional networks in response to

changes in cellular states. Analysis of mt protein functional

networks elucidated the biological implications of mt regulatory

mechanisms under dysfunctional mt states. Our efforts of

systematic data-integrative analysis to evaluate the reliability of

proteomics data and to identify important functional modules of

mitochondrial proteins can be valuable to computational biology

community working on gene expression and proteomics analysis.

First, we applied a data-integrative approach to select protein list

by using various databases, proteomics datasets, and protein

functional network. Mitochondrial proteins were organized into

functional modules to identify significantly altered biological

processes under different cellular states. The framework of our

systematic data-integrative analysis may be useful to reliable

proteome analyses for other cellular systems. Second, organizing

the thousand mitochondrial proteins into groups of up- or down-

regulated ones and identifying functional modules are necessary

steps in getting an in-depth understanding of the complex

molecular mechanism of mitochondria. Third, mapping both

mitochondrial proteins and mRNA expression information

together is critical to understand the cooperative expression

regulation of mitochondrial functional modules. Such multi-

dimensional data analysis can be a valuable asset to develop

novel system level models and methods. Also, experimental

biologists can utilize our dataset as a resource for target selection

to elucidate regulatory mechanisms of mt proteins under

dysfunctional mt states.

Materials and Methods

Cell culture and mitochondria isolation
Human mtDNA-depleted (r0) 143B TK2 osteosarcoma cells

and parental normal r+ cells (provided from Dr. Wei YH,

National Yang-Ming Univ., Taipei, Taiwan) were cultured in high

glucose (4.5 g/L) Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% fetal bovine serum (FBS), antibiotics

(100 mg/ml penicillin/streptomycin mix), and uridine (50 mg/ml)

in a humidified atmosphere at 37uC with 5% CO2 as described

[49]. The absence of mtDNA in r0 cells was verified by PCR and

PicoGreen staining (Figure S4). PicoGreen is a sensitive staining

dye to visualize mtDNA [50]. The PCR primers were 59-TTC

CAC ACA GAC ATC ATA AC-39 and 59-CCT ATT TGT TTA

TGG GGT GA-39 for mtDNA (410 bp at 55uC for 21 cycles) and

59-TTC TAC AAT GAG CTG CGT GTG GCT-39 and 59-GCT

TCT CCT TAA TGT CAC GCA CGA-39 for b-actin (378 bp,

65uC for 27 cycles). Meanwhile, cells were treated with PicoGreen

(3 ml/ml) for 1 h, washed with DPBS, and stained with 100 nM

Mitotracker-Orange (Mito-T, Molecular Probes) for 10 min.

Then, cells were fixed with 4% paraformaldehyde for 20 min

and observed via confocal microscopy (Leica TCS-SP2).

Pure mitochondria from r0 and r+ cells (26108) were prepared

by ultracentrifugation by using 30–50% (1.1 and 1.6 g/ml)

OptiprepTM density gradient media (Sigma-Aldrich) as described

previously [51]. The purity of mitochondria was confirmed by

western blot analysis. Mt proteins, COX I, COX IV, and HSPD1

(HSP60), exhibited significant reductions in levels in r0 mitochon-

dria compared to their levels in r+ mitochondria, supporting

complete mtDNA depletion and good mt preparation. Meanwhile,

nuclear fraction marker (HDAC1), cytoplasmic fraction marker

(NF-kB and SOD1), ER fraction marker (GRP78), and lysosomal

marker (LAMP1) were not detected in both r0 and r+

mitochondria (Figure S5). b-actin was used for equal loading

verification. Then, we applied quantitative cICAT analysis to

compare protein abundances in r0 and r+ mitochondria.

Analysis of human mt proteomics data
To validate whether the proteins identified from cICAT were

associated with mitochondria, we examined the GO cellular

component annotation of the proteins identified from proteomics.

Then, we performed a systematic data-integrative analysis to

examine whether proteins identified from proteomics were

matched with 13 reference mt protein datasets representing

complementary independent studies of mt proteome, which

include seven mt protein databases (HMPDb (http://bioinfo.

nist.gov/hmpd/index.html), Maestro [52], MitoProteome [53],
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MitoRes [54], Locate [55], MitoP2, and SVM-trained MitoP2

[56]) and six mt proteomics datasets (two MitoCarta datasets [57],

and four mtDNA depleted mitochondria proteomics datasets

[33,58,59,60]). Some of the proteins from the database might

contain mitochondrial proteins from other species, thus we only

selected human mt proteins from these datasets to construct a

reliable mt protein list. We validated 569 human proteins

annotated as mitochondrial proteins and observed from at least

one reference mitochondrial protein dataset.

Next, the Human protein reference database (HPRD) [61] and

Search Tool for the Retrieval of INteracting Genes/proteins

(STRING) database [62] were utilized for detecting physical and

functional associations of the resulting proteins. STRING provides

a large set of known and predicted protein-protein associations by

compiling experimental repositories, curated pathway database,

literature-mining resources, and computational predictions. Two

proteins were connected in the STRING network if they shared a

substrate in a metabolic pathway, co-expressed, co-regulated,

connected by protein-protein interactions, or involved in the same

protein complex. We additionally identified 201 proteins, of which

82 proteins were physically associated and 119 proteins were

functionally associated with the first 569 mt proteins. A total of 770

proteins were defined as reliable mt proteins.

Construction of human mt protein functional network
and identification of functional modules

We constructed the human mt protein functional network using

physical and functional link information extracted from the

STRING database (ver. 8.0) with the 770 reliable mt proteins.

The resulting mt protein functional network contained 726

proteins with 13,618 links (Figure 2A), which included 4,854

intraregulatory links and 859 interregulatory links (Figure 2B).

Intraregulatory links were defined as the interactions among up-

regulated proteins or among down-regulated proteins, whereas

interregulatory links were the interactions among up-regulated

proteins and down-regulated proteins.

We separated the mitochondrial protein functional network into

functional modules (Figure 1A). A functional module was

determined by examining whether a group of proteins was

physically connected or functionally linked. To identify modules,

we used hierarchical average-linkage clustering by using the OC

software (http://www.compbio.dundee.ac.uk/Software/OC/oc.

html) with the STRING confidence scores as a similarity measure.

STRING confidence score represented the probability of finding

the proteins which were related by one or more cellular and

genetic interactions. Then, we assigned biological function to the

module by using Ontologizer 2.0, which collects GO representa-

tive functional annotations from proteins in each module [63], and

selected functional modules if the significance (p-value) of GO

enrichment was less than 0.01. The enrichment of up- or down-

regulated proteins in a given functional module was used to check

the consistency of protein expression in the module (hypergeo-

metric tests, p-value ,0.01). Finally, we identified 13 functional

modules consisting of five up-regulated and eight down-regulated

modules.

Microarray analysis
Total RNA from r0 or r+ cells was isolated using TRIzol

(Invitrogen) and quantified with a NanoDrop spectrophotometer

(NanoDrop Technologies, Inc.) (n = 3). Microarray analysis was

performed in triplicate by using the Illumina Sentrix HumanRef-8

Expression BeadChip according to the Illumina Bead Array

Technical Manual. Briefly, total RNA (500 ng) was used for

cDNA synthesis, followed by an amplification/labeling step (in

vitro transcription) to synthesize biotin-labeled cRNA by using the

IlluminaH TotalPrep RNA amplification kit (Ambion, Inc.). The

cRNA sample (750 ng) was hybridized to the BeadChip and

stained with streptavidin-Cy3. The chips were dried and scanned

by the BeadArray reader. The raw scan data were subjected to

logarithmic transformation (log2 ratios of fluorescence intensities)

and quantile normalization by using the Avadis 4.3 software

(Strand Genomics). Statistical significances were adjusted by the

Benjamini-Hochberg FDR multiple-testing correction. Genes

were filtered out by using the detection p-value threshold (p.0.05).

All microarray data reported in this study are described in

accordance with MIAME guidelines and have been deposited in

the National Center for Biotechnology Information Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)

public repository, and they are accessible through GEO accession

(GSE22970).

Protein identification and quantification
For cICAT labeling, protein extracts from the pure r0 or r+

mitochondria were prepared with lysis buffer (10 mM HEPES,

pH 7.9, 10 mM KCl, 2 mM MgCl2, 0.5 mM dithiothreitol,

1 mM phenyl-methylsulfonyl fluoride [PMSF]). Proteins were

concentrated, and other non-protein materials such as salts were

removed by the acetone precipitation method. Precipitated

proteins were denatured in labeling buffer (6 M urea, 0.05%

SDS, 5 mM EDTA, 50 mM Tris-Cl, pH 8.3) for 30 min and

reduced with 5.3 mM Tris (2-carboxyethyl) phosphine hydrochlo-

ride (TCEP) for 30 min at 37uC. After readjustment to pH 8.3

with 1 M Tris-Cl buffer (pH 8.3), the r+ or r0 protein samples

were labeled with a 15-fold molar excess of cleavable cICAT light

(12C) or heavy (13C) reagents (Applied Biosystems, Foster City, CA)

relative to proteins for 2 h at 37uC. Each 110-mg aliquot of

separately labeled samples was equally combined and digested by

trypsin (Promega, Madison, WI). The cICAT-labeled peptides

were selectively isolated by strong cation exchange (SCX) and

avidin affinity chromatography on a manually programmed

AKTA Explorer 100 system (Amersharm Pharmacia, Sweden).

Biotin moieties from cICAT-labeled peptides were cleaved by

incubation for 1.5 h with 95% trifluoroacetic acid at 37uC.

Samples were then dried in a speed-vacuum dryer and dissolved

with 0.4% acetic acid for LC-MS/MS analysis. A schematic

summary of the cICAT analysis workflow is presented in Figure

S1.

The cICAT-labeled peptides were loaded on a nanospray tip

coupled to a capillary reverse-phase column (14 cm675 mm,

Magic C18aq; Michrom BioResources, Auburn, CA) packed in-

house by using a helium pressure cell. Peptides were eluted with a

linear gradient of 5–35% buffer B (running buffer A: 0.1% formic

acid in H2O; elution buffer B: 0.1% formic acid in 100%

acetonitrile) over 90 min at 200 nl/min using an Agilent 1100

capillary pump system. Eluting peptides from the column were

analyzed using LTQ linear ion trap mass spectrometers (Thermo

Finnigan, San Jose, CA). A MS survey scan from 300–2000 m/z

was acquired with three mscans followed by three data-dependent

MS/MS scans (isolation width, 1.5 m/z; normalized collision

energy, 28%; dynamic exclusion lists, 100; dynamic exclusion

duration, 3 min). Data from RAW MS/MS files (minimum ion

counts, 15; minimum peak intensity threshold, 1; mass range, 600–

4300 Da) were generated, and peptide sequences from the data

were assigned against the International Protein Index (IPI) human

database (Version 3.13; 57,034 proteins) including known

contaminants (180 entries) by using a 4-node SEQUEST (version

27, revision 9) cluster with the following search parameters:

specificity (no enzyme), number of missed cleavage (max three
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sites), cysteine mass (fixed, +227.13 for light cICAT), cysteine mass

(variable, +9 for heavy cICAT), methionine mass (variable, +16 for

oxidation), mass tolerance of precursor ion (3.0) and fragment ion

(0.5), mass type of precursor and fragment ion (average mass), and

subsequence (cysteine residue). To discriminate true proteins from

false positives and to quantify the abundance of proteins, we used

Trans-Proteomic Pipeline of Institute for Systems Biology (TPP;

Version 1.7.2; INTERACT, PeptideProphetTM, ProteinPro-

phetTM, XPRESS programs). The peptides with P$0.50 by

PeptideProphetTM were applied to ProteinProphetTM. The

proteins with P$0.95 by ProteinProphetTM were considered to

have the correct identification. Single- and double-hit proteins of

the correct identifications were further validated through manual

inspections of MS/MS spectra (false positive rate, below 0.4%).

Quantification of peptides and proteins was performed with

XPRESS software, and the peptides with bad quality (e.g., below

S/N#2) were not considered by quantification. Finally, we

identified nuclear-encoded 1,121 mt proteins that included 313

down-regulated proteins (r0/r+#0.67), 201 up-regulated proteins

(r0/r+$1.5), and 607 not significantly changed (0.67,r0/

r+,1.5) proteins. The thresholds of 0.67 represents the 1.5-fold

decrease (r0/r+#1/1.5), whereas the threshold of 1.5 represents

1.5-fold increase (r0/r+$1.5). Protein abundance ratio smaller

than 0.67 or larger than 1.5 were routinely-applied thresholds

indicating significant changes in proteomic analyses [64,65,66,67].

See Table S1 for further details on the list of identified mt proteins.

Western blot analysis
Cells were lysed with lysis buffer (50 mM Tris HCl, pH 7.5,

0.1 M NaCl, 1 mM EDTA, 1% Triton X-100, 10 mg/ml each of

aprotinin and leupeptin, and 1 mM PMSF). In some cases,

mitochondrial fractions were lysed with the lysis buffer. A portion

of cells (20–30 mg) or mitochondrial lysates (10 mg) were separated

on 12% SDS-PAGE, transferred onto nitrocellulose membranes

(Schleicher and Schuell), and subjected to western blot analysis by

using designated primary antibodies. Horseradish peroxidase-

conjugated secondary antibodies (Cell Signaling Technology,

Beverly, MA) followed by ECL (Amersham Biosciences Inc.,

Piscataway, NJ) were used for detection.

Antibodies against APEX1, STUB1, and ATP5A1 were pur-

chased from Santa Cruz Biotechnology (Santa Cruz, CA). GTPBP3

and HDAC1 antibodies were purchased from Abcam (Cambridge,

UK), and anti-eIF4A1 was obtained from Cell Signaling Technology

(Danvers, MA). Antibodies against ALDH2, ALDH6A1, MTRF1,

NDUFS6, HNRPM, GLUD1, and PLG were purchased from

Abnova (Taipei, Taiwan). Antibodies against COXI and COXIV

were purchased from Invitrogen (Karlsruhe, Germany), and TFAM

were prepared in our laboratory [51]. PARP1, HSPD1 (HSP60), NF-

kB, SOD1, XRCC5 (Ku80), XRCC6 (Ku70), and b-actin were

purchased from Santa Cruz Biotechnology.

Localizations of GFP fusion proteins
SK-Hep1 cells were stably transfected with pDsRed2-mito

vectors (Clontech) containing the mt signal sequence of COXVIII

in front of red fluorescent protein (Red2). The cDNAs of several

candidate proteins were synthesized from the total RNA of r+ cells

by RT-PCR, sub-cloned into the T-easy vector (Promega), and

then cloned into the N-terminus of the pEGFP-N3 vector (BD

Bioscience). The resulting GFP-hybrid plasmids of pZCD1-EGFP,

pGPT2-EGFP, pPYCR2-EGFP, pCTSD-EGFP, and pHSPBP1-

EGFP were transfected using Superfect (QIAGEN, Valencia, CA)

into DsRed2-mito-SK-Hep1 cells. At 48 h post-transfection, the

transfected cells were fixed with 4% paraformaldehyde, mounted,

and imaged using a confocal microscope (Carl Zeiss LSM 5). The

mt localizations of candidate proteins were determined by the

overlap of EGFP and DsRed signals.

Supporting Information

Figure S1 Workflow of comparative cICAT analysis of
mitochondria proteomes. See Materials and Methods for

details.

(TIF)

Figure S2 The reproducibility of the changes in protein
abundances detected by cICAT quantification. Thirty-

three mt proteins were observed from both cICAT and 2DE

proteome datasets. Similar expression patterns between our mt

proteomics data (black) and 2DE analysis (light gray) are shown.

(TIF)

Figure S3 The level of protein expression in cytoplasm
and mitochondria. Western blot analysis of five proteins in

cytosolic and mitochondrial fractions isolated from r+ and r0 cells.

b-actin was used as a loading control.

(TIF)

Figure S4 Confirmations of mtDNA depletion in r0 cells.
(A) PCR amplification of mtDNA. Genomic DNAs isolated from

r+ or r0 cells were utilized as templates to amplify mtDNA and

nuclear DNA-encoded b-actin control. (B) Cellular nucleotide

staining. Cells were treated with PicoGreen for 1 h, washed with

DPBS, and then stained with Mitotracker orange (Mito-T,

100 nM) for 10 min. The cells were fixed with paraformaldehyde

for 20 min and visualized by conformal microscopy (61000).

mtDNA was observed only in r+ cells.

(TIF)

Figure S5 Identification of purified mitochondria. Mi-

tochondria were isolated using gradient-based ultracentrifugation

as described. Proteins from a total lysate (30 mg), and mitochon-

dria (10 mg) were resolved using 12% SDS-PAGE and analyzed by

western blot. Antibodies against the following marker proteins

were used: COXI, COXIV, and HSPD1 (HSP60) for mitochon-

dria, HDAC1 for nucleus, NF-kB and SOD1 for cytoplasm,

GRP78 for ER, and LAMP1 for lysosome. b-actin served as a

loading control.

(TIF)

Table S1 List of the 1,121 proteins identified by cICAT.

(XLS)

Table S2 List of enriched functions in up-regulated mt proteins

or down-regulated mt proteins.

(XLS)

Table S3 List of up-regulated functional modules and down-

regulated functional modules.

(XLS)

Table S4 Comparisons between protein and mRNA expression.

(XLS)
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