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Abstract

Simplified nonlinear models of biological cells are widely used in computational electrophysi-

ology. The models reproduce qualitatively many of the characteristics of various organs,

such as the heart, brain, and intestine. In contrast to complex cellular ion-channel models,

the simplified models usually contain a small number of variables and parameters, which

facilitates nonlinear analysis and reduces computational load. In this paper, we consider

pacemaking variants of the Aliev-Panfilov and Corrado two-variable excitable cell models.

We conducted a numerical simulation study of these models and investigated the main non-

linear dynamic features of both isolated cells and 1D coupled pacemaker-excitable systems.

Simulations of the 2D sinoatrial node and 3D intestine tissue as application examples of

combined pacemaker-excitable systems demonstrated results similar to obtained previ-

ously. The uniform formulation for the conventional excitable cell models and proposed

pacemaker models allows a convenient and easy implementation for the construction of per-

sonalized physiological models, inverse tissue modeling, and development of real-time sim-

ulation systems for various organs that contain both pacemaker and excitable cells.

Introduction

Nowadays computer modeling of various organs and tissues is an indispensable part of physi-

ology research. Computational models of different levels of complexity are being utilized, with

complex ion-channel multi-variable models on the top of the list. A rigorous review of the car-

diac models was presented in [1]. The number of such models and their updates increases

yearly following new physiological findings and measurements. Consisting of many differen-

tial equations for ion channels and their gate formulations, the models provide a detailed

description of cell behavior under various normal and pathological conditions, including, for

example, the influence of drugs [2]. The number of variables and parameters in such models

can reach several dozens, leading to the necessity to utilize significant computational resources,

even despite current progress in and availability of graphical processing units (GPU) and mul-

ticore processors [3]. Moreover, these precise ion-channel models, in particular, cardiac ones,

usually require small enough time steps and mesh sizes to provide calculation stability in the

case of tissue simulation [2, 4], leading to hours and even days of calculation using normal
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desktop computers. Thus, utilization of the biophysically based ion-channel models in real-

time systems, such as equipment test-beds and systems for formal validation of medical devices

[5, 6], interactive tools for computer-aided therapy planning [7], and other real-time simula-

tion devices and platforms, is still nearly impossible.

In many cases, simplified phenomenological cell models, such as classical Van der Pol [8]

(VDP), FitzHugh-Nagumo [9, 10] (FHN), and Hodgkin-Huxley [11] (HH) can be a good

alternative. These models are based on a small number (usually 2—3) of variables, i.e., ordinary

differential equations (ODEs). Later additions to this class include modifications of the HH

and FHN models, namely Van Capelle-Durrer (VCD) [12], Aliev-Panfilov [13] (AP), Morris-

Lecar [14] and its pacemaking variants [15, 16], Fenton-Karma [17], Mitchell-Schaeffer [18]

(MS), and its modification by Corrado and Niederer [19] (CN). The latter two models have

been used recently to simulate electrophysiology of atria, spiral wave stability, and ventricular

tachycardia inducibility in patient-specific models (see review [20] and references therein).

Most of the models mentioned above are included in the modeling software packages and

repositories, such as openCARP [21] and Physiome Project [1, 22].

Fig 1 demonstrates the timeline of the historical development of the main simple physiolog-

ical models. Solid shapes correspond to the excitable models, dashed—to the pacemaking

models, and the models capable to exhibit both types of behavior are represented by both

shape types. Even though most of the models shown in Fig 1 are capable to provide pacemak-

ing operation, their utilization is limited. The VDP and FHN models and their modifications

are being predominantly used as simple models of natural pacemakers in physiological simula-

tions of different levels of complexity (see, for example, [23–28]). The VDP model of relaxation

oscillator was proposed to describe general heartbeat dynamics and by its nature does not have

the quiescent excitable form. The two-variable FHN model, as a reduction of the four-variable

HH model of the squid giant axon action potential, was developed to model neuronal excitabil-

ity. It has the properties of producing spike trains (tonic spiking) at sufficiently large stimulat-

ing constant current, and the apparent absence of a firing threshold [29], which are

undesirable for simulation of other organs, such as the heart.

The disadvantage of other simplified models simulating both pacemaker and non-pace-

maker action potentials of cardiac cells like VCD, Morris-Lecar, and their modifications is the

significant number of parameters that limit the areas of their utilization. On the other hand,

computationally lightweight models such as AP, MS, and CN are being successfully used for

the solution of the cardiac inverse problem and building patient-specific models [30–33]. The

MS model, however, is known to have some stability problems [19].

For multi-scale and real-time simulations, models with a modest number of parameters are

preferable [28]. Such models have been implemented in many studies of electrophysiology of

the heart and cardiac tissue [34–38], as well as the intestine [23, 24], stomach [39, 40], uterus

[41], and bladder [42]. Recently, the AP model was used in deep learning-based reduced-order

modeling [43], allowing to boost the solution of parameterized problems in cardiac electro-

physiology, and in preliminary setup for hypothesis testing and verification, and model tuning

before implementation of computationally expensive ion-channel models [34].

Another recently proposed type of pacemaker model developed to satisfy real-time require-

ments is represented by parametric [44] and resonant [45] (8–24 variables) models. They

quantitatively reproduce action potential shapes and some cellular behavior but do not include

several important physiological properties such as interactions due to electrotonic coupling.

Although the models provide a relatively low computational load, the latter may significantly

rise with the inclusion of detailed features. The above-mentioned models, however, underline

the need for simple computationally efficient models, in particular, having a uniform descrip-

tion for pacemaking and excitable cells. These models are essential for abstracted heart models
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with real-time simulation capabilities, where a single pacemaker cell represents a group of ion-

channel pacemaker model cells [44, 46].

In this work, we consider variants of the AP and CN phenomenological models providing

them intrinsic pacemaker properties (hereinafter called pAP and pCN, respectively), and dem-

onstrate their main characteristics for both single pacemaking cells and coupled pacemaker-

excitable systems.

As application examples for the proposed pacemaker models, we include simulations of the

2D cardiac sinoatrial node (SAN) model described with the pAP and AP cells, and the 3D

intestinal model consisting of the pCN and CN cells.

Methods

Self-oscillations in the Aliev-Panfilov model

The two-variable AP model [13] proposed to describe non-oscillatory cardiac tissue that sup-

ports stable propagation of excitation waves is represented by the following set of reaction-dif-

fusion type nonlinear ordinary differential equations:

@u
@t
¼ ct½kuðu � aÞð1 � uÞ � vu� þ Iext; ð1Þ

@v
@t
¼ ctε½� v � kuðu � a � 1Þ�; ð2Þ

ε ¼ ε0 þ
vm1

uþ m2

;

where u and v are normalized transmembrane potential and slow recovery variable, respec-

tively. Parameter k controlling the magnitude of transmembrane current, and parameters μ1,

μ2, and a are adjusted to reproduce characteristics of cardiac tissue, ε sets the time scale of the

recovery process, ct = 1/12.9 is the time scaling coefficient introducing physical time in

Fig 1. Timeline of simplified physiological cell models development. Solid shapes correspond to excitable cell models, dashed shapes—to

pacemaking cell models, respectively.

https://doi.org/10.1371/journal.pone.0257935.g001
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milliseconds into the system. Iext =r � (Dru) is external or coupling current in the case of

multi-cell simulations, wherer is a spatial gradient operator defined within the model tissue

geometry, and D is a tensor of diffusion coefficients (in mm2ms-1) characterizing electrotonic

interactions between neighboring cells via gap junctional coupling conductance.

In the conventional AP model, the left branch of the u-nullcline v = k(u − a)(1 − u) (dashed

lines in Fig 2A.1 and 2A.2) does not enter the region where u is negative. The phase space tra-

jectory (shown after suprathreshold stimulation in Fig 2A.1) is also limited in the region u> 0

by the second u-nullcline u = 0.

As the excitation threshold a reduces, the nullcline moves up, its left branch moves toward

u< 0. When the parameter a becomes negative, the u-nullcline intersects the v-nullcline

v = −ku(u − a − 1) (dotted lines in Fig 2A.1 and 2A.2), creating equilibrium points (EP) in the

region u> 0. The system of Eqs (1) and (2) undergoes Hopf bifurcation (HB), which is a typi-

cal mechanism for the onset of oscillations with a stable limit cycle (periodic orbit) in nonlin-

ear dynamical systems [47]. For the sake of convenience, further we introduced a parameter

bAP = −a in Eq (1), controlling the intrinsic oscillation frequency when bAP> 0:

@u
@t
¼ ct½kuðuþ bAPÞð1 � uÞ � vu� þ Iext : ð3Þ

The idea to use the parameter bAP for cubic u-nullcline in the FHN-like systems to control

the excitability range is straightforward. It has been used, for example, to study the propagation

of action potential in combined pacemaking-excitable FHN model tissue [48]. However, in the

Fig 2. Single-cell nonlinear dynamics. A. AP and pAP models. A.1. Nullclines and phase portrait for the conventional AP model after suprathreshold stimulation. A.2.

Nullclines and phase portrait for the pAP model with different bifurcation parameter bAP. Dashed and dotted lines correspond to u- and v-nullclines, respectively.

Nullcline u = 0 is not shown. Stable limit cycles for bAP = 0.01, 0.03, and 0.05 are shown with corresponding EPs marked by squares of the same color. A.3. Action

potentials, colors correspond to the curves in panel A.2. B. CN and pCN models. B.1. Nullclines and phase portrait for the conventional CN model after suprathreshold

stimulation. B.2. Nullclines and phase portrait for the pCN model with different bifurcation parameter bCN. Dashed and dotted lines correspond to u- and h-nullclines,

respectively. Nullcline u = 0 is not shown. Stable limit cycles for bCN = 0.12, 0.3, and 0.44 are shown with corresponding EPs marked by squares of the same color. B.3.

Action potentials, colors correspond to the curves in panel B.2.

https://doi.org/10.1371/journal.pone.0257935.g002
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case of the AP model, which was developed primarily to represent excitable cardiac tissue, the

intrinsic pacemaking function in a single cell and coupled systems was not considered yet.

The resulting phase-space geometry of the pAP model is shown in Fig 2A.2. Three stable

limit cycles with bAP = 0.01, 0.03, and 0.05 and their EPs (marked by squares) in Fig 2A.2.

Corrado excitable cell model and its pacemaking variant

The two-variable CN modification [19] of the ionic MS model [18] for cardiac excitable cells is

represented by the following set of nonlinear differential equations:

@u
@t
¼

huðu � ugateÞð1 � uÞ
tin

�
ð1 � hÞu
tout

þ Iext; ð4Þ

@h
@t
¼

1 � h
topen

if u � ugate

� h
tclose

if u > ugate

:

8
>>>><

>>>>:

ð5Þ

Here h is the gating variable for the inward current (sodium ion channels), ugate> 0 is the exci-

tation threshold potential, τin, τout, τopen, and τclose are the time constants affecting the corre-

sponding characteristic phases of the evolution of transmembrane potential u (shown after

suprathreshold stimulation in Fig 2B.1). As in the pAP model, the latter is also limited in the

region u> 0 by the second u-nullcline u = 0.

To introduce pacemaking behavior into the CN model, we did the following modifications.

First, the piece-wise function (Eq 5) was replaced by the formulation with the sigmoid function

[11, 49] of the transmembrane potential (Eqs 7–9) with the slope factor us (in dimensionless

voltage units), similar to the approach used in [50], changing the shape of h-nullcline [51]. Sec-

ond, we replaced ugate in Eq 4 with a parameter bCN = −ugate, allowing to shift independently

left branch of the u-nullcline h = τin/[τout(u − ugate)(1 − u) + τin]:

@u
@t
¼

huðuþ bCNÞð1 � uÞ
tin

�
ð1 � hÞu
tout

þ Iext; ð6Þ

@h
@t
¼
ðh1 � hÞ

t
; ð7Þ

t ¼
topentclose

topen � h1ðtclose � topenÞ
ð8Þ

h1 ¼
1

2
1 � tanh

u � ugate

us

� �� �

: ð9Þ

Similar to the pAP model, bCN becomes a parameter suitable for controlling both the CN cell

excitability and the pCN intrinsic oscillation frequency (see Fig 5A.1 below).

Replacement of the Heaviside-like step function in Eq 5 for h1 by the sigmoid voltage

dependence in the limit [49] (conventional Boltzmann equation for cell membranes [11])

HðxÞ ¼ lim
us!0

1þ exp �
x
us

� �� �� 1

¼
1

2
lim
us!0

1 � tanh �
x
us

� �� �
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and the increase of the slope factor us reduce the robustness of the CN model and enhance its

propensity to spontaneous oscillations by inclination the central branch of the h-nullcline

(dotted lines in Fig 2B.1 and 2B.2). This, together with the shift of the left branch of the u-null-

cline (dashed lines in Fig 2B.1 and 2B.2) toward u< 0 region with increasing parameter bCN,

leads the system of Eqs 6 and 7 to HB, creates EP at the nullclines intersection, and provides

the appearance of a stable limit cycle. The parameters us and ugate together with bCN define the

position of u and h nullclines intersection, and consequently the shape of phase space trajec-

tory (see Fig 5A.1, 5B.1, and 5C.1 below).

Though the method is similar to the previously proposed pacemaking modification of the

MS excitable cell model [50], the considered pCN model (Eqs 6–9) possesses different nonlin-

ear dynamic properties.

Note the clockwise direction with respect to the second variable in the limit cycles of the

pCN model (Fig 2B.1 and 2B.2) in contrast to the pAP model (Fig 2A.1 and 2A.2).

Isolated single pacemaker cells

For single-cell cases (0D), we examined the dynamics of the pAP and pCN model cells chang-

ing various bifurcation parameters and constructing bifurcation diagrams [52]. The incremen-

tal steps of the parameters were selected individually for each model and varied depending on

observed dynamics. When spontaneous oscillation appeared, we determined peak overshoot

potential (POP), maximum diastolic potential (MDP), frequency, diastolic interval (DI), and

action potential duration (APD) at 90% repolarization for each bifurcation parameter value

upon allowing the oscillation activity to stabilize within 20–50 s.

Coupled 1D pacemaker-excitable systems

One of the important characteristics of a pacemaking cell is its synchronization behavior

under an applied load of coupled cells with a variable diffusion coefficient [53–55]. To investi-

gate this property of the considered pacemaking cells, we set up three variants of the load—n
strands (cables) of matching 20 excitable cells coupled to a single pacemaker cell. Because the

load in a tissue is not limited to an integer value (n can be non-integer [55]), apart from the

normal case (n = 1) we considered higher (n = 2) and lower (n = 0.5) loads.

These load-driving capabilities are essential for real-time simulation systems based on

abstracted heart models, where a single pacemaker cell represents a group of ion-channel pace-

maker model cells [44, 46].

Minimal and maximal frequencies of complete 1:1 synchronization. In a wide range of

fixed values of the coupling coefficient d = D/Δx2 = 0.02–10.0 ms-1 (D is the diffusion coeffi-

cient) we run multiple simulations of the pAP-AP and pCN-CN coupled systems, varying the

values of the control parameters bAP and bCN, respectively, calculating the resulting frequency

ratio between the pacemaker cell and the 16th excitable cell in a strand (to eliminate possible

effects of the boundary conditions on the last excitable cell). Next, we determined the system’s

lowest (minimal) and highest (maximal) frequency with complete 1:1 synchronization

between the cells.

Relationship between pacemaker cell rates and intercellular coupling. In these simula-

tions, we fixed the intrinsic oscillation frequency of the pacemaker cells (fixing the parameters

bAP and bCN) at the values close to the upper-frequency limit of 1:1 pacemaker-excitable system

synchronization. Changing the intercellular coupling d we examined the onset of transitions

between full 1:1 and incomplete synchronizations [56], and recorded obtained frequencies of

the pacemaking cell and the 16th excitable cell in the strand.
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2D SAN model

The primary natural cardiac pacemaker, SAN, consists of a small area of specialized cells situ-

ated in the right atrium (the right upper chamber of the heart). The SAN dysfunctions may

result in dangerous cardiac arrhythmias. The mechanisms and processes involved in the latter

are very complicated and may be difficult or nearly impossible to explain without the help of

computer modeling.

As application examples for the pAP-AP coupled system, we performed simulations of sim-

plified 2D SAN models illustrating the effect of SAN—atrium coupling on the pacemaking

behavior. The SAN model consists of a rectangular area of 10 mm by 10 mm (200 × 200 mesh,

Δx = 0.05 mm spatial step size) of atrial tissue represented by AP model cells (Fig 3A). The

pacemaker was defined as an elliptically shaped area of pAP cells in the center of the rectangu-

lar with half-axes 3 and 1 mm, and long SAN axes 30˚ off the fiber direction. These dimensions

approximately correspond to the canine heart [57].

Two different SAN structure types were considered. Type 1, without insulating border and

exit pathways (Fig 3A), was similar to that demonstrated in work [56]. The whole tissue was

anisotropic with the ratio of diffusion coefficients Dy: Dx = 1:0.208 (1.2: 0.25 conductivity ratio

in [56]) along the fiber longitudinal y and transverse x directions, respectively. Two different

values of diffusion coefficient Dy = 0.090 and 0.048 mm2ms-1 were used. The parameters used

in the simulations are given in Table 2.

The whole model geometry in type 2 was similar to the first but with isotropic tissue (Dy: Dx

= 1:1). The pacemaker area was surrounded by borders of passive tissue with four symmetric

exit pathways of 1 mm width (Fig 3B), following previous studies [58–60]. The diffusion coeffi-

cient DA = 0.160 mm2ms-1 was fixed in the atrium, while two different values DS = 0.060 and

0.052 mm2ms-1 were set for the SAN pacemaker region (Fig 3B). The passive tissue was

defined as [28]:

@u
@t
¼ � ctSuþr � ðDruÞ ; ð10Þ

where S = 26 is the tissue conductivity. The tissue parameters within the exit pathways were

the same as those of the SAN pacemaker.

In this simple SAN structure, we incorporated neither diffusion gradients nor electrical het-

erogeneity of pacemaker cells, in contrast to the widely adopted approach in the simulations

with ion-channel models [53, 59].

Fig 3. Schematics of the simulation examples. A. 2D SAN model with the pAP-AP cells. B. SAN structure with a border of passive tissue and exit

pathways. C. 3D intestine model with the pCN-CN cells.

https://doi.org/10.1371/journal.pone.0257935.g003
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3D intestine model

There are two main layers of different cell types in the intestine. The first layer of specialized

pacemaker cells, termed interstitial cells of Cajal (ICC), produces slow propagating electrical

waves. The ICC cells synchronize to the highest frequency within the layer. This electric activ-

ity controls the contractile stress exerted by the second layer of smooth muscle cells (SMC) of

the intestinal tissue. Both layers of ICC and SMC are electrically connected via electrotonic

coupling.

In the second application example for the proposed pacemaker models, we considered a

simple 3D electrophysiological model of the small intestine. As a reference, we considered

results from the papers [23, 24, 61], in which the FHN and ion-channel models were used. In

contrast to the works, we described ICC and SMC layers with the pCN and CN model cells,

respectively, to demonstrate the broad applicability of the pCN model. It has been demon-

strated that the excitable MS model is apt to spontaneous excitations at some conditions, with

its modification proved to be robust to such pacemaker behavior [19]. Using the pCN model

with convenient frequency control in combination with the robust CN model instead of the

MS and FHN models may improve the behavior of the pertinent computational tissue models.

Similar to [23, 62], our intestine model geometry is presented by a long two-layer tube, cut

along its axle y on one side and stretched to a dual-layer plane (Fig 3C). The blue and red sur-

faces in Fig 3C represent external SMC and internal ICC layers, respectively. The simulation

domain for both layers has dimensions Nx × Ny = 176 × 4800, with uniform spatial mesh size

Δx = 0.25 mm, which corresponds to the 1200 mm long tube (one half of that in [23]) with the

mean circumference of 44 mm. Such a simple tube geometry corresponds to the anatomy of

the small intestine in general and to previously reported values of the intestine of average-size

animals like dogs or rabbits [62–64].

The following set of ODEs describes electrical dynamics in the intestine layers for trans-

membrane potentials uI of ICC and uM of SMC:

@uI

@t
¼ IItot þ dIMðuM � uIÞ; ð11Þ

@uM

@t
¼ IMtot þ dIMðuI � uMÞ; ð12Þ

where IItot and IMtot represent the right-hand side of the Eq 6 for ICC and SMC layers, respec-

tively, and last terms in the right-hand side of Eqs 11 and 12 describe the electrotonic coupling

between the layers with coupling coefficient dIM = 6 × 10−3 ms-1. Conduction within the

layers was considered isotropic with the diffusion coefficients DI = 5 × 10−5 mm2ms-1 and

DM = 8 × 10−4 mm2ms-1 for the ICC and SMC, respectively. Each of Eqs 11 and 12 is accompa-

nied by the three corresponding equations for slow variables hI and hM similar to Eqs 7–9.

Individual isolated ICC oscillate at different intrinsic frequencies, with spatial frequency

gradient in the longitudinal direction from the pylorus (first part of the duodenum, left side in

Fig 3B) toward the ileum (right side in Fig 3B). To create the frequency gradient in the ICC

layer, for Eq 11 we set up an exponential distribution of the parameter bCN along the y axis

(and constant along the x axis) [23]:

bCNðiÞ ¼ 0:4þ 1:3 � exp �
iDx
680

� �

; ð13Þ
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where i is the cell index counting from the duodenum. Eq 13 yields intrinsic oscillation fre-

quency distribution of ICC-SMC coupled pairs from 17.5 to 8 cpm along full-length of 2400

mm small intestine, or 17.5—10.5 cpm for the upper half [64] (see Fig 9B).

To demonstrate the appearance of intestinal dysrhythmias in a similar way as in [23, 62], a

temporal conduction block (uI = uM = 0.001, hI = hM = 0.5, one time step long) was induced at

t = 5100 s to the rectangular area at both ICC and SMC layers with the width ly = 40 mm,

height lx = 22 mm, and origin at x0 = 0 and y0 = 580 mm. Neither the electromechanical [39]

nor thermodynamical [23] coupling was included in the model for the sake of simplicity.

Numerical methods

All simulations were performed with MATLAB (R2021b) on a usual desktop computer with

AMD Ryzen 9 3950X CPU. For the acceleration of 3D intestine simulations, NVidia RTX 3090

GPU was used. We employed both the explicit forward Euler (FE) method for the preliminary

simulations and the implicit backward Euler (BE) method for final results to solve the ODE

systems. In the BE method, the absolute tolerance was set to 1 × 10−7 with the maximum num-

ber of iterations in the inner loop 20. The latter was not exceeded in all simulations.

No-flux Neumann boundary conditions were applied in 1D, 2D, and 3D simulations except

the periodic boundary conditions along the y axes in the 3D intestine model. Equilibrium

points for bifurcation diagrams were calculated with MatCont software [65]. The parameters

for the AP and pAP, CN and pCN models used in the simulations are listed in Tables 1–3,

respectively. The initial conditions for the models were chosen to be u(0) = 0.01, v(0) = 0.01

for the AP and pAP, and u(0) = 0.01, h(0) = 0.5 for the CN and pCN models.

To estimate the simulations’ accuracy, we compared the results for single-cell simulations

with the FE method at different time steps Δt with that calculated with the unconditionally sta-

ble BE method with a small time step Δt = 0.0001 ms. The relative norms

L2 ¼
kuBE � uFEk2

kuBEk2

and L1 ¼
kuBE � uFEk1
kuBEk1

ð14Þ

(for a single cycle) and relative frequency error (for 60 s runs), as well as a speedup of calcula-

tions, are given in Table 4. For 1D coupled pacemaker-excitable systems, the maximum rela-

tive frequency error with Δt = 0.1 ms was also about 0.16%. As seen from Table 4, in most

cases of the simulations with the pAP and pCN models, the FE and BE methods with a time

step of 0.1–0.01 ms would be enough to obtain reasonable accuracy (see also S1 Fig). The

Table 1. Parameters for the pAP and AP models used in the 0D (isolated cell) and 1D simulations.

Cell k a ε0 μ1 μ2 bAP Δt (ms)

pAP (0D) 8 0.13 0.002 0.2 0.3 0—0.08 0.01

pAP (1D) 0—0.5 0.1—0.01

AP (1D) -0.13

https://doi.org/10.1371/journal.pone.0257935.t001

Table 2. Parameters for the pAP and AP models used in the 2D SAN simulations.

Cell k a ε0 μ1 μ2 bAP Δt (ms) Δx (mm)

pAP (SAN, type 1) 8 0.13 0.002 0.2 0.5 0.120 0.002 0.05

pAP (SAN, type 2) 12 0.133

AP (Atrium) 8 0.045 0.3 -0.13

https://doi.org/10.1371/journal.pone.0257935.t002
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performance of both FE and BE methods implemented in the CHASTE open source software

package was also demonstrated in work [66].

At the same time, the standard stability criterion

DDt
Dx2
¼ dDt <

1

2N
; ð15Þ

where N is the dimension of the simulation domain, should be taken into account as well [4].

This criteria was fulfilled for both SAN (at the highest D = 0.160 mm2ms−1) and intestine (DI =

8 × 10−5 mm2ms-1) simulations. In the 2D and 3D simulations, we used the same time and

space discretizations for both FE and BE methods (Tables 2 and 3), and the obtained results

were visually similar for both methods.

Results and discussion

Single-cell pacemaker dynamics

The phase portraits and nullclines of excitable and pacemaking model variants are presented

in Fig 2. Three action potential waveforms are demonstrated in Fig 2A.3 and 2B.3. They corre-

spond to the limit cycles with EPs shown by squires of the same color in Fig 2A.2 and 2B.2, cal-

culated with different values of the parameters bAP and bCN, respectively.

The absence of undershoot of the action potential amplitude in the pAP and pCN models

(in contrast to the FHN model [9, 10]) makes them specifically suitable for utilization as sec-

ondary pacemakers and in the cardiac simulation systems with a limited number of elements,

similar to proposed in the works [44–46].

Figs 4 and 5 demonstrate the dependence of single-cell dynamic characteristics of the pAP

and pCN models on various bifurcation parameters. The trajectories of the EPs are shown by

dashed lines in the left columns of Figs 4 and 5.

All the bifurcation parameters affect the intrinsic oscillation frequency (central columns of

Figs 4 and 5). For pAP, the highest variation in the frequency was observed with bAP (with

almost linear dependency, Fig 4A.2) and Iext (Fig 4E.2). The former allows the most convenient

control of the frequency, while the latter indicates the strong sensitivity of the model to the

external coupling strength. The variation of POP and MDP is strongest also for bAP and Iext.

Table 3. Parameters for the pCN and CN models used in the 0D (isolated cell), 1D, and 3D simulations.

Cell τin (ms) τout (ms) τopen(ms) τclose (ms) us ugate bCN Δt (ms) Δx (ms)

pCN (0D) 0.3 6.0 120 150 0.05—0.55 -0.1—0.35 0.05—0.6 0.01 -

pCN (1D) 0.15 -0.05 0.1—12 0.1—0.01 -

CN (1D) 0.01 0.13 -0.13

pCN (ICC) 16 200 1500 1800 0.20 -0.05 0.62—1.70 2.5 0.25

CN (SMC) 11 0.01 0.10 -0.10

https://doi.org/10.1371/journal.pone.0257935.t003

Table 4. Comparison of the accuracy of the results obtained with FE and BE methods at different time steps Δt (Eq 14).

Cell FE, Δt = 0.1 ms FE, Δt = 0.01 ms FE, Δt = 0.001 ms

L2 L1 Freq. Speedup L2 L1 Freq. Speedup L2 L1 Freq. Speedup

pAP 0.25% 0.93% 0.17% 707 0.14% 0.38% 0.017% 218 0.01% 0.01% 0.002% 36

pCN 0.53% 2.03% 0.16% 1040 0.13% 0.45% 0.016% 123 0.08% 0.28% 0.002% 14

https://doi.org/10.1371/journal.pone.0257935.t004

PLOS ONE Pacemaking function of two simplified cell models

PLOS ONE | https://doi.org/10.1371/journal.pone.0257935 April 11, 2022 10 / 24

https://doi.org/10.1371/journal.pone.0257935.t003
https://doi.org/10.1371/journal.pone.0257935.t004
https://doi.org/10.1371/journal.pone.0257935


Fig 4. Dependence of pAP cell characteristics on various parameters. A. On the bifurcation parameter bAP. B. On the parameter �0. C. On the parameter μ1. D.

On the parameter μ2. E. On the external current Iext. Left panels correspond to the bifurcation diagrams, central—to the calculated frequencies, and right panels—to

the calculated DI on APD ratios.

https://doi.org/10.1371/journal.pone.0257935.g004
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The increase of the parameter μ2 in the 0.1–0.5 range decreases the frequency, and higher val-

ues of μ2 seem to be impractical (Fig 4D.2). For the pCN model, significant variation of POP

and MDP was observed for all bifurcation parameters (left columns in Fig 5).

The dependencies of DI/APD ratios on the bifurcation parameters are shown in the right

columns of Figs 4 and 5. The ratios supplement the intrinsic frequency characteristics demon-

strating DI and APD contributions into the cycle length. With decreasing DI/APD ratio, the

steepness of the restitution curve (APD on DI) increases. At some combination of the

Fig 5. Dependence of pCN cell characteristics on various parameters. A. On the bifurcation parameter bCN. B. On the slope factor us, C. On the parameter ugate. D.

On the external current Iext. Left panels correspond to the bifurcation diagrams, central—to the calculated frequencies, and right panels—to the calculated DI on APD

ratios.

https://doi.org/10.1371/journal.pone.0257935.g005
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parameters the ratios are always higher than unity (see, for example, bAP = 0.005 curve in Fig

4C.3). For the pCN model, this takes place only for Iext dependence (Fig 5D.3).

In the pCN model, bCN (Fig 5A.2) and ugate (Fig 5C.2) are the parameters with the highest

variation of intrinsic frequency. The parameter bCN, similar to bAP, allows obtaining very low

oscillation rates (less than 0.1 Hz). The influence of Iext (Fig 5D.2) on the frequency is relatively

weak, thus the pCN model looks less sensitive to the coupling strength (compare with Fig 4E.2,

see also Fig 6).

Both models demonstrated notably wide ranges of intrinsic frequencies: 0.007—7.6 Hz for

pAP, 0.14—14 Hz for pCN, corresponding to about 0.4—450 and 8.4—840 counts per minute

(cpm), respectively. Such a broad frequency span allows the implementation of the models for

Fig 6. A. 1D pAP-AP coupled system. A.1. Minimal and maximal 1:1 synchronized frequency dependence on the coupling coefficient d for the pAP cell coupled with

n = 2 (red), 1 (green), and 0.5 (blues) strands of 20 AP cells. Inset illustrates a schematic representation of the 1D pAP-AP coupled system. Ellipse symbolizes

pacemaker cell and rectangles—excitable cells. A.2. Minimal and maximal values of the parameter bAP vs d corresponding to panel A.1. B. 1D pCN-CN coupled

system. B.1. Minimal and maximal 1:1 synchronized frequency dependence on the coupling coefficient d for the pCN cell coupled with n = 2 (red), 1 (green), and 0.5

(blue) strands of 20 CN cells. Inset illustrates a schematic representation of the 1D pCN-CN coupled system. B.2. Minimal and maximal values of the parameter bCN vs

d corresponding to panel B.1.

https://doi.org/10.1371/journal.pone.0257935.g006
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the simulation of various organs of different animal species at normal and pathological

conditions.

For the pCN model, the frequency and, in particular, DI/APD ratios depend also on the

time constants τin, τout, τopen, and τclose. The influence of the constants on pCN characteristics

is similar to that for the original and modified MS models [18, 19, 50].

Dynamics of 1D coupled pacemaker-excitable system

Depending on the coupling (diffusion coefficient), the pacemaker-excitable system may be

either in a fully synchronized (1:1) regime, when all excitable cells in a strand follow the driv-

ing frequency or in an asynchronous/chaotic regime when not all of the pacemaker action

potentials are able to propagate to the end of the strand [56, 67].

Fig 6A.1 and 6B.1 demonstrate dependencies of minimal and maximal frequencies of com-

plete 1:1 synchronization and corresponding minimal and maximal values of parameters bAP
and bCN on the coupling coefficient d = D/Δx2 for the single pAP and pCN model cells coupled

with n = 0.5, 1, 2 strands of 20 AP and CN excitable cells, respectively.

For the pAP-AP coupled system, the complete synchronization was confined in two sepa-

rate areas created by interlocks of minimal and maximal frequency curves (Fig 6A.1). The

areas partially merged in the case of n = 0.5. Similar corresponding separate areas of the

parameter bAP are seen in Fig 6A.2. This behavior indicates that at certain values of d, complete

1:1 synchronization in the pAP-AP system with a heavy load can not be obtained, at least with

the model parameters used.

The existence of the two separate areas in the coupling dependence characteristics is associ-

ated with two possible variants of intersections between branches of the parabolic nullclines of

the pAP model (Eqs 2 and 3). The areas of complete synchronization became smaller with an

increasing number of strands n.

We also observed a pronounced hysteresis in the case with n = 0.5 (and a very small one

with n = 1.0) of the maximal synchronized frequency characteristic at low coupling strength.

Such effect seems similar to that demonstrated in the simulations of electrically coupled pace-

maker and non-pacemaker cells with the VCD model [68].

In the pCN-CN coupled system, changes in the complete synchronization areas for differ-

ent n were insignificant, and maximal synchronized frequency monotonically increased (Fig

6B.1). Fig 6B.1 and 6B.2 demonstrate much wider synchronization areas for both frequency

and parameter bCN. This may be attributed to the higher energy capacity of the pCN over pAP

cell with conventional model parameters. For both models increasing the number of strands

and increasing coupling strength required rising values of the corresponding parameter b to

maintain complete synchronization (Fig 6A.2 and 6B.2).

Synchronization behavior with fixed intrinsic pacemaker frequency

Fig 7 demonstrates the synchronization behavior of the pAP-AP and pCN-CN 1D systems

with increasing coupling at fixed bifurcation parameters (fixed intrinsic pacemaker fre-

quency). In Fig 7A and 7B, one can observe the existence of a certain threshold value of the

coupling coefficient d, below which the pacemaker frequency was much higher than that of

the coupled strand(s) of excitable cells. The threshold values decreased with increasing cou-

pling load, i.e., with the increasing number of strands n. With the reduction of d from the

threshold value, the pacemaker-excitable frequency ratios increased significantly with abrupt

jumps, as observed in most simulated cases.

Above the threshold values of d, complete synchronization occurred with a smooth, gradual

drop of the frequency in the pAP-AP system (Fig 7A), while in the pCN-CN system, it reaches
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a maximum before final fall-off (Fig 7B). Fig 7C and 7D show action potentials of the cells in

both coupled systems with the number of strands n = 0.5 for three different values of the cou-

pling coefficient d. One can see the transition from incomplete to complete synchronization

with increasing d. Also, for higher loads, the complete synchronization took place at lower d.

The pCN-CN coupled system reached the complete synchronization state at much higher val-

ues of d than the pAP-AP and higher frequencies.

2D simulation of SAN

Fig 8 shows the calculated spatio-temporal distributions of the transmembrane potential u
from the central SAN region to peripheral atrial tissue (along the bold black line in Fig 3A)

and activation sequences for different diffusion coefficients D (for the SAN model variant

Fig 7. Synchronization in the simplified 1D coupled model systems with fixed parameters b. Dependence of synchronization in the pAP-AP (A) and pCN-CN (B)

systems with a different number of excitable cell strands n on the coupling parameter d. Solid lines correspond to the pacemaker frequency and the dotted lines—to the

frequency at the 16th excitable cell in the strand(s). C. Action potentials for the pAP-AP system for the number of strands n = 0.5. The bold red and blue lines mark the

action potentials of the pacemaker cell and 16th cell of a strand, respectively. D. The same as in panel C, but for the pCN-CN system.

https://doi.org/10.1371/journal.pone.0257935.g007
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without insulating border, Fig 8A–8C) and for different diffusion coefficients DS in the SAN

pacemaker area (for the SAN model variant with insulating border and exit pathways, Fig 8D–

8F).

With relatively strong coupling (D = 0.090 mm2ms-1) SAN and atrial excitations were syn-

chronized with a slow pacing rate (about 120 cycles per minute, Fig 8A, see also S1 Video).

When the coupling became too weak (D = 0.048 mm2ms-1), the atrial tissue failed to respond

on every SAN excitation with 2:5 ratio (Fig 8B, S2 Video). The simulation results of this exam-

ple are close to that demonstrated previously with the similar 2D SAN structure using complex

ion-channel cell models with sufficient and weak SAN-atrial coupling [56]. Fig 8C (and S3

Video) shows activation sequence corresponding to D = 0.090 mm2ms-1.

In the other SAN structure variant, the high value of diffusion coefficient DS = 0.060

mm2ms-1 resulted in complete SAN-atria synchronization (Fig 8D, and S4 Video). When DS

decreased to 0.052 mm2ms-1, every second action potential propagated from the SAN center to

the border failed to depolarize the atria (Fig 8E, and S5 Video). Due to the block zones placed

on the SAN ellipse vertexes, the gap appeared in the transmembrane potential propagation

path along the bold line in Fig 3A. Fig 8F (and S6 Video) shows activation sequence corre-

sponding to DS = 0.060 mm2ms-1. The effect of the reduced diffusion coefficient on the SAN-

atria synchronization looks similar for both variants despite differences in the SAN structures.

As seen from Fig 8, in the simulation of the SAN-atria system with pAP-AP coupled cell mod-

els, a stable pacing function can be obtained regardless of the presence or absence of block

zones of passive tissue around the SAN pacemaker.

Fig 8. 2D simulation of SAN. Calculated time sequences of the transmembrane potential u along the bold black line in Fig 3A and activation sequences for SAN

structure without (A–C) and with (D–F) walls of passive tissue. A. For diffusion coefficient D = 0.090 mm2ms-1. B. D = 0.048 mm2ms-1. C. Activation sequence

corresponding to the case shown in panel A. D. DA = 0.160 mm2ms-1, DS = 0.060 mm2ms-1. E. DA = 0.160 mm2ms-1, DS = 0.052 mm2ms-1. F. Activation sequence

corresponding to the case shown in panel D.

https://doi.org/10.1371/journal.pone.0257935.g008
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3D simulation of intestine

The results of the 3D intestine simulations are presented in Fig 9 (see also the animated version

in S7 and S8 Videos). Fig 9A shows spatial distributions of the transmembrane potential uI in

the ICC layer at different time moments.

Slow waves of ICC were generated in the leading pacemaker region and traveled distally,

i.e., from left to right along the small intestine (Fig 9A). The initial distribution of the intrinsic

frequency of each ICC-SMC coupled pair (DI = DM = 0) is shown in Fig 9B. The lengths of the

waves gradually decreased in time (t = 180 and 700 s), reaching complete entrainment at about

t = 8000 s (S7 Video). During the transient process (t = 1160, 1540, and 6000 s), plateaus with

constant frequency were formed (Fig 9B). The plateau boundaries correspond to the phase dis-

locations, at which some waves were occasionally dropped (y’ 240 mm and 940 mm, Fig 9A).

Fig 9. 3D simulation of intestine. A. Snapshots of spatial distributions of the transmembrane potential uI in the ICC layer at different time

moments t. Brighter areas correspond to higher potential. From top to bottom: (1–5) formation of constant frequency plateaus, (6–11) onset and

evolution of intestinal dysrhythmia pattern due to temporary conduction block induced at t = 8100 s to both ICC and SMC layers. B. Distributions

of the intrinsic frequency (DI = DM = 0, solid black line), entrained frequency of oscillators at t = 8000 s (solid red line), and at the end of the

simulation (t = 11600 s, dashed blue line). C–D. uI (red solid lines) and uM (blue dot-dashed lines) action potentials at the distance of 170 mm (C)

and 1200 mm (D) at the beginning of the simulation (t’ 100 s). E–F. The same as in panels C and D, but at t’ 8000 s.

https://doi.org/10.1371/journal.pone.0257935.g009
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The formed plateaus of entrained frequencies are in agreement with the recent experimental

findings [69].

The sixth panel from the top (t = 8140 s) in Fig 9A demonstrates the situation right upon

the induction of the temporary conduction block (t = 8100 s). The block overlapped a few con-

sequent waves, initiating intestinal dysrhythmia in the form of turbulent perturbations

(t = 8180, 8360, and 8700 s) [23, 62]. The perturbation area, which appeared in the middle of

the second frequency plateau, traveled distally toward the ileum until reaching the point of the

phase dislocation, where it persisted the rest of the simulation (t = 9400 s and 9880 s) in the

form of spiral wave or rotor activity [62]. The slow action potential waves in the SMC layer fol-

lowed the waves in the ICC layer with higher amplitude (Fig 9C–9F). The ICC uI (red solid

lines) and SMC uM (blue dot-dashed lines) action potentials at the distance of 170 mm and

1200 mm from the duodenum at the initial moment (t’ 100 s) are demonstrated in Fig 9C

and 9D, and at t’ 8000 s in Fig 9E and 9F, respectively.

The obtained results presented in Fig 9 demonstrate the capability of the phenomenological

model based on the pCN-CN system to reproduce physiological processes in the intestine [61,

69].

Limitations and general remarks

Since this paper aimed to demonstrate the applicability of the pAP and pCN phenomenologi-

cal models for simulations of various physiological systems, we did not precisely adjust the

parameters of the SAN and intestine model cells to the existing experimental data. The results

in Figs 8 and 9 are presented for illustration purposes and not aimed at a detailed study of

these organs. In particular, in the SAN type 2 model (Fig 3B), the tissue of the borders sur-

rounding the pacemaking area is of passive type, blocking the spread of excitation [28]. Such

tissue, being not exactly of an electrically insulating type [59, 60], causes electrotonic interac-

tions with the surrounding SAN and atrial tissues. Better selection of the boundary tissue prop-

erties can be beneficial for more realistic simulations of the SAN and its exit pathway

functions. Moreover, additional tuning of the parameters to clinical data might be necessary

for accurate simulations, in particular, to construct patient-specific models. This can be real-

ized by applying, for example, a robust and clinically tractable protocol and fitting algorithm

[19] for characterizing cardiac electrophysiology properties by simplest two-variable cell mod-

els, such as the pAP-AP and pCN-CN coupled systems.

For the simulations where the differences of resting and/or peak levels are necessary, the

MDP and POP values of the considered models can be modified. The addition of a constant to

the term u and the replacement of unity in the term (1 − u) allow shifting of the MDP and

POP levels, respectively, though the exact resulting values of the latters cannot be determined

directly (see S2 Fig for the details). Also, such modification may require an adjustment of the

intrinsic frequencies (for example, with the parameters bAP and bCN). The above modifications

of the MDP and POP together with modulation of the intrinsic frequency with the parameters

b may allow simulation of a kind of tonic bursting [29]—a firing behavior in which a neuron

cell fires a certain number of spikes on the top of the plateau and is silent for a certain amount

of time. Though, compared to the variety of specific neuronal cell models [29], the pAP and

pCN models may not be the best choice for modeling of neuronal systems.

Another well-known disadvantage of the phenomenological models like pAP-AP and

pCN-CN is their limited ability to represent action potential morphology under varying physi-

ological conditions, e.g., the effect of variation of concentration of particular ions, which is

necessary for simulations of complex cardiac diseases such as ion channelopathies. However,

the utilization of the considered pacemaker models can be beneficial for the development of
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simplified real-time simulation systems (e.g., personalized medicine [30, 31] and inverse car-

diac modeling [32]), deep learning [43], as well as for medical device testing platforms [44, 46].

The simplified models can also be used in preliminary simulation setups for hypothesis testing

and verification, as well as model design and tuning before implementing complex and com-

putationally expensive ion-channel models [34].

Conclusion

In this work, we considered pacemaking variants of the Aliev-Panfilov and Corrado two-vari-

able excitable cell models. We studied the main features of single-cell nonlinear dynamics of

the models, their synchronization behavior in one-dimensional coupled pacemaker-excitable

setups, including regions of complete synchronization, and the relationship between pace-

maker frequency and overall coupling. Also, we performed simulations of the simplified 2D

sinoatrial node and 3D intestine models employing the considered pacemakers. The obtained

spatio-temporal dynamics of the transmembrane potentials in the 2D and 3D models are in

general agreement with that demonstrated previously for identical schematics with different

cell models.

An essential feature of the pacemaker models is that they do not include any additional

equations for currents, thus having the same number of variables as the original excitable mod-

els, allowing a simple uniform description of the whole pacemaker-excitable system. We

believe that the pacemaker variants of the Aliev-Panfilov and Corrado models can be used for

computationally efficient electrophysiological modeling of tissues that include primary and

subsidiary pacemaking cells, allowing the development of models for whole organs, various

species, patient-specific medicine, and real-time testing and validation of medical devices.

Supporting information

S1 Fig. Action potentials and phase portraits of the pAP and pCN models. Comparison of

the accuracy of Forward Euler and Backward Euler methods. The MATLAB and CellML codes

are available at https://github.com/mryzhii/Simplified-pacemaker-cell-models.

(PDF)

S2 Fig. Shifting of the POP and MDP levels in the pAP and pCN models.

(PDF)

S1 Video. Animation of the transmembrane potential u in the SAN model structure (type

1). Corresponds to Fig 8A for diffusion coefficient D = 0.090 mm2ms-1.

(MP4)

S2 Video. Animation of the transmembrane potential u in the SAN model structure (type

1). Corresponds to Fig 8B for diffusion coefficient D = 0.048 mm2ms-1.

(MP4)

S3 Video. Animation of the excitation sequence in the SAN model structure (type 1). Evo-

lution of transmembrane potential in 3D corresponding to Fig 8A.

(MP4)

S4 Video. Animation of the transmembrane potential u in the SAN model structure (type

2). Corresponds to DA = 0.160 mm2ms−1, DS = 0.060 mm2ms−1.

(MP4)
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S5 Video. Animation of the transmembrane potential u in the SAN model structure (type

2). Corresponds to DA = 0.160 mm2ms−1, DS = 0.052 mm2ms−1.

(MP4)

S6 Video. Animation of the excitation sequence in the SAN model structure (type 2). Evo-

lution of transmembrane potential in 3D corresponding to Fig 8D.

(MP4)

S7 Video. Animation of the transmembrane potential uI in the intestine model. Formation

of plateaus with entrained frequencies (t = 1—3600 s).

(MP4)

S8 Video. Animation of the transmembrane potential uI in the intestine model. Onset and

evolution of intestinal dysrhythmia pattern due to temporary conduction block (t = 8000—

11600 s).

(MP4)
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35. Christoph J, Chebbok M, Richter C, Schröder-Schetelig J, Bittihn P, Stein S, et al. Electromechanical

vortex filaments during cardiac fibrillation. Nature. 2018; 555: 667–672. https://doi.org/10.1038/

nature26001 PMID: 29466325

36. Li T-C, Pan De-B, Zhou K, Jiang R, Jiang C, Zheng Bo, et al. Jacobian-determinant method of identify-

ing phase singularity during reentry. Phys Rev E. 2018; 98(6): 062405. https://doi.org/10.1103/

PhysRevE.98.062405

37. Lebert J, Jan Christoph J. Synchronization-based reconstruction of electromechanical wave dynamics

in elastic excitable media. Chaos. 2019; 29(9): 093117. https://doi.org/10.1063/1.5101041 PMID:

31575136

38. Belhamadia Y, Grenier J. Modeling and simulation of hypothermia effects on cardiac electrical dynam-

ics. PLoS ONE. 2019; 14(5): e0216058. https://doi.org/10.1371/journal.pone.0216058 PMID:

31050666

39. Brandstaeter S, Gizzi A, Fuchs SL, Gebauer AM, Aydin RC, Cyron CJ. Computational model of gastric

motility with active-strain electromechanics. J Appl Math Mech (ZAMM). 2018; 98(12): 2177–2197.

https://doi.org/10.1002/zamm.201800166

40. Pullan AJ, Cheng LK, Yassi R, Buist ML. Modelling gastrointestinal bioelectric activity. Prog Biophys

Mol Biol. 2004; 85(2-3): 523–550. https://doi.org/10.1016/j.pbiomolbio.2004.02.003 PMID: 15142760

41. Sheldon RE, Baghdadi M, McCloskey C, Blanks AM, Shmygol A, van den Berg HA. Spatial heterogene-

ity enhances and modulates excitability in a mathematical model of the myometrium. J R Soc Interface.

2013; 10(86): 20130458. https://doi.org/10.1098/rsif.2013.0458 PMID: 23843249

42. Seydewitz R, Menzel R, Siebert T, Böl M. Three-dimensional mechano-electrochemical model for

smooth muscle contraction of the urinary bladder. J Mech Behav Biomed Mater. 2017; 75: 128–146.

https://doi.org/10.1016/j.jmbbm.2017.03.034 PMID: 28711025
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