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ABSTRACT: Colorectal cancer is the third most prevalent cancer worldwide, and its treatment has been a demanding clinical problem. Beyond
traditional surgical therapy and chemotherapy, newly revealed molecular mechanisms diversify therapeutic approaches for colorectal cancer.
However, the selection of personalized treatment among multiple treatment options has become another challenge in the era of precision medi-
cine. Artificial intelligence has recently been increasingly investigated in the treatment of colorectal cancer. This narrative review mainly dis-
cusses the applications of artificial intelligence in the treatment of colorectal cancer patients. A comprehensive literature search was conducted
in MEDLINE, EMBASE, and Web of Science to identify relevant papers, resulting in 49 articles being included. The results showed that, based
on different categories of data, artificial intelligence can predict treatment outcomes and essential guidance information of traditional and novel
therapies, thus enabling individualized treatment strategy selection for colorectal cancer patients. Some frequently implemented machine learn-
ing algorithms and deep learning frameworks have also been employed for long-term prognosis prediction in patients with colorectal cancer.
Overall, artificial intelligence shows encouraging results in treatment strategy selection and prognosis evaluation for colorectal cancer patients.
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Introduction

Colorectal cancer (CRC) ranks as the third most prevalent can-
cer worldwide and has the second highest mortality rate!. The
management of patients with CRC in appropriate methods is a
challenging medical problem, especially concerning treatment.?
Surgery and endoscopic resection are the mainstay of treatment
for localized, nonmetastatic CRC. Fluoropyrimidine-based
chemotherapy has contributed to improved prognosis in meta-
static patients.3 Recent work has further elucidated the molecu-
lar mechanisms of CRC, diversifying the therapeutic approach
to CRC, such as targeted therapy and immunotherapy.®
However, in the era of precision medicine, the individualized
selection of treatment strategies for CRC patients is essential
for providing the best cancer care. This poses a problem for cli-
nicians: predicting treatment outcomes and making appropriate
treatment decisions.® Besides, accurate prediction of the prog-
nosis of CRC patients can also provide evidence for selecting
treatment strategies. Differing from the traditional therapeutic
outcome and prognosis prediction biomarkers, personalized
prediction of cancer treatment can move into a new era with the
advancement of computer technology.

*Jiaging Yang and Jing Huang have contributed equally to this work.

Artificial intelligence (Al) is an essential branch of comput-
ing that can perform various functions, including prediction
and classification based on existing data.” Al with sufficient
data can classify patients to select personalized treatment strat-
egies.® Al is an overall term, while machine learning (ML) and
deep learning (DL) are the 2 most extensively used Al
approaches in the medical field. Machine learning uses algo-
rithms to parse and learn from data and then make decisions
and predictions about real-world objects. In the medical field,
popular ML algorithms such as support vector machines
(SVMs) have been employed for disease stratification, predic-
tion, and other purposes.® DL is a new learning approach based
on an extension of ML, with multi-layered neural network
algorithms to implement tasks.? It has proven to be proficient
at finding complex structures in high-dimensional data.!* DL
has made more breakthroughs in areas such as image recogni-
tion, predicting gene expression, and disease impact than con-
ventional ML, which has a limited ability to process natural
data in its original form.!! Cancer patients have multimodal
data, including electronic medical records, molecular data, radi-
ological data, and digital pathology data.!? DL techniques such
as convolution neural networks (CNN)™3 can better process
these complex data individually for assisting in personalized
treatment decision-making. The development of multimodal
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Figure 1. Artificial intelligence applications in therapeutic strategies of colorectal cancer.

Abbreviations: EGFR, epidermal growth factor receptor.

approaches in recent years has also enabled the integrated pro-
cessing of these data.!* Currently, Al has already played a role
in CRC treatment with its excellent predictive and stratifica-
tion power. This narrative review will discuss the applications
of Al in the treatment of CRC patients in terms of therapeutic
strategies and prognosis evaluation. In terms of therapeutic
strategies, we review the applications of Al in the decision-
making of treatment, neoadjuvant chemoradiotherapy efficacy
prediction, chemotherapy efficacy and toxicity prediction,
immunotherapy efficacy prediction, targeted therapy efficacy
prediction, endoscopic therapy selection, and surgical therapy
management. In terms of prognosis evaluation, we summarize
the performance of ML and DL approaches in CRC,
respectively.

A literature search was conducted strictly and comprehen-
sively in Medline, EMBASE, Web of Science. The investiga-
tors’ search studies available up to October 5, 2023, according
to predetermined protocols. The following keywords and/or
medical subject heading terms searched were used: “Colorectal
cancer,” “Artificial intelligence,” “Neoadjuvant chemoradio-
therapy,” “Chemotherapy,” “Immunotherapy,” “Targeted ther-
apy,” “Endoscopic therapy,” “Surgical therapy,” “Prognosis,”
“Machine learning,” and “Deep learning.” The investigators
performed the initial screening of titles and abstracts. Full-
length articles of identified studies were retrieved to ensure the
representativeness of the included references. We also searched
Clinicaltrials.gov to identify the ongoing clinical trials of Al
applications in CRC treatment.

Therapeutic Strategies

Artificial intelligence could be applied in neoadjuvant ther-
apy, chemotherapy, immunotherapy, targeted therapy, endo-
scopic therapy, and surgical therapy for CRC (Figure 1).
Previous studies have demonstrated the promising perfor-

mance of Al applied to CRC therapeutic strategy selection
(Table 1).

Al in neoadjuvant chemoradiotherapy efficacy
prediction

For locally advanced rectal cancer (LARC), preoperative neo-
adjuvant chemoradiotherapy (nCRT) and surgery are the
standard therapy.®’ Preoperative nCRT is administered to
achieve tumor shrinkage and to increase the probability of
complete tumor clearance in surgical resection.”® However,
about 15% to 27% of cases will achieve a pathologic complete
response (pCR) after nCRT.>! Patients cured by neoadjuvant
chemotherapy do not need to be referred for bowel surgery, and
their postoperative pathological sections show no residual
tumor cells. Therefore, it is of great significance to identify
pCR after nCRT to avoid the impairment brought by surgical
resection. Nevertheless, accurate prediction of pCR is currently
challenging.

As a potential approach, Al was applied to predict treat-
ment response by radiomics. Radiomics allows the digital
decoding of radiographic images into quantitative features,
including shape, texture features, etc.> Radiomic texture fea-
tures from magnetic resonance imaging (MRI) may reflect the
biological characteristics of the tumor.® The T2-weighted
sequence was the most investigated sequence in rectal radiom-
ics.”* A study" proposed a radiomics model to predict pCR in
rectal adenocarcinoma patients based on pretreatment
T2-weighted MRI. In this research, a set of radiomics texture
features were identified and used to construct a random forests
(RF) classification model. The results showed that the RF
model reached an area under the curve (AUC) of 0.712 with an
accuracy of 70.5% on a hold-out validation data set containing
44 cases. The AUC of this model was general, and an external
validation cohort with a larger sample size should be used to
validate the model. Another research® used recursive feature
elimination to select texture features in pre-nCRT T2-weighted
MRI and developed a logistic regression classifier to predict
pCR in LARC patients. The model yielded the best AUC of

0.80 on the hold-out test set. A combination of pretreatment,
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mid-treatment, and post-treatment MRI radiomics could
characterize pCR after nCRT. Another team of researchers!’
proposed a RF classifier model based on pretreatment, mid-
treatment, and post-treatment T2-weighted MRI of patients
with LARC. The RF model could identify nonresponders to
nCTR with a mean AUC of 0.83 in a validation cohort.

In addition to the T2-weighted sequence, radiomics fea-
tures could also be extracted from diffusion-weighted mag-
netic resonance images (DWIs) alone or combined with
other sequences to predict treatment response. Researchers!8
utilized features extracted from the apparent diffusion coef-
ficient (ADC) maps of DWI to construct least absolute
shrinkage and selection operator (LASSO)-logistic regres-
sion models, which were capable of predicting nCRT thera-
peutic response in patients with LARC. Of note, the model
based on features extracted by a pre-trained CNN yielded a
higher mean AUC of 0.73 than the model built with hand-
crafted features (AUC =0.64). However, this study focused
on differentiating between patients who responded to nCRT
and nonresponders. In another research,’ 3 algorithms for
feature selection combined with 4 ML classifiers were tested
to predict pCR in LARC. Interestingly, texture features of
the models were extracted from T2w as well as ADC maps,
and 3-dimensional segmentations were accomplished by a
DL algorithm or radiology residents. The model constructed
by ranking approach as feature selection combined with
SVM as classifier achieved the best performances. The auto-
matic segmentation reached a higher accuracy of 75% than
manual segmentation, with an accuracy of 68% on the vali-
dation set. Besides, a previous study?® designed a deep neural
network (DNN) based on radiomics features extracted from
computerized tomography (CT). The DNN could predict
pCR after nCRT with an overall accuracy of 80% on an
external validation set, which also showed a good predictive
capacity of CT.

Pathomics also has the potential to predict the treatment
response of nCRT. A study?' constructed a SVM classifier
based on collagen structural features (CFs) in the tumor micro-
environment to predict pCR among LARC patients. The CFs
of pre-nCRT patients were analyzed by multiphoton imaging
technology. Finally, the CFs-SVM classifier displayed good
discrimination, achieving a high AUC of 0.854 on the valida-

tion data set.

Al in chemotherapy efficacy and toxicity prediction

For patients with colorectal cancer liver metastasis (CRLM)
who are not eligible for surgery, chemotherapy is the usual
treatment option. Identifying the therapeutic response of
lesions to chemotherapy is essential for selecting treatment
strategies in CRLM patients.> Previous studies have dem-
onstrated that Al can predict treatment response to

chemotherapy, which is challenging for physicians. Of note, the
short-term treatment response was generally characterized by
tumor shrinkage on imaging.

A previous study?? proposed a radiomics model for predict-
ing the therapeutic response of an individual liver lesion in
patients with CRLM. The radiomics model was based on ML
algorithms and achieved a per-lesion sensitivity of 73% and a
specificity of 47% on a validation data set composed of portal
CT scans. The sensitivity of this model is moderate, and the
specificity is very low, showing the limitations of its clinical
applications. Besides, the delta-radiomics score can also iden-
tify nonresponsive lesions to FOLFOX chemotherapy. A
delta-radiomics model?® achieved a high sensitivity of 85%
and a high specificity of 92% in predicting nonresponsive liver
metastatic CRC lesions. Recently, long noncoding RNAs
(IncRNAs) have been considered potential biomarkers of
CRC prognosis.”® The IncRNAs are revealed to be associated
with immune modifications in CRC.2* A group of research-
ers?* proposed a ML-based composite model, thus presenting
a consensus immune-related IncRNA signature. The IncRNA
signature can identify nonresponders to fluorouracil-based
adjuvant chemotherapy and achieved a high AUC of 0.854 on
the validation data set. Another study? used 10 ML algo-
rithms to construct a consensus ML-derived IncRNA signa-
ture, which can also characterize patients who benefited from
fluorouracil-based adjuvant chemotherapy. To sum up, Al
enables individualized assessment of chemotherapy treatment
response.

Artificial intelligence is also applied to predict the toxicities
of chemotherapy. A study?® developed ML models to predict
cardiotoxicity in CRC patients who received fluoropyrimi-
dine-based chemotherapy. Of all the algorithms tested,
XGBoost achieved the highest precision of 0.607 in predicting
the 30-day cardiotoxicity. A previous study has shown that the
predicted factors for chemotherapy cardiotoxicity are relatively
few and are associated with treatment regimens chosen.’
Pretreatment predictions of cardiotoxicity are limited for indi-
viduals on the same treatment regimen in humans. Hence, Al
could be introduced into clinical practice as a novel tool that
may achieve better predictive performance in predicting car-
diotoxicity than health personnel. Another research?” demon-
strated that ML can predict the toxicity of Irinotecan for each
cycle of treatment, which is characterized by leukopenia, neu-
tropenia, and diarrhea. In patients with CRC, ML achieved
accuracies of over 75% in predicting all 3 symptoms. In this
study, although artificial intelligence has high accuracy in pre-
dicting adverse reactions, it requires using pharmacokinetic
data after drug administration. Therefore, its practicability
may be weaker than human assessment of risk factors for
chemotherapy toxicity. For individuals, personalized predic-
tion of adverse reactions is of great significance for medical
decision-making.
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Al in immunotherapy efficacy prediction

Previous studies have applied Al models in predicting the
response of immunotherapy in various types of cancers, includ-
ing CRC.%®% Microsatellite instability (IMSI) is reported as a
common molecular phenomenon in CRC, which is attributed
to DNA mismatch repair deficiency (dMMR).%0 MSI was
found in approximately 15% of colorectal tumors.%® Initially,
MSI was considered related to the efficacy of 5-fluorouracil in
patients with CRC.6! In recent years, the application of detect-
ing MSI status for tumor immunotherapy has gradually been
emphasized. Patients with MSI-high tumors may be more
responsive to immune checkpoint inhibitors (ICls),%23 which
is essential for the selection of immunotherapy. In clinical prac-
tice, MSI status was usually discriminated by immunohisto-
chemistry or genetic analysis of a biopsy or resected specimens.?8
However, the current methods are not universal due to the cost
and technical constraints. As a new approach, Al has been
applied to identify MSI effectively.

A study?® presented DL models based on MRI to identify
the MSI status in rectal cancer. The pure MRI-based model
reached an AUC of 0.820, while a clinical model based on
clinical factors only had an AUC of 0.573 on the testing data
set. When combining the MRI-based model and the clinical
model, the integrated model had the highest AUC of 0.868.
Moreover, histology-based models can also detect MSI status
to predict immunotherapy efficacy. Another research? pro-
posed a multiple-instance-learning-based DL model named
Ensembled Patch Likelihood Aggregation (EPLA) to identify
MSI-high and MSI-low/ microsatellite stability (MSS) in
colorectal tumors. Ensembled Patch Likelihood Aggregation
was based on histopathology images and had a low AUC of
0.6497 in an external validation data set. Researchers further
applied transfer learning to generalize EPLA in addressing the
wide variations in clinical practice. Transfer learning can learn
from related learning problems.®* For instance, there are differ-
ences between image acquisitions in the data sets because dis-
tinct scanners or scanning protocols are employed. Transfer
learning may be able to eliminate data discrepancies that exist
in clinical practice. After transfer learning, EPLA achieved a
high AUC of 0.8504 on the external validation data set. Even
it AUC is only part of the model performance evaluation, the
dramatic improvement in AUC after transfer learning is
encouraging.

Currently, tumor mutational burden (TMB) is applicable
for identifying the sensitization to immunotherapy. Metastatic
CRC with MSS/MMR-proficient performed a significantly
lower TMB, which means resistance to anti-PD-1-based treat-
ment.%> Researchers®® developed a DL method to evaluate
TMB from hematoxylin and eosin (HE) staining CRC sec-
tions. Based on the Residual Network (ResNet) 50, the method
achieved the highest AUC of 0.774 among all tested algo-
rithms. Compared to the current standard method of measur-
ing TMB, the model based on DL can reduce costs and improve
efficiency.

Al in targeted therapy efficacy prediction

Generally, KRAS mutations can be found in approximately
40% of CRC.®® In CRC patients with KRAS mutations,
anti-EGFR-targeted therapy lacks benefits.” Therefore,
KRAS mutations are considered as a negative biomarker for
anti-EGFR-targeted therapy.®® Detecting KRAS mutation has
been suggested by the practice guidelines and is of great impor-
tance for the selection of anti-EGFR-targeted therapy in met-
astatic CRC patients.®” A study’! used a radiomics model to
predict KRAS mutations in rectal cancer patients. Researchers
proposed several T2-weighted image-based classifiers, includ-
ing logistic regression, decision tree, and SVIM. Among them,
the SVM classifier achieved the best performance, with an
AUC value of 0.714 on an external validation data set.
Another® study designed a DL model based on both
T2-weighted images and clinicopathological characteristics to
detect KRAS mutations in rectal cancer. The combined model
yielded an AUC of 0.841. Artificial intelligence may serve as
an assistance method for the noninvasive assessment of KRAS
mutations. Combined detection of KRAS, NRAS, and BRAF
gene mutations contributes to the selection of anti-EGFR-
targeted therapy in CRC patients. A previous study®? designed
DL models utilizing radiomics and semantic features. The
models are capable of predicting KRAS, NRAS, and BRAF
mutations in cases having CRLM. The model combined radi-
omics with the effective semantic score and achieved an AUC
value of 0.79 in a validation cohort. Artificial intelligence ena-
bles rapid and accurate selection of anti-EGFR-targeted
therapy.

Artificial intelligence has also been developed to predict the
therapeutic response of targeted therapy. A research team
reported that 70% of patients with metastatic CRC with
HER2 amplification or overexpression benefited from trastu-
zumab plus lapatinib treatment.”® Researchers’* further con-
structed a DL model based on pretreatment CT to distinguish
responders and nonresponders in CRC patients with hepatic
metastases who received trastuzumab and lapatinib treatment.
On an external validation cohort, the model has a sensitivity of
90% and a specificity of 42% per lesion. More cases are required
to validate the performance of the model in predicting trastu-
zumab plus lapatinib treatment response.

Al in endoscopic therapy management

Artificial intelligence can support medical decision-making in
endoscopic therapy. Endoscopic resection has emerged as an
effective method to remove some early-stage CRCs before
open surgery.”! Unnecessary surgical resection may pose addi-
tional risks. However, 8% of patients with T1 and 18.5% of
patients with T2 CRCs have lymph node metastases (LNM),
which is a contraindication to endoscopic resection.”? Currently,
LNM in early CRCs cannot be accurately predicted. Therefore,
some Al models have been developed to predict LNM, thus

determining endoscopic treatment strategy. A previous study®
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proposed a ML model based on 45 clinicopathological factors
to predict preoperative LNM in patients with T1 CRCs. On an
external data set, the model reached a sensitivity of 100%.
Whereas compared with guidelines of different countries, the
model had specificity ranging from 0% to 66% and accuracy
ranging from 9% to 69%. The high-performing model can
decrease the high rate of unnecessary surgery brought by the
guidelines. Researchers3¢ developed models to predict LNM in
patients with T1 CRCs after endoscopic resection. Some clin-
icopathological factors were identified by the RF classifier or
generalized linear algorithm, respectively, and the RF classifier
yielded a higher AUC of 0.85 on an external validation data
set. In patients with T2 CRCs, the presence of LNM can also
be identified by Al. A research team® constructed a model
based on RF to predict LNM in patients with T2 CRCs after
endoscopic resection. In this model, 8 clinicopathological fac-
tors, such as age, were utilized. The RF-based model achieved
a robust AUC of 0.93 on a validation cohort and can help
LNM-negative patients undergoing endoscopic full-thickness
resections to avoid additional surgical resections. Another
study?® designed a LASSO-based algorithm to select clinico-
pathological variables. The model achieved an AUC of 0.765
in a validation cohort, which is higher than the Japanese guide-
line. Histopathological sections were also applied indepen-
dently to predict the presence of LNM. A previous study®
designed a CNN model to predict CRC LNM from histologi-
cal slides. The model had an AUC of 0.710 on the internal test
data set, which is higher than the model based on clinical data.
However, genomics phenotypes’ and clinical factors such as
the T stage can be combined to improve model performance.

More importantly, Al technology can assist in the endo-
scopic resection of CRC. A study* proposed a DeepLabv3-
based model to depict blood vessels and other structures on
endoscopic images. As a DL model, the method achieved a
mean vessel detection rate of 85%. This finding could reduce
the risk of bleeding and perforation in endoscopic submucosal
dissection performed by operators. However, studies investi-
gating using Al technology to assist in the endoscopic resec-
tion of CRC were relatively scarce. More primary and validation
studies are needed.

Al in surgical therapy management

Artificial intelligence can predict preoperative pathological
variables for CRC surgery to support surgical management.
Perineural invasion (PNI) is considered to be a negative prog-
nostic factor. Patients undergoing radical resection of rectal
cancer with PNI have higher postoperative mortality.”* To
predict PNI, a previous study" constructed SVM models
based on preoperative CT. The classifiers achieved an AUC of
0.793 for detecting PNI in a colon cancer validation set.
Preoperative prediction of PNI may be important for formu-
lating surgical plans and postoperative management. In

addition to preoperative prediction, Al can play an essential
role in predicting postoperative complications. Anastomosis
leakage (AL) is a common postoperative complication of
CRC surgery, and some Al models have been developed to
predict the occurrence of AL. A research team** used SVM
and composite kernels to predict AL from preoperative elec-
tronic health records, with a high AUC of 0.92. Besides, a
study* proposed ML models based on clinical data to predict
AL in postoperative CRC patients. In internal validation, the
LASSO-based model achieved the highest AUC of 0.690
among all algorithms. A study* used machine learning mod-
els, including logistic regression, SVM, decision trees, RF, and
ANN, to predict low anterior resection syndrome following
CRC resection operation. These authors concluded that logis-
tic regression is the most practical since it has a high sensitiv-
ity 0£0.911 and can be used as a screening tool for low anterior
resection syndrome. However, the results lack external valida-
tion set verification. Another study*® used Gated Recurrent
Unit with Decay based DL frameworks to predict postopera-
tive wound and organ space infection in real time. The models
can complete a bedside risk assessment with dynamic and
static clinical variables, achieving an AUC of 0.68 in predict-
ing wound infection and 0.78 in predicting organ space infec-
tion. Despite the low AUC, this novel tool also has the capacity
to assist surgeons in making timely adjustments to treatment
regimens. Artificial intelligence can use preoperative data to
predict postoperative complications, which is essential for the
management of CRC surgery.

Of note, the applications of Al in surgery could also be
expressed in robotics. However, the use of Al in surgery, espe-
cially Al algorithms, is currently rarely associated with surgical
technology. Therefore, we only reviewed the studies investigat-
ing Al applications in managing surgical complications.

Personalized Treatment

With the growing need for precision medicine, providing per-
sonalized treatment for CRC patients has become a challenge
for oncologists and surgeons. However, the treatment of CRC
is a complicated decision-making process that relies on diverse
factors, including treatment guidelines, the condition of
patients, and the physicians themselves. Clinical Decision
Support Systems (CDSSs) based on Al technologies are con-
sidered as potential approaches to help solve the challenge.
Based on clinical medical information, CDSSs can support
physicians in their demand for making treatment decisions,
providing personalized treatment, minimizing medical errors,
and improving the quality of care.”

As shown in Table 1, some Al-based CDSSs have been pro-
posed for precision medicine. A previous study*’ developed a
DL-based CDSS to enable the personalized selection of adju-
vant treatment in CRC patients. The CDSS can stratified
CRC patients into 3 risk groups based on HE-stained tissue
sections and pathological staging markers. Thus, adjuvant
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chemotherapy could be avoided in stratified low-risk patients
to reduce morbidity, mortality, and costs. Another® study
developed a multistain deep learning model to evaluate
Almmunoscore for CRC patients. Almmunoscore was a
parameter based on multiple immunohistopathological images
of various immune cell subtypes. The results showed that
Almmunoscore is an independent prognostic factor for CRC
and can predict treatment response to neoadjuvant therapy. In
clinical practice, Almmunoscore can provide clinicians with
additional rationale for performing neoadjuvant chemotherapy.
Almmunoscore could be considered a decision tool for clini-
cians to promote precision medicine.

Besides, some other CDSSs, such as IBM(R) Watson for
Oncology, were also introduced into clinical practice to provide
personalized treatment recommendations for CRC. Their
effectiveness has also been validated.”®7? Generally, the evalua-
tion criterion in most validation studies is the consistency
between Al and human experts. The results suggest that the
best setting for using Al-based CDSS is probably in centers
with limited expert CRC resources. Besides, Al-given regi-
mens inconsistent with expert regimens are not necessarily
incorrect options that physicians have considered and rejected.
These may be regimens that physicians have not considered.
Al-based CDSS may provide additional regimens with evi-
dence, prompting physicians to query evidence and improve
decision-making accuracy. These Al-based CDSS can consid-
erably assist physicians in making personalized medical deci-
sions for CRC patients.

Prognosis Evaluation

Previous studies have demonstrated the promising perfor-
mance of Al applied to CRC prognosis evaluation (Table 2).
Some previous studies have used Al to predict the prognosis of
CRC patients, including recurrence, metastasis, and survival.

Al in recurrence prediction

Tumor recurrence after surgical resection is correlated with
poor prognosis. In stage II and III CRC patients, 5-year cumu-
lative local recurrence rates after surgery were 11.0% and
23.5%, respectively.®> A previous study®® proposed radiomics
models based on 3 different ML algorithms to predict the
recurrence in patients having stage IT and III CRC and validate
the performance of different algorithms. Radiomics features
for model construction were extracted from the preoperative
CT image of the tumor. Among the 3 tested algorithms, mul-
tivariate regression (MR) and RF achieved better predictive
performance than SVM. However, the MR-based model com-
bining radiomics features with clinicopathological factors
achieved the highest balanced accuracy of 0.78 and a Matthews
correlation coefficient (MCC) of 0.6. Machine learning
approaches can also construct models independently to predict

the recurrence of patients with CRC based on T stage, KRAS

mutations, and other clinicopathological factors. Based on clin-
icopathological factors such as KRAS mutation, researchers
developed a score derived from the bootstrap method and mul-
tivariable mixed-effects logistic regression. The scoring model
achieved an AUC of 0.693 in predicting 1-year disease-free
survival (DFS) in patients with CRLM after hepatectomy.®!
Another group of researchers® tested the performance of 4
ML algorithms for predicting postoperative recurrence in
patients with stage IV CRC. Based on several clinicopatho-
logical factors, GradientBoosting achieved the highest AUC of
0.761amonglogisticregression,decisiontree, GradientBoosting,
and Light Gradient Boosting Machine. A study®® used DL to
construct a CT-based model capable of evaluating the progno-
sis of patients with CRC. In the research, an innovative end-
to-end multi-size convolutional neural network (MSCNN)
was developed to effectively evaluate DFS, and the Kaplan-
Meier analysis was conducted to prove that CT signature can
predict DES (P<<0.001). These studies also demonstrated that
Al-based models may be better than traditional models in pre-
dicting tumor recurrence.

Al in metastasis prediction

Tumor metastasis in CRC patients is considered to be associ-
ated with a high risk of death.”® About 18% to 25% of patients
without distant metastases at the time of primary diagnosis will
develop distant metastases within Syears.”” Therefore, early
prediction of distant metastases from CRC is valuable for
prognosis prediction. The liver is the most frequently metasta-
sized organ of CRC, and liver metastasis occurs in approxi-
mately 50% of cases within the course of disease.”® A study®
tests the performance of models based on different ML algo-
rithms to predict liver metastases of T1 stage CRC patients at
primary diagnosis. Clinicopathological factors such as tumor
information from the training set samples can significantly
predict liver metastasis through all 7 common ML algorithms.
To achieve the highest performance, the researchers finally
optimized and integrated 7 models using the Bootstrap aggre-
gating algorithm and stacked regression to obtain a stacking
bagging model. The stacking bagging model yielded the high-
est AUC of 0.9631, which provides reliable evidence for prog-

nosis prediction at primary diagnosis.

Al in survival prediction

Some researchers have concentrated on the advances of Al in
predicting the prognosis of CRC patients receiving chemother-
apy. Chemotherapy may bring risks or benefits to patients with
CRC. A previous study®* constructed a ML model based on pre-
treatment clinicopathological data to predict mortality within
30days after cancer chemotherapy. This model used the gradi-
ent-boosted trees algorithm and was validated for performance
on external data sets. For CRC patients, an AUC of 0.924 was
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displayed in predicting 30-day mortality, which could help
reduce unnecessary chemotherapy that may pose a high risk.
Another study® developed a ML-derived molecular signature
named FOLFOXai for predicting treatment efficacy for meta-
static CRC patients who received oxaliplatin-containing chem-
otherapy. Validation on independent data sets demonstrated that
FOLFOXai can directly predict treatment efficacy, which is
characterized by progression-free survival, the time to next treat-
ment (TTNT), and overall survival (OS). For the treatment
selection of CRC patients, ML models based on clinical and
molecular data can help balance the benefits and risks of chemo-
therapy through prognostic prediction. For CRC patients under-
going surgical resection, the ML approaches can also be used to
predict prognosis. A previous study® developed a radiomics
model to predict postoperative prognosis for patients with CRC.
Researchers employed ML algorithms to select PET/CT radi-
omic features and clinical features and constructed random sur-
vival forest (RSF) models. The best RSF model achieved a
C-index of 0.820 in prognosis prediction of cases having stage
IIT colon cancer, which is essential for therapeutic strategy selec-
tion. Another research® proposed a fusion model based on radi-
omics and deep convolutional neural networks (DCNN)to
evaluate the prognosis of stage II CRC patients. Radiomics and
DCNN features were obtained from CT of the primary tumors
and peripheral lymph nodes to construct the model. The model
achieved an AUC of 0.76 £0.08 in predicting DFS and
0.91%0.05 in predicting OS. Studies have demonstrated the
potential of CT-based Al models for prognostic prediction.
Besides, Al is also applied in histopathological images to
perform prognostic evaluation. Artificial intelligence can auto-
matically quantify indicators that can evaluate the survival of
patients with CRC from histopathology images. A multicenter
study® validates the performance of a CNN model based on
HE-stained tumor tissue sections to predict the prognosis of
CRC patients. This model assessed prognosis by extracting
microenvironment biomarkers in histopathological pictures.
On an external validation data set, the “deep stroma score”
based on the DL model is an independent prognosticator for
CRC patients, which is highly correlated with OS, disease-
specific survival (DSS), and relapse-free survival (RFS).
Another study”! developed a CNN model based on HE-stained
histopathological images to identify a poor or good prognosis
of CRC patients who received capecitabine treatment. On a
large validation cohort, the prognosticator selected by CNN
had a sensitivity of 52% and a specificity of 78% in predicting
3-year DSS. In addition, integrating biomarkers selected by
DL algorithms and clinicopathologic factors may achieve bet-
ter performance in prognostic prediction.”® A study®? validated
the performance of a CNN model to automatically evaluate
tumor-stroma ratio (T'SR) from HE-stained tumor sections.
In the validation cohort, high TSR based on the tested CNN
model was correlated with increased OS (P<0.004). In
another study,” the CNN-quantified mucus proportion was

also validated to be correlated with the prognosis of colorectal
mucinous adenocarcinoma patients (P<<0.008). Another inno-
vative study®* focused on classifying consensus molecular sub-
types (CMSs) based on histopathology images of colorectal
tumors. Derived from molecular classification, CMSs are iden-
tified into 4 robust subtypes at the gene-expression level and
are associated with the prognosis of CRC patients.”
Researchers developed neural networks to classify CMSs on
histopathology images instead of high-cost bulk transcriptom-
ics.?%190 The DL model showed results at the AUC value of
0.85 on an external validation set, which significantly facilitates
the clinical application of CMSs in prognosis classification.
These DL models are important for the prognostic stratifica-
tion and treatment selection of CRC patients.

In addition to traditional single-omics data, recently, multi-
omics data such as gene and tissue microbes has also performed
well in predicting the survival of CRC patients.’” A study®”
identified tissue bacterial biomarkers that predict the survival
of CRC patients and developed a microbiome-based ML
model. This model has more outstanding predictive perfor-
mance than models based on mRNA or miRNA data. Recent
studies!®! have revealed the mechanisms behind the relation-
ship between microbes and tumor progression. Based on ML
approaches, microbiome and other multi-omics information
provide reliable new directions for prognosis prediction of
CRC patients. These studies also demonstrated the great
potential of the Al approaches for predicting prognosis in
CRC patients.

Ongoing Clinical Trials

We listed the ongoing clinical trials utilizing Al in the treat-
ment of CRC in Table 3. Most clinical trials focus on predict-
ing the treatment response of neoadjuvant chemotherapy. In
addition, some clinical trials are using Al to predict occurrence
of complications after surgery. Other areas being focused on are
prognostic  prediction and targeted therapy response
prediction.

Discussion

Al plays an essential role in computer science and is emerging
as an important approach in medical research. While integrat-
ing Al into daily patient management still confronts numerous
practical issues, its outstanding performance remains inspiring.
Artificial intelligence can predict treatment outcomes, which
may help clinicians select treatment strategies in CRC. For
conventional therapies such as chemotherapy, surgery, and
endoscopic resection, Al can help clinicians predict treatment
effectiveness, toxicity, and complications. In addition, Al tech-
nology can directly assist surgeons in completing endoscopic
resection. For novel therapies such as immunotherapy and tar-
geted therapies, Al enables screening the appropriate popula-
tions for the treatment and reducing resource consumption.
For CRC, Al techniques have also made great strides in
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Table 3. Summary of the ongoing clinical trials of artificial intelligence applications in colorectal cancer treatment.

REGISTRATION TRAIL POPULATION METHODS MAIN PURPOSE ESTIMATED/ LOCATION
NUMBER NAME ACTUAL
ENROLMENT
NCT05723965 NA Rectal cancer CNN To predict cancer survival outcomes 720 China
stage I based on CT images
NCT05816902 NA CRC ML To predict lung metastasis in CRC 2779 China
based on clinicopathological
characteristics
NCT04985981 PANIC CRC ML To preoperatively predict anastomotic 11000 Switzerland
insufficiency after colon and colorectal
surgery
NCT04999007 NA Rectal cancer NA To guide surgeons in performing a 616 China
temporary ileostomy in anterior
resection
NCT05493930 NA Rectal cancer NA To preoperatively identify the lymph 6578 China
node metastasis status based on
clinical data
NCT06023173 NA Colorectal NA To predict bevacizumab treatment 307 China
cancer liver response and outcome based on PET/
metastases CT and clinicopathological data
NCT04273451 RPAI-TRG  Locally NA To predict neoadjuvant 100 China
advanced rectal chemoradiotherapy response based on
cancer MRI and biopsy images
NCT05873972 NA Ras wild DL To predict cetuximab treatment 100 China
unresectable response
colorectal
cancer with liver
metastases
NCT05279287 VAMIS Rectal cancer NA To analyze surgical phases, skill and 500 UK
errors based on video and kinematic
data recording of minimally invasive
surgical procedure
NCT05610904 NA Rectal cancer ML To predict the occurrence of 418 China
anastomotic leakage after surgery
NCT05523245 Locally DL To predict neoadjuvant 1700 China
NA advanced rectal chemoradiotherapy response based on
cancer MRI combined with DCE images
NCT05150548 NA CRC ML To predict when major complications 130000 Canada

occur after elective colectomy surgery
based on clinical data

Abbreviations: CNN, convolution neural network; CRC, colorectal cancer; CT, computerized tomography; DL, deep learning; ML, machine learning; MRI, magnetic
resonance imaging; NA, not applicable; PANIC, Prediction of Anastomotic Insufficiency Risk After Colorectal Surgery; DCE, dynamic contrast-enhanced; PET, positron
emission tomography; RPAI-TRG, RadioPathomics Atrtificial Intelligence Model to Predict Tumor Regression Grading; VAMIS, Video Analysis in Minimally Invasive Surgery.

prognosis prediction, involving recurrence, metastasis, and sur-
vival prediction.

In the era of precision medicine, personalized treatment
decision selection has become a new requirement for cancer
care. Based on the selection of treatment strategies by Al, the
application of Al in cancer may make personalized treatment a
reality. Previous studies have proposed some CDSSs for making
direct treatment recommendations promoting precision medi-
cine. However, some of the included CDSSs were not validated
on diverse patient cohorts. Large retrospective studies with
robust external validation are necessary to further integrate Al
into clinical practice. Moreover, the evaluation criterion in most

validation studies is the consistency between Al-based CDSSs
and human experts. The good performance of CDSSs indicated
that our best setting for using CDSSs may be in centers with
limited expert resources. Besides, in some previous validation
studies,’®”® Al-based CDSSs may suggest treatment recom-
mendations that experts considered outdated and inappropriate.
Almost all of the studies’®”%” considered these divergences as
negative. However, we should realize that Al may occasionally
provide better advice. Since CDSSs are not yet commonly used
in clinical practice, no studies have yet investigated this issue.
After the CDSSs are applied in clinical practice, future studies
could be designed to directly compare the advantages and
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disadvantages of the treatment decisions given by the CDSS
with those given by the experts. In addition, the application sce-
narios of CDSSs in CRC are relatively limited currently.
Artificial intelligence models could be applied in augmenting
the decision to operate, identification and mitigation of modifi-
able risk factors, prediction and management of complica-
tions.192 They also have the potential to screen the appropriate
populations for immunotherapy and targeted therapy. Future
applications of Al-based CDSS could greatly help surgeons and
physicians make treatment decisions for CRC in clinical
practice.

Al has surpassed traditional models in some fields, and it
can still advance more. Prognostic models for cancer patients
are based on multimodal data, including electronic medical
records, molecular data, radiological data, and digital pathology
data.!? Previous studies have demonstrated that ML can theo-
retically automate and merge these multimodal data for cancer
treatment.!> Nevertheless, for high-dimensional data such as
omics information, DL-based multimodal approaches allow
for better integration.'* This partly shows the advantages of the
DL techniques for the personalized prediction of cancer treat-
ments. Besides, for medical image data processing and analysis,
DL can obtain better performance than ML owing to its excel-
lent properties.1% Recently, some novel DL algorithms, such as
transformer have shown better performance in image recogni-
tion. Transformer can potentially process medical images for
more accurate treatment outcome prediction in CRC
patients.'®* Advances in algorithms could facilitate cancer
treatment outcome prediction.

The Al models included in this review also have some limi-
tations. Before Al can be introduced into clinical practice, it
must be critically evaluated to ensure the validity and safety of
the model. First, a key step in the evaluation process is validat-
ing model performance on an external validation data set.
External data set validation is an important part of trusting Al
algorithms. Notably, a proportion of the included studies did
not have external data set validation. This could lead to descrip-
tions of overfitted and not generalizable models. Second, we
reported metrics such as AUC, recall, and precision to partially
represent the reliability of Al models in the included studies.
Some of the studies select the appropriate models by evaluating
discrimination, which can be measured using AUC. However,
AUC only measures ranking and does not deal with the cali-
bration of the models. Calibration refers to the agreement
between the estimated and the “true” risk of an outcome, which
is different from discrimination.!9%1% Calibration is important
for the evaluation of Al models for clinical prediction.’9” Of
note, only a small number of included studies in this review
reported calibration. Therefore, the performance of Al models
without calibration should be interpreted more cautiously.
Third, the small sample sizes of some included studies also
made their results not robust.

There are still several issues that need to be addressed for
further application of Al models in CRC treatment. First, the
Al models currently being developed are the “weak Als” that
do not implement tasks in the same way as humans. The “weak
Als” are merely driven by the designer’s program and achieve
satisfying results in actual problem-solving.!%® These models
play only a supplementary role in clinical practice. And any
eventual clinical decisions must be determined by physicians.
However, “strong Al” with consciousness and intentionality
may be proposed for assisting clinical decision making in the
future. The problems associated with the use of “strong Al” in
clinical practice should be considered in advance, such as vali-
dation and ethical issues. Second, Al involves many ethical
issues, including data privacy disclosure, patient consent, and
the risk of decision errors. The Al models are based on the
patients’ private and sensitive information, such as identity,
health, diagnosis, and treatment information. The data security
is at risk. For patients, collecting their information without
informed consent will infringe on their rights and interests if,
for example, the information is stolen or misused. Researchers
have developed approaches such as the k-anonymity privacy
protection algorithm to address the issues.!® However, the
application of these methods is limited by time and cost. In
addition, the problem of attributing responsibility for medical
decision errors caused by Al still exists. Artificial intelligence
has not yet been applied to clinical practice on a large scale,
which is somewhat limited by the fact that the issue of liability
for medical malpractice is still controversial. Medical malprac-
tice caused by Al has not yet been legally defined and is a
thorny issue. Despite the difficulties we face, we still believe
that Al approaches could play a greater part in medical predic-
tion and classification.

Limitations

This narrative review provides a relatively comprehensive over-
view of artificial intelligence in CRC treatment. However, this
review also has some limitations. First, we have not performed
a systematic review. Because of the rapid advances in the Al
field, some outdated studies were not appropriate to be
reviewed. We only included studies representative enough in
the field of AI. We are conscious that some studies were elimi-
nated due to their lack of good results or sufficient data to sup-
port them. Second, we only summarized key information
including AUC, external validation, calibration to report the
limitations of the included studies. More comprehensive infor-
mation would be required to evaluate the quality of included
studies.
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