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SUMMARY

Drought severely affects global food production. Sorghum is a typical drought-
resistant model crop. Based on RNA-seq data for Sorghum with multiple time
points and the gray correlation coefficient, this paper firstly selects candidate
genes via mean variance test and constructs weighted gene differential co-
expression networks (WGDCNs); then, based on guilt-by-rewiring principle, the
WGDCNs and the hiddenMarkov randomfieldmodel, drought-responsive crucial
genes are identified for five developmental stages respectively. Enrichment and
sequence alignment analysis reveal that the screened genesmay play critical func-
tional roles in drought responsiveness. A multilayer differential co-expression
network for the screened genes reveals that Sorghum is very sensitive to pre-
flowering drought. Furthermore, a crucial gene regulatory module is established,
which regulates drought responsiveness via plant hormone signal transduction,
MAPK cascades, and transcriptional regulations. The proposed method can
well excavate crucial genes through RNA-seq data, which have implications in
breeding of new varieties with improved drought tolerance.

INTRODUCTION

With the increasing of global population, food security has become a serious global problem. Drought is a

typical abiotic stress that severely affects food security. It is reported that the impact of drought on crops is

grievous among all abiotic stresses (Fahad et al., 2017; Jaiswal et al., 2021). It is estimated that drought can

directly cause averagely $2.9 billion losses annually (Fahad et al., 2017). An efficient way to guarantee food

security is to optimize and cultivate crops that can adapt quickly to environmental changes (Council, 1996),

such as drought stress. However, exploring drought-resistant mechanisms of crops and the associated

crucial genes is the first step to cultivate novel drought-resistant varieties and alleviate the impact of

drought on crop yields.

It is well known that different crops have varied water demand to maintain growth and development.

Comparing with Corn, Barley, and Wheat, Sorghum is extremely resistant to drought, which can survive

for several weeks without water (House, 1985). Actually, Sorghum is characterized by its low water con-

sumption, high water utilization, and high photosynthetic efficiency; thus, it is widely planted in arid and

semi-arid areas, and it has become an ideal plant for probing drought responsiveness (Mace et al.,

2013). The genome of Sorghum was firstly published in 2009 (Paterson et al., 2009), and considerable

research on transcriptomic sequencing have been subsequently performed (Mace et al., 2013; Varoquaux

et al., 2019; Zhang et al., 2019), which facilitate us to systematically explore its drought-resistant mecha-

nisms from omics data (Ngara et al., 2021).

For omics data analysis, a challenge issue is to develop appropriate mathematical and statistical tools to

explore useful bioinformatics. Various data-driven techniques have been developed and great advances

have been made during the last decades. The associated techniques include dimensional reduction and

variable pre-selection, network reconstruction and network-based information mining, sophisticated

model-based methods for crucial gene identification, and so on (Lü and Wang, 2020).

Hereinafter, we briefly review some related works on omics data analysis. First of all, massive omics data

often contain too many covariates but with only a few samples, considerable actually uncorrelated or inde-

pendent covariates greatly hinder the subsequent analysis and applications (Wang et al., 2022). Therefore,

it is necessary to perform dimensional reduction or variable pre-filtering. RNA-seq data often include
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samples for treatments and controls. In the experimental design, a discrete categorical response variable

can be representative of the experimental environment in which the samples are placed, and expression

profiles of genes can be considered as covariates. Certainly, it is also possible to consider some informative

genes of interest as response variables. In practice, the independence test between the response variables

and the covariates can be used to exclude irrelevant variables. Many methods have been developed to

perform the independence test. For example, the Kolmogorov-Smirnov test is a nonparametric method

to test whether the distribution of a sample is consistent with another, but it is only suitable for continuous

quantitative data (Lilliefors, 1967). The Pearson c2 test discretizes the continuous random variables to check

the independence between two variables, but it may lead to information loss due to the discretization pro-

cesses (Dahiya and Gurland, 1972). The two-sample t test is only applicable to continuous variables, and it

needs to assume that samples follow normal distributions (Xu et al., 2017). The recently proposed model-

free mean variance (MV) test can be used to detect the independence between a continuous random var-

iable and a categorical variable (Cui and Zhong, 2019). Except the mentioned independent tests, many

other methods can also be used to realize dimensional reduction and variable selection (Moore, 2004;

Hahn et al., 2003; Macciotta et al., 2009). The associated methods can help researchers to effectively

exclude non-critical variables and reduce computational burden.

Secondly, complex network has been widely used to explore omics data (Lü et al., 2012, 2016; Kawata et al.,

2018; Ding et al., 2020; Shang and Liu, 2021; Liu et al., 2012, 2014; Csermely et al., 2013). For example,

various network-based approaches have been developed to explore drug targets and essential proteins

(Csermely et al., 2013; Shang and Liu, 2021; Liu et al., 2012, 2014), as well as stress-responsive crucial genes

in plants (Wang et al., 2017; Wang et al., 2018a; Wang et al., 2018b; Wang, 2021; Bi and Wang, 2022).

Recently, Wang et al. (Wang and Wang, 2022) proposed a novel method to construct gene differential

co-expression networks (GDCNs), and then based on the GDCNs, they developed three indexes to eval-

uate the importance of genes in altering global co-expression patterns. The network-based approach pro-

vides effective tools to explore omics data.

Finally, as to model-based methods for crucial gene identification, many methods or algorithms have been re-

ported, including the hiddenMarkov randomfield (HMRF)model (Besag, 1986). Generally, HMRFmodel can be

used to describe the noncausal context relationship or spatial relations in physical phenomena. The HMRF

model has been widely used in genome-wide association studies (GWAS). For example, based on the guilt-

by-association principle (Xu and Li, 2006;Wu et al., 2008; Jeong et al., 2001), Chen et al. incorporated biological

pathway information into the HMRF model to screen informative GWAS signals (Chen et al., 2011). However,

Chen et al. overlooked the dynamic feature of biological networks (Wu et al., 2008; Yang et al., 2011; Vanunu

et al., 2010; Chen et al., 2009; Lee et al., 2011). Subsequently, Hou et al. integrated gene rewiring networks into

the HMRF to study the Crohn and Parkinson diseases. They introduced the guilt-by-rewiring principle in the

HMRFmodel to prioritizing genes. The method proposed by Hou et al. considered the dynamic characteristics

of the networks (Hou et al., 2014), which is biologically meaningful. However, the existing models need to inte-

grate multiple omics data, including gene expression data and GWAS data, which are inappropriate for the

cases without required data. Moreover, the use of multiple omics data unavoidably introduces bias and batch

effect, which inspire us to develop novel methods that merely rely on single omics data, such as RNA-seq data.

Motivated by the mentioned issues, we will explore the RNA-seq data for Sorghum under drought stress

and with multiple time points. Firstly, the MV test is used to exclude genes that are independent with

the response or phenotype; then, based on the expression data of the selected genes under treatments

and controls and the gray correlation coefficient (GCC), weighted gene differential co-expression networks

(WGDCNs) are constructed. Finally, combining the WGDCNs and the HMRF model, the posterior proba-

bilities of genes that contribute to drought stress are obtained. GO enrichment analysis and gene

sequence alignment analysis reveal that the screened crucial genes play critical functional roles during

drought stress in Sorghum. The main contribution of this paper includes three aspects: 1) A method that

integrates the WGDCN and the HMRF model is proposed to analyze RNA-seq data, which has the advan-

tages of both considering the network structural information and the sophisticated statistical model; 2) The

RNA-seq data for Sorghum under drought stress and with multiple time points are explored; drought-

responsive crucial genes are identified for different developmental stages, and their biological functions

are investigated in detail; 3) A multilayer differential co-expression network and a possible gene regulatory

module are established, which can be used to reveal certain mechanisms of drought responsiveness in

Sorghum.
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RESULTS

Method summary

Our goal is to statistically identify drought-responsive crucial genes in Sorghum. A summary of the pro-

posed approach is depicted in Figure 1. Firstly, since Sorghum suffers great phenotypical changes from

week 3 to week 17, and to be more concretely screen crucial genes at different developmental periods,

we divide the RNA-seq data into five stages, each stage covers three weeks. This classification mainly con-

siders the developmental features (Vanderlip and Reeves, 1972) of Sorghum and the balance of samples for

each stage. Secondly, for the processed data from each stage, we perform MV test to exclude genes that

are independent with treatments, and retain genes with PMV % 0:01 as candidate genes for statistical anal-

ysis. Based on RNA-seq data of the selected genes, WGDCN is constructed for each stage. Finally,

combining the WGDCN and the HMRF model (Method details), posterior probability of each candidate

gene is obtained for each stage. The obtained posterior probability reflects the association

Figure 1. Schematic flowchart of the proposed method to identify drought-responsive crucial genes in Sorghum

RNA-seq data under pre-flowering drought, post-flowering drought and normal watering conditions are considered, and these samples are divided into five

developmental stages. Each stage covers samples from three successive weeks. The notation week i j stands for the sample of the j’th replicate at the i’th

week. For each stage, the original RNA-seq data is firstly processed and filtered by the mean variance test; then based on the gray correlation coefficient and

the guilt-by-rewiring principle, a weighted gene differential co-expression network is constructed. Finally, based on the weighted gene differential co-

expression network and the hiddenMarkov random field model, posterior probabilities for candidate genes are obtained. Drought-responsive crucial genes

are genes with high posterior probabilities.
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tendentiousness of a gene with drought stress. The candidate genes can be prioritized according to the

posterior probabilities, and the top-ranked genes are deemed as crucial ones.

Rankings according to the proposed method have high discrimination ability

Based on the RNA-seq data of Sorghum, the MV test screens 6682, 12,276, 1712, 4672, and 3983 genes at

the five stages, respectively, where 335 genes are commonly selected at the five stages (Figure 2). In the

former four stages, more differentially expressed genes (DEGs) are downregulated; whereas, at Stage 5,

upregulated DEGs are more than the downregulated ones. About half of the candidate genes are not

differentially expressed (jlog2ðFCÞj< 1 or P > 0:05). By incorporating the WGDCNs and the HMRF model,

the posterior probabilities of the candidate genes are obtained. Our results reveal that considerable

genes are with posterior probabilities ranging from 0.96 to 1, and there are slight differences between

different stages (Figures 2C and 2D). The distributions of PMV (Figure 2C) and posterior probabilities (Fig-

ure 2D) show reverse trends, and there are some differences between the two, especially for the last two

stages.

In order to compare the performance of the MV test and the HMRF model on their distinguish abilities, we

define discrimination abilities of the MV test and the HMRF model at the l’th stage as

RMV
l =

UMV
l

ml
;RHMRF

l =
UHMRF

l

ml
ðl = 1; 2;3;4;5Þ:

Here,ml is the number of candidate genes at Stage l, UMV
l is the number of unique rankings according to the

MV test, and UHMRF
l denotes the number of unique rankings from the HMRF model at the l’th stage. Table 1

shows that the discrimination abilities of the MV test are apparently lower than those from the HMRF model,

which indicates that the HMRF model can more precisely distinguish the differences among genes.

Drought-responsive crucial genes and their functional analysis

Hereinafter, the top-20 ranked genes with high posterior probabilities at each developmental stage will be

selected as crucial drought-responsive ones. The top-20 ranked genes account for � 0:09% of all detected

genes in RNA-seq.

Figure 2. Information for candidate genes at the five stages

(A) Volcano plots for candidate genes at each stage. sig(Up/Down) represents significantly up-/down regulated genes; FC denotes fold change of gene

expressions between treatment and control; FC(Up/DownOnly) represents genes with log2ðFCÞR 1 or log2ðFCÞ% � 1, but their expressions are not

significantly different between treatments and controls (PR 0:05). P(Only) denotes genes with P < 0:05 and jlog2ðFCÞj< 1; NoDiff denotes genes with both

PR 0:05 and jlog2ðFCÞj< 1.

(B) The number of candidate genes at each stage and the corresponding Venn diagram.

(C) The distributions of P values according to the MV test.

(D) The distributions of posterior probabilities that obtained by the HMRF model.
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It is known that plants can cope with drought through various ways, such as metabolism (Bhargava and Sa-

want, 2012; Pinheiro and Chaves, 2011), biosynthesis (Capell et al., 2004; Ilhan et al., 2015), osmotic adjust-

ment (Babita et al., 2010; Flowers and Yeo, 1986), stomatal closure, and reduction of photosynthetic rates

(Pezeshki and Chambers, 1986). GO enrichment analysis reveals that the top-20 ranked genes are enriched

in drought-related biological processes (Figures 3A–3E), including response to stimulus, response to stress

(drought and oxidative stresses), and response to chemical. Figure 3F shows 15 enriched biological pro-

cesses and the associated candidate genes. The 15 processes include response to stress/stimulus, regula-

tion of response to watering, and cellular response to water deprivation. Among the associated genes, So-

bic.001G0401300.v3.1 and Sobic.004G116300.v3.1 participate in many of the 15 biological processes;

Sobic.001G079500.v3.1, Sobic.001G095700.v3.1, and Sobic.009G116700.v3.1 involve in responding to wa-

ter and water deprivation. However, the GO enrichment results for the bottom-20 ranked genes are quite

different from the top-20 ranked ones; no apparent processes are associated with drought responsiveness

(Figure S1). GO enrichment analysis suggests that the top-20 ranked genes by the HMRFmay actually play a

key role during drought responsiveness in Sorghum.

Among the identified crucial genes, based on sequence alignment analysis (Johnson et al., 2008) with the

Arabidopsis genome, we find that many genes are homologous with known drought-related genes in Ara-

bidopsis, for example, Sobic.003G229400.v3.1 is possibly homologous with MPK3 and MPK6 (Table S1).

Many studies have reported thatMPKs play roles in regulating developmental processes and in responding

to various stimuli in plants (Ma et al., 2017). Tsugama et al. reported that MPK6 can be directly regulated by

drought, and ROS-induced MPK6 activation served as an upstream signal under drought conditions (Tsu-

gama et al., 2012). Sobic.007G077466.v3.1 is homologous with WRKY66 andWRKY75, which belongs to the

WRKY transcription factor (TF) family. The WRKYs play important roles during stress responsiveness in

plants (Wang et al., 2018a). Some other homologous genes in Arabidopsis include PDC1, PMH1, LEA,

SOS6, IAA7, PBS1, ARSK1, ERD14, RBOHD, and so on. Many of them involve in drought-related biological

processes (including responding to water/water deprivation and cellular response to water deprivation),

and partly of them have been proved by previous studies (Table S1).

As a summary, GO enrichment analysis and sequence alignment analysis with the Arabidopsis genome

reveal that the identified top-20 ranked genes are inextricably associated with drought stress, which indi-

cates that the proposed method is efficient in identifying crucial drought-responsive genes in Sorghum.

Multilayer differential co-expression network analysis for the identified crucial genes

Hereinafter, based on the identified top-20 ranked genes, we construct a temporal multilayer differential

co-expression network to explore the selected genes (Figure 4A). The multilayer network is constructed

as follows. Firstly, we extract subnetworks of the WGDCNs for the top-20 ranked genes at each stage.

The subnetwork for each stage serves as one layer. The weights of intralayer edges are the same as those

in the WGDCNs. Secondly, interlayer edges are added, which connect the same gene at two different

layers. Structural analysis reveals that the temporal network at Stage 2 encompasses the largest average

degree and average clustering coefficient, and it has the lowest average path length, which indicates

that the associated network has small-world property (Figure 4B). The subnetworks at Stages 4 and 5 are

more densely connected than the other stages, which reveal that relatively more rewiring events among

the selected genes have been triggered by drought stress at the reproductive growth stages. The expres-

sion profiles of the identified genes show some patterns in samples under treatment and control

(Figure 4C).

To evaluate the overlap of nodes across layers, we compute the Jaccard similarity coefficient (Wang and

Wang, 2022) according to

Table 1. Discrimination abilities of the MV test and the HMRF model at each stage. The rankings from the HMRF

model have apparent higher discrimination abilities than those from the MV test

Stage 1

(Week 3–5)

Stage 2

(Week 6–8)

Stage 3

(Week 9–11)

Stage 4

(Week 12–14)

Stage 5

(Week 15–17)

RMV 0.0076 0.0038 0.0298 0.0086 0.0115

RHMRF 0.7785 0.8146 0.9854 1.0000 1.0000
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Overlapði; jÞ =

��AiXAj

����AiWAj

��; i; j = 1;2;3;4;5:

Here, Ai denotes the selected gene set at the i’th stage (i = 1; 2; 3; 4; 5). For the five-layer network, we obtain

Overlap =

0BBBB@
1 0:0339 0 0 0:0204
0:0339 1 0:0133 0:0408 0:0400
0 0:0133 1 0 0
0 0:0408 0 1 0:1282
0:0204 0:0400 0 0:1282 1

1CCCCA:

The overlaps between different layers are very low, which may reveal that there are considerable differ-

ences on rewiring patterns among different developmental stages of Sorghum. Especially, the overlaps

among the first three stages are quite low, which may be due to the fact that the first three stages are devel-

opmental growth stages, quickly growth of the plants leads to great phenotypical differences, as well as

great differences on the associated crucial genes. However, the overlap between Stage 4 and Stage 5 rea-

ches 0.1282, which suggests that the two stages share comparably more common genes than those in the

.

C

                                                             

A

D E

F

B C

Figure 3. GO enrichment analysis for the top-20 ranked genes at the five stages

(A–E) GO enrichment analysis for the top-20 ranked genes at each of the five stages. Enriched biological processes (P < 0:1) for the top-20 ranked genes are

considered.

(F) Enriched drought-related processes and the associated top-20 ranked genes.
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first three stages. Several common genes in the last two stages continuously play functional roles under

drought stress. Stage 3 shares the least common genes with the other stages, which well separates the

pre-flowering period (Stages 1 and 2) and the post-flowering period (Stages 4 and 5). Actually, there are

57 crucial genes in the pre-flowering period and 31 crucial genes in the post-flowering period, which

may indicate that drought responsiveness in Sorghum is more complex before flowering. Moreover, the

genes screened at Stage 2 have overlaps with the other four stages, indicating that Stage 2 may be a

very important developmental stage, which closely relate to the whole life of Sorghum. In the face of

drought environment, we should pay special attention on the prevention of pre-flowering drought and

enhance defensive measures at Stage 2 to reduce the influence of abiotic stress on crops.

A B

C

Figure 4. Multilayer differential co-expression network analysis for the top-20 ranked genes at the five stages

(A) The constructedmultilayer network for the selected genes. The inter layer edges connect the same gene in two layers; node sizes are proportional to their

evidence of drought responsiveness (whether they are reported to be drought responsive (Table S1) or are annotated with drought-related GO biological

processes. The largest nodes are both reported in existing references and functionally annotated).

(B) Density, average degree, average path length, and average clustering coefficient for the network at each layer.

(C) Clustering analysis of the expression profiles for the top-20 ranked genes in all samples. The clustering analysis is based on normalized data, which is

performed by the average linkage method and Euclidean distance.
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During the growth of Sorghum, some genes exert drought responsiveness in multiple periods, whichmay play

roles in continuously alleviating the impact of external drought stress. For example, Sobic 0.003G081900.v3.1

is upregulated in both Stage 2 (log2ðFCÞ = 7:5911) and Stage 3 (log2ðFCÞ = 3:4221); Sobic.010G17800.v3.1

is downregulated at both Stage 3 (log2ðFCÞ = � 1:1637) and Stage 4 (log2ðFCÞ = � 1:7968); So-

bic.010G1778002v3.1 is downregulated at Stages 2, 4, and 5. Though Sobic.003G190100.v3.1 is not a DEG,

it is homologous with ALPHAVPE, and is identified as crucial genes both at Stages 4 and 5, which can trigger

considerable differential co-expression relationships with the other genes. In general, multilayer network anal-

ysis reveals that the crucial genes can trigger extensive temporal co-expression changes under drought stress,

and there are certain correlations among different stages.

Crucial gene regulatory module for drought responsiveness in Sorghum

The multilayer GDCN only reflects differential co-expression patterns among genes; based on

PlantRegMap, we can further predict the possible gene interactions and explore the gene regulatory mod-

ule for drought responsiveness in Sorghum (Figures S2 and S3). For the selected top-20 ranked genes,

PlantRegMap predicts that Sobic.003G229400.v3.1, Sobic.009G116700.v3.1, Sobic.001G079500.v3.1, So-

bic.001G095700.v3.1, Sobic.007G077466.v3.1, Sobic.009G085100.v3.1, and Sobic.004G286600.v3.1 have

regulation relationships (Figures 5A and S2). Moreover, the expression of these genes changed more

severely in roots than in leaves (Figure 5B). Further based on the STRING database, the homologous genes

in Arabidopsis are also connected in the protein-protein interaction (PPI) network (Figures 5A and S3). The

PPI network consists of several famous genes that have been reported to be closely related to drought

stress, such as MPK6, MYC2, IAA7, ERD14, ERD10, WRKY75, and AUX1. The associated genes in the PPI

network involve in plant hormone signal transduction, MAPK signaling pathway, and stress response.

A B

C

Figure 5. Crucial gene regulatory module for drought responsiveness in Sorghum

(A) A two-layer network for crucial genes in Sorghum and their homologous in Arabidopsis. The lower layer represents the gene regulatory network for

crucial genes in Sorghum (Figure S3). Upregulated genes are shown in red; while downregulated genes are shown in blue. The upper layer represents the PPI

network for some homologous genes in Arabidopsis (Based on STRING). Interlayer links represent the homologous relationships between genes in

Arabidopsis and Sorghum.

(B) Changes of gene expression levels in roots and leaves for some crucial genes. The Y axis represents the absolute differences of gene expression between

treated samples and control samples.

(C) The enriched top-50 GO biological processes (with the smallest P values) for genes in the upper layer of panel A. The X axis represents the proportion of

genes involving in a biological process.
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Enrichment analysis shows that genes in the homologous network are enriched in various stress-responsive

processes, including response to desiccation, water deprivation, and water (Figure 5C).

The homologous genes in Figure 5A not only involve in drought-related biological processes but also relate to

hormone-related (including abscisic acid (ABA) and jasmonic acid) biological processes and MAPK cascades

(Figure 5C). Actually, phytohormones play an important role in regulating drought stress. Plants can sense and

respond environmental changes via a series of hormone-mediated signal cascades. ABA is a common hor-

mone in plants. It not only plays a key role during the growth anddevelopment of plants but also closely relates

to drought. Actually, many genes in plants are regulated by both ABA-dependent and ABA-independent

pathways to respond to drought (Riyazuddin et al., 2022; Yao et al., 2021), such as dehydrin (DHN) genes.

In fact, Sobic.009G116700.v3.1 and Sobic.004G286600.v3.1 are possibly homologous with ERD10 and

ERD14 in the DHN family. The DHN proteins are highly hydrophilic and performmultifaceted roles in the pro-

tection of plant cells under drought stress. For ABA-dependent pathways, the signal of drought stress is

perceived by different receptors which may lead to an accumulation of ABA and decreased contents of other

plant hormones. The activated hormonal signaling cascademay trigger the expression of different DHNgenes

that participate in drought stress tolerance by inhibiting the ROS accumulation and lipid peroxidation andpro-

tecting the photosynthetic machinery (Riyazuddin et al., 2022). For ABA-independent pathways, it is reported

that fully intrinsically disordered DHN ERD14 protein might protect and even activate redox enzymes through

the direct effect on the activity of glutathione transferase PHI9 in Arabidopsis, and thus help plants to survive

oxidative stress under drought stress (Nguyen et al., 2020). At the same time,MAPK cascades are an important

signaling module in responding to drought. It is demonstrated that the MAPK pathway involves in mRNA de-

capping via MPK6-DCP1-DCP5 pathway, playing a role in dehydration stress response (Xu and Chua, 2014).

Sobic.003G229400.v3.1 is highly homologous with MPK3 and MPK6, which indicates the role of So-

bic.003G229400.v3.1 under drought stress in Sorghum.

In addition to the hormone signal transduction pathways and the MAPK cascades, the WRKY TF family also

plays an important role in responding to various abiotic stresses. Sobic.007G077466.v3.1 is homologous

with WRKY75, which is defined as a crucial gene at Stage 3. It is reported that WRKY75 can participate in

regulating gibberellin-mediated flowering time through the interaction with DELLAs, and it involves in

the growth of roots. It is also reported that PtrWRKY75 acts on the upstream of PAL1 and directly regulates

the expression of PAL1 by binding to the promoter of PAL1, and the activated PAL1 increases the accumu-

lation of ROS by promoting the biosynthesis of salicylic acid, which eventually leads to the size of stomatal

pore narrowing, thereby enhancing the drought resistance of plants (Zhang et al., 2020). Moreover, So-

bic.001G079500.v3.1, Sobic.001G095700.v3.1, Sobic.004G286600.v3.1, and Sobic.009G116700.v3.1 take

part in responding to water deprivation; these genes are directly or indirectly regulated by So-

bic.003G058200.v3.1. Sobic.003G229400.v3.1, Sobic.007G077466.v3.1, and Sobic.009G085100.v3.1 are

also regulated by Sobic.003G058200.v3.1.

In summary, a drought-responsive gene regulatory module for Sorghum is established, which involves

in plant hormone signal transduction, MAPK cascades, and transcriptional regulation. Interestingly,

Sobic.003G058200.v3.1, Sobic.005G087600.v3.1, Sobic.001G079500.v3.1, Sobic.001G095700.v3.1, So-

bic.010G056000.v3.1, and Sobic.009G085100.v3.1 consist of several feedforward loops (FFLs) (Mangan and

Alon, 2003; Goentoro et al., 2009; Wang et al., 2012). It is reported that FFLs can be served as either a sign-

sensitive delay element (coherent FFLs) or a pulse generator and response accelerator (incoherent FFLs) (Man-

gan and Alon, 2003). Incoherent FFLs may be also served as a fold-change detector (Goentoro et al., 2009).

Superior functions of the FFLs can well regulate the sensitivity of plant to sense and respond to drought stress.

DISCUSSION

With global warming and the intensifying contradiction between water supply and demand, drought

has become the most important abiotic factor affecting food production in the world. However,

drought-responsive mechanisms of crops are still largely unknown. Sorghum is a typical crop with strong

drought resistance, which is an ideal crop to explore drought-responsive mechanisms. The investigations

of Sorghum are of great significance in cultivating novel drought-resistant varieties, and in promoting sus-

tainable agricultural development.

In this paper, to explore drought-responsive crucial genes from RNA-seq data of Sorghum, we establish

rigorous statistical procedures. Firstly, in order to exclude redundant genes and reduce the subsequent
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computational burden, the MV test is performed on samples at each stage; genes that show certain depen-

dence with the treatments are retained as candidate genes for subsequent analysis. Secondly, based on the

GCC, we construct WGDCN for candidate genes at each stage. It is reported that the GCC is more robust

against data processing, and it is appropriate to evaluate nonlinear relationships under small sample sizes

(Wang andWang, 2022). Finally, theWGDCN and the HMRFmodel are combined to calculate the posterior

probabilities of candidate genes. GO enrichment analysis reveals that the identified top-20 genes are en-

riched in drought-related biological processes. Gene sequence alignment analysis reveals that some

genes are highly homologous with drought-related genes inArabidopsis. Multilayer differential co-expres-

sion network analysis shows that considerable crucial genes can trigger differential co-expression patterns

at different stages. Further based on the PPI network in Arabidopsis and the predicted gene interactions in

Sorghum, a possible drought-responsive module in Sorghum is established and discussed.

Except the proposed method, there are many other methods to explore the data in this paper. For example,

we recently propose an algorithm to construct gene differential co-expression network, and based on the

GDCN and the traditional degree, closeness, and betweenness centralities, crucial genes that may be asso-

ciated with drought stress can be also explored (Bi and Wang, 2022). Comparing the results from the

HMRF-based method and the GDCN-based method, 4,5,5,18,16 common crucial genes are selected in the

top-20 ranking lists at the five stages, respectively (Table 2), which demonstrates the consistence of the pro-

posed method with the existing ones. More importantly, several different potentially critical genes are

screened by the proposed HMRF-based method, including Sobic.003G229400.v3.1, Sobic.009G116700.v3.1,

Sobic.001G095700.v3.1, Sobic.007G077466.v3.1, and Sobic.009G085100.v3.1. The additionally selected genes

are demonstrated to be more likely to play a key role in drought responsiveness of Sorghum (see Figure 5),

which further reveals the merit of the proposed method.

It is noted that some of the findings in this paper coincide with existing works (Paterson et al., 2009). It is

reported that drought responsiveness in Sorghum involves many biological processes (Paterson et al.,

2009), including the response to salicylic acid, response to jasmonic acid, defense response, response to

fungus, and regulation of defense response. Enrichment analysis in this paper shows that the identified

crucial genes are enriched in these biological processes. It is also reported that DEGs for pre-flowering

stages are more than those for post-flowering stages, and changes of gene expression in pre-flowering

stages are far more complex (Paterson et al., 2009). However, in this paper, the amount of the identified

crucial genes for pre-flowering stages are more than those for post-flowering stages, and the overlaps

Table 2. Commonly selected top-20 ranked crucial genes according to the proposed HMRF-based method and the

GDCN-based method

Stage 1

Sobic.005G113300.v3.1, Sobic.006G108400.v3.1, Sobic.009G005900.v3.1, Sobic.009G171400.v3.1.

Stage 2

Sobic.001G079500.v3.1, Sobic.001G370600.v3.1, Sobic.001G406300.v3.1, Sobic.002G374100.v3.1,

Sobic.003G376700.v3.1.

Stage 3

Sobic.005G050200.v3.1, Sobic.010G178000.v3.1, Sobic.003G081900.v3.1, Sobic.003G323500.v3.1,

Sobic.006G276700.v3.1.

Stage 4

Sobic.007G092900.v3.1, Sobic.003G190100.v3.1, Sobic.004G247000.v3.1, Sobic.010G177800.v3.1,

Sobic.001G148900.v3.1, Sobic.007G093000.v3.1, Sobic.007G047300.v3.1, Sobic.001G401300.v3.1,

Sobic.009G132900.v3.1, Sobic.006G219300.v3.1, Sobic.010G178000.v3.1, Sobic.008G114300.v3.1,

Sobic.001G351000.v3.1, Sobic.005G107900.v3.1, Sobic.003G151600.v3.1, Sobic.005G003200.v3.1,

Sobic.007G058800.v3.1, Sobic.001G291300.v3.1.

Stage 5

Sobic.004G159733.v3.1, Sobic.007G092900.v3.1, Sobic.010G178000.v3.1, Sobic.007G093000.v3.1,

Sobic.009G132900.v3.1, Sobic.005G003200.v3.1, Sobic.007G058800.v3.1, Sobic.003G190100.v3.1,

Sobic.005G050200.v3.1, Sobic.004G286600.v3.1, Sobic.005G126200.v3.1, Sobic.010G273800.v3.1,

Sobic.001G498000.v3.1, Sobic.004G339800.v3.1, Sobic.009G228100.v3.1, Sobic.006G026700.v3.1.
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of the top-20 ranked genes among the three pre-flowering stages are quite low, which coincide with the

existing work. These results further support the effectiveness of the findings in this paper.

There are several advantages of this study. Firstly, different from existing methods (Hou et al., 2014), the

proposed method only relies on RNA-seq data, which is appropriate for the cases without GWAS signals.

Secondly, the resolution of the proposedmethod is higher than theMV test, which indicates that the HMRF

can more precisely distinguish the crucialness of genes in responding to drought stress in Sorghum.

Thirdly, the GCC-based approach of WGDCN is appropriate for cases with small sample sizes, which

overcomes the deficiency of the traditional PCC- or SCC-based methods. Fourthly, the associated investi-

gations consider different developmental stages of Sorghum; crucial genes are analyzed via temporal

multilayer differential co-expression network and predicted gene interaction network; a crucial gene

regulatory module is established, which regulates drought responsiveness via plant hormone signal trans-

duction, MAPK cascades, and transcriptional regulations.

This paper only explores crucial drought-responsive genes in the root parts of Sorghum; it is interesting to

further consider the data from the leaf parts. Moreover, based on the time series data of Sorghum, it

is possible to construct multilayer co-expression network and to further explore useful bioinformatics. It

is also interesting to establish some methods based on time series analysis to further explore the consid-

ered data. It is also noted that the proposed method can be used to explore other omics data for various

organisms. All of the mentioned issues will be our future research directions. As a summary, the associated

investigations not only provide rigorous theoretical foundations for exploring crucial phenotype-related

genes from RNA-seq data but also provide promising target genes for molecular breeding of improved

Sorghum varieties.

Limitations of the study

There are some limitations in the current investigation. Firstly, the setting of hyperparameters in the HMRF

needs to be further improved. For simplicity, we set the hyperparameters of the posterior probabilities of

nodes as t1 = t2 = 0:01 (Method details), which actually assumes that the contribution of two genes that

are both associated with drought stress is the same as that they are both un-associated. Another parameter

h is determined by the 90% quantile of the potentially associated state, which mainly considers the param-

eter settings in previous research (Hou et al., 2014) and the characteristics of actual data. Secondly, sinceGO

annotations of genes in Sorghum are still largely incomplete (Paterson et al., 2009), the functions of some of

the identified genes are unknown. Somedetailed biological experimental validations of the selected crucial

genes need to be further performed. Thirdly, the proposedmethod relies on several hard cutoff thresholds.

The hard cutoff thresholds for GCC determine the densities of the constructed WGDCN; the P value from

the MV test determines the retained candidate genes. The selection of the cutoff thresholds mainly con-

siders the balance between computational burden and information loss. Finally, the samples are manually

divided into five developmental stages, whichmake the amounts of samples at different stages comparable

and consider the phenotype features of Sorghum. It will be an interesting topic to group samples according

to some properly designed algorithms for optimal parting of ordered samples (Fisher, 1958).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Our study does not use typical experimental models in the life sciences.

METHOD DETAILS

RNA-seq data for Sorghum

The RNA-seq data for Sorghum is obtained fromNCBI with accession number GSE128441, which is a part of

the five-year EPICON project (Varoquaux et al., 2019). In the EPICON project, field-based, temporal tran-

scriptomic data for two genotypes of Sorghum has been sequenced. The two genotypes are the pre-flow-

ering drought-tolerant genotype RTx430 and the post-flowering tolerant variety BTx642 (Smith et al., 1985;

Thomas and Howarth, 2000). Three experimental settings are considered: pre-flowering drought, post-

flowering drought and normal watering. Almost 400 samples, ranging fromweek 3 to week 17, are sampled

weekly from leaves and roots of the two genotypes. Each sample averagely detects the expression of 22066

genes.

We consider the root samples of BTx642 under pre-flowering drought, post-flowering drought and normal

watering conditions. The main reasons are as follows: firstly, the BTx642 plants can stay green and perform

active photosynthesis under drought stress, which demonstrate obvious drought resistance (Rosenow

et al., 1983); Secondly, roots not only play an important role in absorbing water and nutrients, but also is

pivotal in responding to various adverse environmental stresses, such as drought, low temperature (Take-

uchi et al., 2011). When plant encounters drought, its roots can promptly sense the coercive changes and

quickly make adaptive adjustments for self-growth. Additionally, an existing research reports that roots of

Sorghum encompass more DEGs than leaves under drought stress at the seeding stage (Zhang et al., 2019).

In the following, in order to comprehensively explore crucial genes that respond to drought stress at

different developmental stages, we combine pre-flowering (from week 3 to week 8) and post-flowering

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq data NCBI GEO: GSE128441

Source code Github https://github.com/98YiLin/EDCG.git

Software and algorithms

R 364 3.6.1 R Software https://cran.r-project.org/

Gephi 0.9.5 Gephi https://gephi.org/
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(from week 9 to week 17) drought stresses as treatments. By considering the growth characteristics of gra-

minaceous crops and the number of samples, the whole growth period of Sorghum is manually divided into

five stages, with each three weeks as a developmental stage.

Mathematically, we denote the expression ofM genes in n samples (nt treated samples and nc control sam-

ples, nt +nc = n) as

X =
�
xij
�
n3M

=
�
Xð1Þ;Xð2Þ;.;XðnÞ

�T
= ðX1;X2;.;XM Þ;

where Xi = ðx1i ; x2i ;/; xniÞT is the observations for the i’th gene ði = 1; 2;/;MÞ and XðjÞ = ðxj1; xj2;/; xjMÞT
represents the j’th sample ðj = 1; 2;/;nÞ. Meanwhile, the observations for the binary response variable Y is

denoted as Y = ðy1; y2;/; ynÞT . yj = 1 if the j’th sample is an experimentally treated sample, and otherwise

yj = 0 ðj = 1; 2;/;nÞ.

Mean variance test

The mean variance (MV) test (Cui and Zhong, 2019) can effectively exclude redundant genes, and thus

reduce the subsequent computational burden. Given a random variable X and a categorical response var-

iable Y, the statistical hypothesis for the MV test is

H0 : FqðxÞ = FðxÞ for any x and q; H1 : FqðxÞsFðxÞ for some x and q; q = 1; 2;/;C:

Here, FqðxÞ denotes the conditional distribution function of X given Y = q, and FðxÞ denotes the distribu-

tion function of X; C denotes the total categories of Y, C = 2 for binary response variable.

Cui et al. (Cui and Zhong, 2019) proposed a sample-level MV index (Equation 1), which can be used to test

the independence between the expression profile of the i’th gene Xi = ðx1i; x2i;/; xniÞT and the response

Y = ðy1; y2;/; ynÞT ,

T ðiÞ
n = ndMV ðXijY Þ =

XC
q = 1

Xn
j = 1

bp
q

�bF q

�
xji
� � bF�xji��2; (Equation 1)

where

bF qðxÞ =

Pn
v = 1Ifxvi % x; yv = qgPn

v = 1Ifyv = qg
is the empirical conditional distribution function of Xi given response variable Y = q,bF ðxÞ = n� 1

Pn
v = 1Ifxvi % xg is the empirical unconditional distribution function of Xi, andbpq = n� 1

Pn
v = 1Ifyv = qg denotes the sample proportion of the q0th category. Ið:Þ is an indicator function.

Larger T
ðiÞ
n provides a stronger evidence against the null hypothesis H0, indicating that the correlation be-

tween Xi and the binary response variable Y is higher.

For small sample size, Cui et al. (Cui and Zhong, 2019) developed a permutation test to obtain the P value

for the MV test. Procedures are as follows:

Step 1: Compute the MV test statistic for the given sample fðxji; yjÞ; j = 1; 2;/;ng by

T ðiÞ
n0 = ndMV ðXijY Þ =

XC
q = 1

Xn
j = 1

bp
q

�bF q

�
xji
� � bF�xji��2:

Step 2: Generate a permuted response sample Y � = ðy�1 ; y�2 ;/; y�nÞT from the original response vector,

and compute the corresponding MV index T
ðiÞ�
n = ndMV ðXijY �Þ.

Step 3: Repeat Step 2 for K times and obtain K permuted MV statistics T
ðiÞ�
n1 ;T

ðiÞ�
n2 ;/;T

ðiÞ�
nK . The P value is

estimated by
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PðiÞ
MV =

1

K

XK
k = 1

I
�
T ðiÞ�
nk R T ðiÞ

n0

�
; i = 1;2;/;M:

In this paper, for each gene, we set K = 5000. If P
ðiÞ
MV % 0:01, the null hypothesis should be rejected, we have

reason to believe that there is correlation between Xi and Y; Otherwise, the i’th gene is deemed to be in-

dependent with Y, and it is neglected in the subsequent analysis.

Weighted gene differential co-expression network

To reveal whether a gene can trigger differential co-expression patterns or rewiring between treatment and

control, weighted gene differential co-expression networks (WGDCNs) will be constructed. Since Pearson

correlation coefficient (PCC) (Hudson et al., 2009) and Spearman correlation coefficient (SCC) (Sedgwick,

2014) all rely on considerable samples, and they are sensitive to data processing (Wang, 2021), Gray cor-

relation coefficient (GCC) will be used to evaluate the co-expression relationships between genes. Specif-

ically, when the p’th gene is taken as a reference, the GCC between the p’th and the q’th genes can be

obtained according to (Wang and Wang, 2022; Chen and Liu, 2021)

rpq =
1

n

Xn
k = 1

mins˛ f1;2;/;mgmint ˛ f1;2;/;ng
��xtp � xts

��+ rmaxs˛ f1;2;/;mgmaxt ˛ f1;2;/;ng
��xtp � xts

����xkp � xkq
��+ rmaxs˛ f1;2;/;mgmaxt ˛ f1;2;/;ng

��xtp � xts
�� :

(Equation 2)

Here, rpq ˛ ½0; 1�;q = 1; 2;/;m; r is called resolution ratio, which is usually taken as 0.5. m denotes the

number of genes with PMV % 0:01. Since the GCC relies on reference sequence, generally, rpqs rqp.

To overcome this disadvantage, we correct the GCC between the p’th and the q’th genes as

ðrpq + rqpÞ=2. Samples under treatments and controls are separately considered, and we denote rtreatpq

and rcontrolpq as the corrected GCC between the two genes in treated and control samples respectively.

Based on the GCC, the WGDCN for a specific developmental stage is constructed as follows. We set

r0 = 0:9 as a hard threshold (Such hard threshold mainly considers the density of the constructed network

and information loss). If the correlation between two genes satisfied ðrtreatpq � r0Þðrcontrolpq � r0Þ% 0, then,

genes p and q are differentially co-expressed between treatments and controls, and an undirected edge

between the two genes is added. Edge weight is defined as

rewirepq =
���r treatpq � rcontrolpq

���: (Equation 3)

Here, rewirepq reflects the importance/strength of rewiring between the two genes at the given develop-

mental stage.

Hidden Markov random field model

Suppose G = ðy; εÞ is an undirected graph, y = f1; 2;/;mg is the set of nodes (genes); ε is the edge set,

epq = 1 if the p’th and the q’th genes are connected, and their connection strength is rewirepq (Equation 3).

Denote up as the true association status of the p’th gene with drought stress, up = + 1 if gene p is associ-

ated with drought stress, otherwise up = � 1. For simplicity, up is called as the label of gene p, and U =

fu1;u2;/;umg is called as the label vector or a configuration for the node set y.

Assume that neighbored genes tend to have similar association status (Chen et al., 2011; Hou et al., 2014),

the probability distribution of network configuration can be described by an Ising model (Kindermann and

Snell, 1980), which is defined as Pðu1;u2;/;umÞ =

1

Z
exp

8<:� h
Xm
p = 1

I
�
up = + 1

�
+ t1

X
epq = 1

rewirepq , I
�
up = + 1;uq = + 1

�

� t2
X

epq = 1;rewirepq > d

rewirepq , I
�
up = � 1;uq = � 1

�9=;: (Equation 4)
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Here, the partition function Z =

X
U

exp

8<:� h
Xm
p = 1

I
�
up = + 1

�
+ t1

X
epq = 1

rewirepq , I
�
up = + 1;uq = + 1

�

� t2
X

epq = 1;rewirepq > d

rewirepq , I
�
up = � 1;uq = � 1

�9=;;

Ið ,Þ is an indicator function; h; t1; t2 are hyper-parameters. h is a constant, which is defined as the proba-

bility of being drought stress associated if the gene is isolated. t1 represents the contributions of the re-

wired drought-associated gene pairs; while t2 reflects the contributions of gene pairs that are not associ-

ated with drought stress (Chen et al., 2011). d = 0:95, rewirepq > d indicates the rewiring between genes p

and q under treatments and controls is significant. It is noted that an underlying biological hypothesis

behind model (Equation 4) is that, the co-expression difference of genes under two different experimental

conditions can actually reflect their phenotype differences. That is, the model follows the guilt-by-rewiring

principle (Hou et al., 2014).

Based on the formula of conditional probability, we obtain

P
�
up = + 1

��uNp

�
=

P
�
up = + 1;uNp

�
P
�
uNp

� ; P
�
up = � 1

��uNp

�
=
P
�
up = � 1;uNp

�
P
�
uNp

� : (Equation 5)

According to Equations 4 and 5, we have

P
�
up = + 1

��uNp

�
P
�
up = � 1

��uNp

� =
P
�
up = + 1;uNp

�
P
�
up = � 1;uNp

� =
exp

n
� h+ t1

P
epq = 1rewirepq,I

�
uq = + 1

�o
exp

n
� t2

P
epq = 1;rewirepq > drewirepq,I

�
uq = � 1

�o
= exp

8<:� h + t1
X

epq = 1

rewirepq , I
�
uq = + 1

�
+ t2

X
epq = 1;rewirepq > d

rewirepq , I
�
uq = � 1

�9=;:

Combining with Pðup = + 1
��uNp

Þ+Pðup = � 1
��uNp

Þ = 1, Equation 5 can be further rewritten as:

P
�
up = + 1

��uNp

�
=

expðFÞ
1+ expðFÞ; P

�
up = � 1

��uNp

�
=

1

1+ expðFÞ;

where F = � h+ t1
P

epq = 1rewirepq,Iðuq = + 1Þ+ t2
P

epq = 1;rewirepq > drewirepq,Iðuq = � 1Þ.

Furthermore, the conditional distribution of the associated status for gene p can be obtained as:

logitP
�
up

��uNp

�
= ln

P
�
up

��uNp

�
1 � P

�
up

��uNp

�
= � h + t1

X
epq = 1

rewirepq , I
�
uq = + 1

�
+ t2

X
epq = 1;rewirepq > d

rewirepq , I
�
uq = � 1

�
:

(Equation 6)

HereNp = fq : Cp;qD ˛ εg denotes the neighbor set of gene p; uNp denotes the label set of gene p’s neigh-

bors; logitðPÞ = lnðP =ð1 �PÞÞ is the logit function.

Given the joint probability of the labels for all genes, the posterior probability of network configuration can

be inferred through the following Bayesian framework:

PðUjxÞff ðxjUÞPðUÞ: (Equation 7)

Here, f ðxjUÞ =
Q

fp: up = � 1gf0ðxpÞ,
Q

fp;:;up = + 1gf1ðxpÞ. We can also obtain that

P
�
up = + 1

��x;uNp

�
f f1

�
xp
�
P
�
up = + 1

��uNp

�
; P
�
up = � 1

��x;uNp

�
ff0

�
xp
�
P
�
up = � 1

��uNp

�
:

In Equation 7, the observed data x = ðx1; x2;/; xmÞ is taken as the normalized scores that transformed from

the P value of the MV test: xp = F� 1½1 � PMV ðpÞ�, F is the cumulative distribution function of standard
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normal distribution. Under the null hypothesis that the gene is not associated with drought stress, the

P value follows Uniform ð0; 1Þ distribution. Similar to Chen et al., 2011, if gene p is not associated with

drought stress, we assume the density of xp is f0ðxpÞ � Nð0; 1Þ; otherwise, f1ðxpÞ � Nðmp;s
2
pÞ, where mp is

a location parameter, s2p is a scale parameter. We consider conjugate priors:

mp

�����s2
p �N

 
m;

s2
p

a

!
;s2

p � InverseGamma

	
g

2
;
gd

2



: (Equation 8)

Here, m; a;g;d are hyperparameters, and it has been proved that the settings of these parameters have no

significant effect on simulation results (Chen et al., 2011). Then the hidden states can be inferred by the iter-

ated conditional mode algorithm (Besag, 1986; Nayak et al., 2009). The status of genes are supposed to be

Markovian, we have

P
�
up

��u�p

�
= P

�
up

��uNp

�
; (Equation 9)

where u�p denotes the status of the node set that excludes node p.

Then, we further obtain

P
�
up = + 1

��x;u�p

�
P
�
up = � 1

��x;u�p

�f f1
�
xp
�
P
�
up = + 1

��u�p

�
f0
�
xp
�
P
�
up = � 1

��u�p

� =
f1
�
xp
�
P
�
up = + 1

��uNp

�
f0
�
xp
�
P
�
up = � 1

��uNp

�
=
f1
�
xp
�

f0
�
xp
� exp

8<:� h + t1
X

epq = 1

rewirepq , I
�
uq = + 1

�
+ t2

X
epq = 1;rewirepq > d

rewirepq , I
�
uq = � 1

�9=;
= exp

8<:ln
f1
�
xp
�

f0
�
xp
� � h + t1

X
epq = 1

rewirepq , I
�
uq = + 1

�
+ t2

X
epq = 1;rewirepq > d

rewirepq , I
�
uq = � 1

�9=;:

Since Pðup = + 1
��x;u�pÞ+Pðup = � 1

��x;u�pÞ = 1, we have

P
�
up = + 1

��x;u�p

�
=

expðQÞ
1+ expðQÞ; P

�
up = � 1

��x;u�p

�
=

1

1+ expðQÞ;

where Q = ln

	
f1ðxpÞ
f0ðxpÞ



� h+ t1

P
epq = 1rewirepq,Iðuq = + 1Þ+ t2

P
epq = 1;rewirepq > drewirepq,Iðuq = � 1Þ: Thus,

the posterior distribution of the association status for gene p can be inferred by

logitP
�
up

��x;u�p

�
= ln

P
�
up

��x;u�p

�
1 � P

�
up

��x;u�p

�
= ln

 
f1
�
xp
�

f0
�
xp
�! � h + t1

X
epq = 1

rewirepq , I
�
uq = + 1

�
+ t2

X
epq = 1;rewirepq > d

rewirepq , I
�
uq = � 1

�
:

(Equation 10)

Set the initial values of parameters as t1 = t2 = 0:01. Based on theMV test, we assign labels for genes with

PMV % 0:005 as ‘‘+1’’ (associated), and the others (0:005<PMV % 0:01) as ‘‘-1’’. Then, for each gene, an as-

sociation potential can be obtained as

Potential
�
p
�
= t1

X
uq = 1;epq = 1

rewirepq + t2
X

uq = � 1;epq = 1;rewirepq > d

rewirepq;p = 1;2;/;m: (Equation 11)

Parameter h is taken as the 900th quantile of the potential vector, which reflects the belief that genes with

marginal P value could also be related to drought stress. The iterated conditional model algorithm (Besag,

1986; Nayak et al., 2009) is further used to update these parameters. When Equation 10 converges to its

local maximum (Besag, 1986), we obtain the final label of each gene and the corresponding posterior prob-

ability. Finally, genes with high posterior probabilities are selected as crucial drought responsive

candidates.

Differentially expressed genes and GO enrichment analysis

Differential expression analysis and GO enrichment analysis are performed by OmicStudio tools (www.

omicstudio.cn/tool). Genes with significant expression differences between treatments and controls are

deemed as differentially expressed genes (DEGs). Mathematically, DEGs are defined as genes with
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jlog2ðFCÞj> 1 and P < 0:05. Here, FC denotes the fold change value between the average expression value

under treatments and that under controls. In this paper, GO biological processes with P < 0:1 are

considered.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are analyzed using R (http://www.R-project.org/, version 3.6.1) and Gephi (https://gephi.org/,

version 0.9.5). Statistical tests for each analysis can be found in each figure or the main text. Here, DEGs

are defined as genes with jlog2ðFCÞj> 1 and P < 0:05 (also see method details and Figure 2A). In the

mean variance test, genes with P
ðiÞ
MV % 0:01 are retained as candidate genes (also see method details).
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