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Abstract

Background—Cerebellar developmental abnormalities in Fetal Alcohol Spectrum Disorder 

(FASD) are linked to impairments in insulin signaling. However, co-morbid alcohol and tobacco 

abuses during pregnancy are common. Since smoking leads to tobacco specific Nitrosamine 

(NNK) exposures which have been shown to cause brain insulin resistance, we hypothesized that 

neurodevelopmental abnormalities in FASD could be mediated by ethanol and/or NNK.

Methods—Long Evans rat pups were intraperitoneal (IP) administered ethanol (2 g/kg) on 

postnatal days (P) 2, 4, 6 and/or NNK (2 mg/kg) on P3, P5, and P7 to simulate third trimester 

human exposures. The Cerebellar function, histology, insulin and Insulin-like Growth Factor (IGF) 

signaling, and neuroglial protein expression were assessed.
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Results—Ethanol, NNK and ethanol+NNK groups had significant impairments in motor 

function (rotarod tests), abnormalities in cerebellar structure (Purkinje cell loss, simplification and 

irregularity of folia, and altered white matter), signaling through the insulin and IGF-1 receptors, 

IRS-1, Akt and GSK-3β, and reduced expression of several important neuroglial proteins. Despite 

similar functional effects, the mechanisms and severity of NNK and ethanol+NNK induced 

alterations in cerebellar protein expression differed from those of ethanol.

Conclusions—Ethanol and NNK exert independent but overlapping adverse effects on 

cerebellar development, function, insulin signaling through cell survival, plasticity, metabolic 

pathways, and neuroglial protein expression. The results support the hypothesis that tobacco 

smoke exposure can serve as a co-factor mediating long-term effects on brain structure and 

function in FASD.
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INTRODUCTION

Alcohol abuse during pregnancy causes Fetal Alcohol Spectrum Disorder (FASD) which 

leads to long-term neurodevelopmental deficits.1,2 Ethanol mediates its adverse effects on 

the immature brain by inhibiting insulin and Insulin-like Growth Factor (IGF) signaling at 

multiple points within the cascade, beginning with ligand-receptor binding.3 Consequently, 

ethanol inhibits: 1) insulin and IGF-1 Receptor Tyrosine Kinases (RTKs); 2) Insulin 

Receptor Substrate (IRS) signaling4–6; 3) Phosphotidyl-Inositol-3-Kinase (PI3K) and Akt 

activation; 4) Akt suppression of Glycogen Synthase Kinase-3β (GSK-3β)3,5–8; and 5) 

inactivation of phosphatases that negatively regulate RTKs, i.e. PTP-1b or PI3K, i.e. 

PTEN.6,8,9 These effects compromise growth, survival, metabolism, neuronal migration, and 

plasticity during development.10–15 In addition, acetaldehyde build-up from incomplete 

alcohol metabolism causes neurotoxic injury due to oxidative stress, DNA damage, 

mitochondrial dysfunction, and probably adduct formation in brain.16–21 Therefore, ethanol 

inhibition of insulin/IGF signaling combined with acetaldehyde-mediated oxidative injury 

could be responsible for many of the structural and functional Central Nervous System 

(CNS) abnormalities in FASD, including motor impairments, cerebellar hypoplasia, and 

neuronal migration disorders.

Although ethanol exposure is sufficient to cause FASD, in reality, heavy alcohol abusers are 

often smokers22 and both heavy drinking and cigarette smoking adversely affect 

neurocognitive function.23 Review of an outpatient substance abuse treatment center 

database for pregnant women revealed that from 2010 to 2013, 74% of the pregnant alcohol 

users (N=57) smoked cigarettes compared with 42% of controls (N=31) (P=0.0053).24 

Despite strong evidence linking cigarette smoking during pregnancy to impaired fetal 

growth and development, and neurocognitive function,25 the mechanisms are not well 

understood. Given the frequency of overlapping exposures and their known independent 

adverse effects on development, further research is needed to determine the degree to which 

alcohol and tobacco exposures produce additive or synergistic adverse effects on the 

immature brain.
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Nicotine is the main stimulant and addictive substance in tobacco. Nicotine’s half-life is 

short (1–2 hours), but its chief stable metabolites, cotinine, can cause significant harm. 

Moreover, tobacco-specific nitrosamines, including 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanone (NNK), N-nitrosonornicotine (NNN), nitrosaminoaldehyde (NNAL), N-

nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), iso-NNAL, iso-N-nitrosamino acids 

(iso-NNAC)26,27 are problematic because they are present in tobacco smoke and cause DNA 

damage and form adducts with proteins, lipids, and nucleic acids.28–30 In previous studies, 

we found that low-dose exposures to N-nitrosodiethylamine, a nitrosamine found in 

processed and preserved foods, cause sustained deficits in neurobehavioral function with 

impairments in brain insulin/IGF signaling, increased oxidative stress, and reduced 

expression of neuroglial genes.31 Subsequently, we demonstrated similar independent or 

additive adverse effects of ethanol and low-dose NNK exposures in adolescent rats,32,33 and 

that low-dose NDEA exposures exacerbate the injurious effects of ethanol on the developing 

brain.34 These findings suggest that further studies concerning additive and interactive 

effects of ethanol and nitrosamine exposures during development are needed to understand 

the nature and mechanisms of their long-term effects.

The prevalent co-morbid exposures to alcohol and tobacco during pregnancy prompted us to 

evaluate neurotoxic and teratogenic effects of tobacco-specific nitrosamine exposures in 

relation to the effects of alcohol. This study utilized an in vivo model of ethanol and/or NNK 

exposures during the early postnatal period to examine effects on cerebellar function, 

structure, insulin and IGF-1 signaling through survival, metabolic, and plasticity pathways, 

and neuroglial protein expression. The findings demonstrate that early postnatal exposures to 

ethanol, NNK, or ethanol+NNK produce molecular, biochemical, and histopathological 

effects that correspond with abnormalities in FASD. Therefore, the pathogenesis of sustained 

neurodevelopmental abnormalities are typically linked to prenatal alcohol exposures may be 

mediated in part by co-exposures to tobacco smoke.

METHODS AND MATERIALS

In vivo Model

The models generated were intended to simulate 3rd trimester pregnancy human exposures 

to alcohol and/or tobacco toxins. Long Evans rat pups were divided into 4 groups and 

administered 50 μl i.p. injections of: saline vehicle as control; pharmaceutical grade ethanol 

(2 g/kg in saline); NNK (2 mg/kg in saline); and ethanol+NNK. Ethanol treatments (binge) 

were administered on postnatal days (P) 2, 4, 6, and 8,35–37 and NNK was administered on 

P3, P5, P7, and P9. All rats survived the treatments and growth trajectories were similar 

across the groups. All experiments were performed in accordance with protocols approved 

by Institutional Animal Care and Use Committee at the Lifespan-Rhode Island Hospital, and 

they conformed to guidelines established by the National Institutes of Health.

Rotarod Testing

We used rotarod tests to assess cerebellar motor function.38 On P16, rats (N=6–8 per group) 

were administered 10 rotarod trials at incremental speeds up to 10 rpm using a Rota-mex-5 

(Columbus Instruments, Columbus, OH, USA), with 10 minutes rest between trials. The 
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latencies to fall were automatically recorded with photocells placed over the rod; however, 

trials were stopped after 30 seconds to avoid exercise fatigue. Data from trials 1–3 (2–5 

rpm), 4–7 (5–7 rpm), and 8–10 (8–10 rpm) were culled and analyzed using the Mann-

Whitney test.

Cerebellar Protein Extraction

On P30, the rats were sacrificed to harvest cerebella for histological and molecular studies. 

Fresh cerebella were divided in the mid-sagittal plane. One hemisphere was fixed in 10% 

neutral buffered formalin and embedded in paraffin. Histological sections (5 μm-thick) were 

stained with Luxol fast blue-Hematoxylin and Eosin (LHE). The other hemisphere was snap 

frozen and stored at −80 °C. For multiplex and duplex Enzyme-Linked Immunosorbant 

Assays (ELISAs), fresh frozen cerebellar tissue was homogenized in buffer containing 50 

mM Tris (pH 7.5), 150 mM NaCl, 5 mM EDTA (pH 8.0), 50 mM NaF, 0.1% Triton X-100, 

and protease and phosphatase inhibitors. Supernatants obtained by centrifuging the samples 

at 14,000 × g for 15 minutes at 4 °C were used in ELISAs. Protein concentrations were 

measured using the bicinchoninic assay.

Multiplex ELISAs

Bead-based Total and Phospho Akt Panels were used to examine effects of ethanol, NNK 

and ethanol+NNK exposures on the expression and phosphorylation of proteins integrally 

involved in Insulin (IN) and IGF-1 signaling through Akt and Glycogen Synthase Kinase-3β 
(GSK-3β). The Total Akt multiplex panel measured immunoreactivity to the insulin and 

IGF-1 receptors, Insulin Receptor Substrate, type 1 (IRS-1), Akt, and GSK-3β. The 

Phospho-Akt panel measured immunoreactivity to: pYpY1162/1163-IN-R, pYpY1135/1136-

IGF-1R, pS312-IRS-1, pS473-Akt, pT246- and pS9-GSK3β. Protein samples (100 μg each) were 

incubated with antibody-coated beads to capture specific antigens following the 

manufacturer’s protocol. Biotinylated second epitope antibodies and phycoerythrin-

conjugated Streptavidin were reacted with antigen-bound beads, and immunoreactivity was 

detected and quantified in a MAGPIX (Bio-Rad, Hercules, CA, USA). Data are expressed as 

Fluorescence Light Units (FLU) corrected for protein concentration.30,39

Duplex ELISAs

Duplex direct-binding ELISAs were used to measure cerebellar protein expression of Hu 

(neuronal), Myelin-associated glycoprotein-1 (MAG-1; oligodendroglia), Glial fibrillary 

acidic protein (GFAP; astrocytes), Choline acetyl transferease (ChAT), Acetylcholinesterase 

(AChE), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tau, phospho-tau, 

ubiquitin, 4-hydroxy-2-nonenal (HNE), and Aspartyl-asparaginyl-β-hydroxylase (ASPH). 

Quadruplicate 50 μl aliquots containing 2 μg/ml of protein were adsorbed to the bottoms of 

96-well MaxiSorp plates by overnight incubation at 4 °C. Non-specific sites were adsorbed 

with Superblock-TBS. Proteins were reacted with primary antibody (0.1–0.4 μg/ml) 

overnight at 4 °C. Immunoreactivity was detected with HRP-conjugated secondary antibody 

and Amplex UltraRed soluble fluorophore. Protein homogenates were subsequently 

incubated with biotin-conjugated antibodies to large ribosomal protein (RPLPO), and 

immunoreactivity was detected with streptavidin-conjugated alkaline phosphatase (1:1000) 

and 4-Methylumbelliferyl phosphate (4-MUP) fluorophore. Fluorescence intensity was 
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measured in SpectraMax M5 microplate reader (Molecular Devices, Sunnyvale, CA, USA) 

at Ex565nm/Em595nm for Amplex UltraRed, and Ex360nm/Em450nm for 4-MUP. Binding 

specificity was assessed with control incubations in which the primary or secondary 

antibody was omitted. The calculated ratios of immunoreactivity corresponding to the 

specific proteins/RPLPO were used for inter-group comparisons.39

STATISTICS

All assays were performed with 6 or 8 samples per group. Inter-group comparisons were 

made using two-way ANOVA and the Tukey multiple comparisons post-hoc tests (GraphPad 

Prism 6, San Diego, CA, USA).

MATERIALS

Pharmaceutical grade ethanol was used in the in vivo experiments. The A85G6 and A85E6 

monoclonal antibodies to ASPH were generated to human recombinant protein40 and 

purified over Protein G columns (Healthcare, Piscataway, NJ, USA). Otherwise, antibodies 

used for duplex ELISAs were purchased from Abcam (Cambridge, MA, USA). RPLPO 

antibody was from the Proteintech Group Inc (Chicago, IL, USA). ELISA MaxiSorp 96-well 

plates were purchased from Nunc (Rochester, NY, USA). Horseradish peroxidase (HRP)-

conjugated secondary antibody, Amplex Red soluble fluorophore, and the Akt Pathway Total 

and Phospho panels were purchased from Invitrogen (Carlsbad, CA, USA). HRP-labeled 

polymer conjugated secondary antibody was purchased from Dako Corp (Carpinteria, CA, 

USA). The SpectraMax M5 microplate reader was purchased from Molecular Devices Corp. 

(Sunnyvale, CA, USA). BCA reagents were from Pierce Chemical Corp. (Rockford, IL, 

USA). All other fine chemicals, including NNK were purchased from CalBiochem 

(Carlsbad, CA, USA), Pierce (Rockford, IL, USA), or Sigma (St. Louis, MO, USA).

RESULTS

Effects of Ethanol and NNK on Motor Function

Growth curves were virtually identical for all groups (Supplementary Figure 1). Rotarod 

latency to fall data were culled for Trials 1–4, 5–7, and 8–10 and analyzed using the 

Kruskal-Wallis ANOVA and Dunn’s multiple comparison test. Significant inter-group 

differences were detected for Trials 1–3 (p=0.0003), 5–7 (p<0.0001), and 8–10 (p<0.0001). 

In Trials 1–4 (least challenging), significant differences from control occurred in the ethanol 

(p<0.001) and NNK (p<0.01), but not in the ethanol+NNK group (Figure 1A), but in 

subsequent more demanding trials, the mean latencies to fall were significantly reduced in 

all three experimental groups relative control. Furthermore, the effect sizes increased with 

trial difficulty (Figures 1B, C). Although ethanol and NNK independently impaired motor 

performance to similar degrees, dual exposure effects were not additive or synergistic.

Histopathology

LHE stained histological sections of the cerebellar vermis (mid-sagittal section, anterior 

superior region-lobules IV-VIII) revealed the characteristic 3-layered cortical architecture 

with distinct white matter cores in all groups (Figure 2). Control cerebella had relatively 
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uniform thicknesses of the molecular and granule cell layers, a well-populated Purkinje cell 

layer, and delicately arborized, well-myelinated white matter cores (Figures 2A, E, I). 

Ethanol exposure altered the patterns of foliation, causing mainly shallow grooving, 

irregular thickness of the molecular layer, loss of Purkinje cells, and prominent broadening 

with reduced myelin staining and increased vacuolation of white matter cores (Figures 2B, F, 

J). NNK treatment resulted in thin simplified (straighter) foliation with sulcal widening, 

prominent irregularity in granule cell layer thickness within the depths of sulci, atrophy and 

loss of Purkinje cells, and moderate broadening and tapering of white matter cores compared 

with the effects of ethanol (Figures 2C, G, K). Ethanol+NNK exposures had similar effects 

on the cortex and white matter as observed with NNK (Figures 2D, H, L).

Insulin/IGF-1/IRS-1 Signaling

The multiplex ELISA data corresponding to effects of ethanol, NNK, and ethanol+NNK on 

signaling proteins, phospho-proteins and relative degrees of phosphorylation within the 

insulin/IGF-1 pathways were analyzed by two-way ANOVA (Table 1).

Signaling protein expression

Ethanol had significant effects on IGF-1R, IRS-1, and Akt protein levels, and trend effects 

(0.05<p<0.10) on insulin receptor and GSK-3β. NNK exposures had significant effects on 

insulin receptor, IRS-1, and GSK-3β expression. Significant ethanol x NNK interactive 

effects occurred with respect to IGF-1R, IRS-1, and Akt. Post-hoc tests demonstrated that 

ethanol significantly increased expression of IGF-1R relative to all other groups (Figure 3B), 

and increased IRS-1 (Figure 3C), but decreased Akt (Figure 4A) relative to control. Effects 

of NNK and ethanol+NNK were similar in that both types of exposures significantly 

increased insulin receptor (Figure 3A), IRS-1 (Figure 3C), and GSK-3β (Figure 4B) relative 

to control and ethanol, and decreased Akt expression relative to control (similar to the 

effects of ethanol only) (Figure 4A).

Phospho-protein expression

Ethanol had significant effects on pYpY1135/1135-IGF-1R and pS473-Akt expression. NNK had 

significant effects on pYpY1162/1163-InsulinR, pYpY1135/1135-IGF-1R, pS473-Akt, and pS9-

GSK-3β, and a trend effect on S312-IRS-1 expression. Significant ethanol x NNK interactive 

effects occurred with respect to pYpY1135/1135-IGF-1R, pS473-Akt, and pS9-GSK-3β 
overlapping with the effects of NNK- and/or ethanol-only exposures. Graphs and post-hoc 

tests demonstrated that ethanol significantly increasedpYpY1135/1135-IGF-1R expression 

relative to all other groups (Figure 3E), and decreased pS473-Akt relative to control (Figure 

4C), paralleling its effects on IGF-1R (Figure 3C) and Akt (Figure 4A). The effects of NNK 

and ethanol+NNK were similar in that both inhibitedpYpY1162/1163-InsulinR relative to 

control (Figure 3D) andpS473-Akt relative to control and ethanol (Figure 4C), and 

increased pS9-GSK-3β relative to control and ethanol-only exposures (Figure 4D). S312-

IRS-1 levels were similar across the groups (Figure 3F).
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Relative Protein Phosphorylation

Relative levels of protein phosphorylation were calculated from the ratios of phosphorylated 

to total protein. An ethanol trend effect occurred with respect to pYpY1162/1163-Insu-linR/

InsulinR. Significant NNK effects occurred with respect to pYpY1162/1163- InsulinR/

InsulinR, S312-IRS-1/IRS-1, pS473-Akt/Akt, and pS9-GSK-3β/GSK-3β. Significant ethanol x 

NNK interactive effects were observed for S312-IRS-1/IRS-1 and pS9-GSK-3β/GSK-3β, and 

a trend effect for pYpY1162/1163-InsulinR/InsulinR. Ethanol reduced expression 

of pYpY1162/1163-InsulinR/InsulinR (Figure 3G) and S312-IRS-1/IRS-1 (Figure 3I) relative to 

control. NNK significantly reduced pYpY1162/1163-InsulinR/InsulinR (Figure 3G), S312-

IRS-1/IRS-1 (Figure 3I), and pS473-Akt/Akt (Figure 4E) relative to control. Ethanol+NNK 

exposures significantly reducedpYpY1162/1163-InsulinR/InsulinR (Figure 3G), S312-IRS-1/

IRS-1 (Figure 3I), and pS473-Akt/Akt (Figure 4E) relative to control, and increased pS9-

GSK-3β/GSK-3β (Figure 4F) relative to ethanol-only treatment.

Neuronal and Glial Protein Expression

Duplex ELISAs were used to measure Hu (neuronal marker), Myelin-associated 

glycoprotein-1 (MAG-1; mature oligodendrocyte marker), Glial fibrillary acidic protein 

(GFAP; astrocyte marker), Choline acetyltransferase (ChAT), Acetylcholinesterase (AChE), 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tau (major neuronal cytoskeletal 

protein), phospho-tau (phosphorylated on S396 and T205), ubiquitin, 4-hydroxy-nonenal 

(HNE; lipid peroxidation marker), and Aspartyl-β-hydroxylase (ASPH; protein regulating 

neuronal migration). Immunoreactivity was normalized to large ribosomal protein (RPLPO). 

Two-way ANOVAs demonstrated significant ethanol effects on ASPH-A86G6, and a trend 

effect for HNE (Table 2). Significant NNK effects occurred with respect to MAG-1, GFAP, 

ChAT, AChE, GAPDH, Tau, pTau, ubiquitin, HNE, ASPH-A85G6, and ASPH-A85E6, but 

not Hu. Significant ethanol x NNK effects occurred with respect to MAG-1, ChAT, AChE, 

GAPDH, ubiquitin, HNE, ASPH-A85G6 and ASPH-A85E6.

Post-hoc tests demonstrated that ethanol significantly reduced expression of MAG-1 (Figure 

5B), ubiquitin (Figure 6C), ASPH-A85G6 (Figure 6E), and ASPH-A85E6 (Figure 6F) 

relative to control. NNK and ethanol+NNK inhibited expression of MAG-1 (Figure 5B), 

GFAP (Figure 5C), ChAT (Figure 5D), AChE (Figure 5E), Tau (Figure 6A), pTau (Figure 

6B), ubiquitin (Figure 6C), ASPH-A85G6 (Figure 6E), and ASPH-A85E6 (Figure 6F) 

relative to control. In addition, the expression levels of MAG-1, GFAP, ChAT, AChE, Tau, 

pTau, HNE, ASPH-A85G6 and ASPH-A85E6 were significantly reduced in NNK relative to 

ethanol-only cerebella. Similarly, the mean expression levels of GFAP, AChE, Tau, pTau, 

ubiquitin, ASPH-A85G6 and ASPH-A85E6 were significantly reduced the ethanol+NNK 

relative to the ethanol-only group. Finally, significant differences between NNK and ethanol

+NNK were detected for ChAT (Figure 5D), AChE (Figure 5E), GAPDH (Figure 5F), and 

HNE (Figure 6D), although those responses tended to be normalizing rather than additive or 

synergistic. Hu was the only protein found to be similarly expressed in all four groups 

(Figure 5A), and GAPDH was the only protein that was selectively increased by NNK 

relative to the other groups (Figure 5F).
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DISCUSSION

FASD is caused by prenatal alcohol exposures, either chronic or binge, and associated with a 

range of neurocognitive and motor deficits. Impairments in motor function are associated 

with hypoplasia and disordered migration of cerebellar neurons. Mechanistically, alcohol 

disrupts neuronal insulin and IGF signaling networks needed for neuronal growth, survival, 

metabolism, migration, plasticity and neurotransmitter function.1,2 These adverse effects of 

ethanol are mediated at all levels of the cascade, from ligand-receptor binding and activation 

of receptor tyrosine kinases, through downstream Akt and GSK-3β pathways.3,6,7

Despite evidence that developmental exposures to ethanol are sufficient to cause FASD, 

variability in the phenotypic features, including dose-effects, prompted us to consider 

potential co-factor exposure contributions. The finding of high rates of smoking in women 

who drank during pregnancy24 turned our attention to the concept that tobacco smoke and 

toxin exposures may contribute to neurodevelopmental abnormalities in FASD. Although 

tobacco smoke contains hundreds of toxins, tobacco-specific nitrosamines draw interest 

because, like other nitrosamines, their chronic low-level exposures can cause insulin 

resistance and neurodegeneration.32,33 The present study extends those gains by testing the 

hypothesis that developmental exposures to low levels of NNK cause cerebellar 

abnormalities that overlap with or mimic effects of FASD. NNK exposures occur with direct 

and sidestream (second- hand) tobacco smoke exposures.41,42

The third-trimester equivalent exposures were used to target the most vulnerable period of 

cerebellar development in rats.43 Ethanol, NNK, and ethanol+NNK exposures significantly 

impaired motor performance on rotarod tests and altered cerebellar architecture, including 

foliation (folding), Purkinje cell density, granule cell layer thickness, white matter structure, 

and intensity of myelin staining. Therefore, this study demonstrates that low-level NNK 

exposures during development can impair cerebellar function, but the corresponding effects 

on cerebellar structure differ. Ethanol-associated alterations in cerebellar foliation (folding 

and grooving) were associated with neuronal loss in the Purkinje cell layer, whereas NNK 

and ethanol+NNK caused simplification of cerebellar folia, irregular granule cell layer 

organization, some neuronal loss in the Purkinje layer, and broadening with pallor of myelin 

staining in the white matter cores. Therefore, these findings link NNK exposures to 

sustained functional and structural abnormalities in the cerebellum as occur in FASD. 

However, the findings also suggest that the mediators of these responses differ for ethanol 

and NNK.

Multiplex ELISA studies demonstrated that ethanol and NNK impaired signaling through 

the insulin receptor. However, the ethanol-treated group had increased expression levels of 

total and pYpY1135/1135-IGF-1R, and all 3 experimental groups had increased levels of IRS-1 

protein but decreased levels of S312-IRS-1. Increased expression of IRS-1 enhances 

downstream signaling through growth and metabolic pathways.44 Since 312S-

phosphorylation of IRS-1 is inhibitory,45 its reduced levels vis-à-vis increased IRS-1 protein 

expression could represent positive compensatory responses to impaired signaling through 

the insulin receptor.
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The findings that Akt andS473-Akt were inhibited by ethanol, NNK, and ethanol+NNK 

exposures indicates that downstream signaling through growth, metabolic, plasticity, and cell 

survival pathways were impaired, correlating with cell loss observed in the cerebellar cortex. 

While these effects of ethanol on the developing brain has been reported,6,7,46,47 the new 

information derived from these studies is that NNK’s neurotoxic effects mechanistically 

overlap with those of ethanol. Furthermore, the results suggest that the adverse effects of 

NNK (and smoking) can be worse than ethanol since its inhibitory effects on insulin receptor 

and Akt signaling were more striking than observed with ethanol. The finding that the dual 

ethanol and NNK exposures did not produce additive adverse effects on these pathways 

suggests that corresponds with the broad NNK effects demonstrated by two-way ANOVAs 

and suggests that maximum pathway dysregulation was produced by the NNK exposures.

Ethanol, NNK and ethanol+NNK significantly altered the expression of several neuroglial 

proteins in the cerebellum. However, one of the consistent themes was that NNK’s and 

ethanol+NNK’s inhibitory effects were broader and more striking in severity than those of 

ethanol. Reductions in MAG-1 expression correlate with the reductions in myelin staining 

with Luxol fast blue dye and the less sharply delimited architecture of the white matter 

cores. White matter atrophy, degeneration, and developmental hypotrophy are well-

recognized consequences of prenatal ethanol exposure. Recently, we demonstrated similar 

experimental effects of NNK and tobacco smoke exposures in adolescent or adult 

brains.32,48 The present work provides further evidence that NNK (and probably smoking) 

impairs white matter myelin development in part by inhibiting expression of mature myelin-

associated proteins, including MAG-1. NNK-associated inhibition of GFAP could also 

indicate that NNK disrupts the structural integrity/scaffolding of the brain, including 

components needed for blood-brain barrier maintenance and axonal function.

Tau is a key neuronal cytoskeletal protein and tau phosphorylation is critical for 

translocating the neuronal cytoskeleton from perikarya into neurites, in order to establish 

and maintain synaptic connections and help axons course through white matter. Since tau 

expression and phosphorylation are regulated by insulin and IGF-1 signaling and 

resistance,49–51 it is not surprising that both were significantly reduced in NNK- and NNK

+ethanol exposed cerebella, given the prominent inhibition of insulin receptor expression 

and tyrosine phosphorylation in those groups. Similarly, NNK-associated inhibition of ChAT 

could be attributed to the sustained impairments in insulin signaling because ChAT is 

regulated by insulin/IGF-1.7 Decreased ChAT expression can impair motor function due to 

reduced cholinergic actions. AChE was also reduced by NNK exposures. Although the 

mechanism is not well understood, AChE inhibition can be consequential to persistent 

oxidative stress,52–55 as occurs with dysregulation of energy metabolism due to inhibition of 

Akt signaling. The ethanol and NNK associated reductions in ubiquitin immunoreactivity 

could reflect deficits in the ubiquitin-proteasome system, as this phenomenon has been 

reported following chronic ethanol exposure,56,57 and in association with various 

degenerative diseases.58,59 Deficits in the ubiquitin-proteasome pathway could lead to 

increased oxidative and endoplasmic reticulum stress due to activation of the unfolded 

protein response.60,61
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For the ASPH measurements, we used two monoclonal antibodies. A85G6 binds to the C-

terminal region of ASPH which contains a catalytic domain40 required to promote cell 

motility62–66 and neuronal plasticity.62,63,65,67–70 A85E6 binds to the N-terminal Humbug-

homologous region of ASPH; Humbug has a role in regulating calcium sequestration in the 

ER.71 ASPH is regulated by insulin/IGF-1 signaling through IRS-1 and Akt.62,67,68 

Inhibition of ASPH perturbs cell motility and adhesion,63,70,72 and in the case of FASD, 

ethanol’s inhibitory effects on ASPH expression correlate with impairments in cerebellar 

neuronal migration and motor dysfunction.40,47 The findings herein demonstrate that 

developmental exposures to ethanol or NNK significantly inhibit expression of cerebellar 

ASPH and Humbug proteins, correlating with the persistent alterations in cerebellar 

architecture and impairments in rotarod motor performance.

In conclusion, ethanol and NNK exposures during development cause structural and 

functional abnormalities in the cerebellum with associated impairments in signaling through 

the insulin receptor and Akt. In addition, ethanol and NNK reduced expression of several 

neuroglial proteins that help maintain the structural and functional integrity of the 

cerebellum. The effect sizes were generally greater with NNK than ethanol, yet the absence 

of additive responses suggests that the observed adverse effects of NNK were maximum. 

Differential responses to ethanol and NNK were evident, indicating that the manners in 

which they interfere with development also differ. Finally, these studies demonstrate that the 

CNS abnormalities typically regarded as consequences of prenatal alcohol exposure can be 

caused by NNK via tobacco smoke exposures. Moreover, the findings suggest that the 

heterogeneity in occurrence and severity of FASD could be due to independent or co-factor 

effects of tobacco smoke exposures.
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Figure 1. 
Effects of early postnatal exposures to ethanol, NNK, or ethanol+NNK on motor 

performance as early adolescence. Long Evans rat pups were treated with i.p. saline 

(control-vehicle), ethanol (2 g/kg), NNK (2 mg/kg), or ethanol+NNK from postnatal day 2 

(P2) through P12. Ethanol was administered on Mondays, Wednesdays, and Fridays, and 

NNK was administered on Tuesdays, Thursday, and Saturdays. On postnatal day 16, the rats 

were subjected to 10 trials of rotarod testing with incremental speeds. Data from Trials (A) 

1–4, (B) 5–7, and (C) 8–10 were culled and analyzed using the Mann-Whitney test. 

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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Figure 2. 
Ethanol and NNK effects of cerebellar structure. Fresh cerebella were hemi-sectioned in the 

mid-sagittal plane (along the vermis). One half was immersion fixed in formalin and other 

was snap frozen in a dry ice-methanol bath for later molecular studies. Paraffin-embedded 

histological sections (8 μm thick) were stained with Luxol fast blue, Hematoxylin and Eosin 

(LHE). (A, E, I) Vehicle treated control cerebellar cortex showing (A complex foliation 

(folding), (E) uniform molecular layer and well-populated granule and Purkinje cell layers, 

and (I) well-delineated and densely stained (blue) white matter cores. (B, F, J) NNK−, (C, G, 

L) ethanol−, and (D, H, M) ethanol+NNK-exposed cerebella showing relative simplification 

of folia with reduced secondary sulcation (arrows in A), thinner molecular (m) layers 

(compare B–D to A), reduced densities of granule cells (gc) and Purkinje cells (P) in Panels 

F–H versus E, and broader white matter (wm) cores with reduced intensity of myelin 

staining (compare wm in J–M to I). Original magnifications, A–D, 50x; E–H, 200x; I–M, 

100x.

Zabala et al. Page 16

Gynecol Obstet Res. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Ethanol and NNK effects on insulin/IGF-1/IRS-1 pathway activation. Cerebellar protein 

homogenates were used in bead-based multiplex ELISAs to measure immunoreactivity to: 

(A) insulin receptor (R), (B) IGF-1R, (C) IRS-1, (D) pYpY1162/1163-Insulin-R, 

(E) pYpY1135/1136-IGF-1R, and (F) pS312-IRS-1. Relative levels of protein phosphorylation 

are represented by the calculated ratios of (G) pYpY1162/1163-/total Insulin- R, 

(H) pYpY1135/1136-/total IGF-1R, and (I) pS312-/total IRS-1. Data were analyzed by 2-way 

ANOVA (Table 1). Graphs depict mean±S.E.M. (N=6 rats/group). 1). Post-hoc Tukey test 

results are depicted in the graphs (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).
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Figure 4. 
Ethanol and NNK effects on Akt and GSK-3β signaling proteins. Cerebellar protein 

homogenates were used in bead-based multiplex ELISAs to measure immunoreactivity to: 

(A) Akt, (B) GSK-3β, (C) pS473 AKT, and (D) pS9-GSK-3β. Relative levels of 

phosphorylation are represented by the calculated ratios of (E) pS473-/total AKT and (F) pS9-/

total GSK-3β. Graphs depict mean ± S.E.M. (N=6 rats/group). Data were analyzed by 2-way 

ANOVA (Table 1). Post-hoc Tukey test results are depicted in the graphs 

(*p<0.05; **p<0.01; ****p<0.0001).
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Figure 5. 
Ethanol and NNK effects on cerebellar neuronal and glial protein expression. Duplex 

ELISAs were used to measure Immunoreactivity to (A) Hu, (B) myelin-associated 

glycoprotein 1 (MAG-1), (C) glial fibrillary acidic protein (GFAP), (D) choline 

acetyltransferase (ChAT), (E) acetylcholinesterase (AChE), and (F) glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) with results normalized to RPLPO (control). Data were 

analyzed by two-way ANOVA (Table 2). Post hoc significance tests determined the specific 

inter-group differences as shown in the panels. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001.
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Figure 6. 
Ethanol and NNK modulation of neuronal and stress protein expression. Cerebellar protein 

homogenates were used to measure (A) Tau, (B) pTau, (C) ubiquitin, (D) 4-hydroxy-2-

nonenal (HNE), (E) aspartate- β-hydroxylase (ASPHA85G6), and (F) ASPH-Humbug 

(A85E6) immunoreactivity by duplex ELISAs with results was normalized to RPLPO. Inter-

group comparisons were made by two-way ANOVA (Table 2) with the post-hoc Tukey 

multiple comparison test.
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