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Introduction
Colorectal cancer (CRC) ranks as the third most prevalent can-
cer worldwide and has the second highest mortality rate1. The 
management of patients with CRC in appropriate methods is a 
challenging medical problem, especially concerning treatment.2 
Surgery and endoscopic resection are the mainstay of treatment 
for localized, nonmetastatic CRC. Fluoropyrimidine-based 
chemotherapy has contributed to improved prognosis in meta-
static patients.3 Recent work has further elucidated the molecu-
lar mechanisms of CRC, diversifying the therapeutic approach 
to CRC, such as targeted therapy and immunotherapy.4,5 
However, in the era of precision medicine, the individualized 
selection of treatment strategies for CRC patients is essential 
for providing the best cancer care. This poses a problem for cli-
nicians: predicting treatment outcomes and making appropriate 
treatment decisions.6 Besides, accurate prediction of the prog-
nosis of CRC patients can also provide evidence for selecting 
treatment strategies. Differing from the traditional therapeutic 
outcome and prognosis prediction biomarkers, personalized 
prediction of cancer treatment can move into a new era with the 
advancement of computer technology.

Artificial intelligence (AI) is an essential branch of comput-
ing that can perform various functions, including prediction 
and classification based on existing data.7 AI with sufficient 
data can classify patients to select personalized treatment strat-
egies.8 AI is an overall term, while machine learning (ML) and 
deep learning (DL) are the 2 most extensively used AI 
approaches in the medical field. Machine learning uses algo-
rithms to parse and learn from data and then make decisions 
and predictions about real-world objects. In the medical field, 
popular ML algorithms such as support vector machines 
(SVMs) have been employed for disease stratification, predic-
tion, and other purposes.9 DL is a new learning approach based 
on an extension of ML, with multi-layered neural network 
algorithms to implement tasks.10 It has proven to be proficient 
at finding complex structures in high-dimensional data.11 DL 
has made more breakthroughs in areas such as image recogni-
tion, predicting gene expression, and disease impact than con-
ventional ML, which has a limited ability to process natural 
data in its original form.11 Cancer patients have multimodal 
data, including electronic medical records, molecular data, radi-
ological data, and digital pathology data.12 DL techniques such 
as convolution neural networks (CNN)13 can better process 
these complex data individually for assisting in personalized 
treatment decision-making. The development of multimodal 
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approaches in recent years has also enabled the integrated pro-
cessing of these data.14 Currently, AI has already played a role 
in CRC treatment with its excellent predictive and stratifica-
tion power. This narrative review will discuss the applications 
of AI in the treatment of CRC patients in terms of therapeutic 
strategies and prognosis evaluation. In terms of therapeutic 
strategies, we review the applications of AI in the decision-
making of treatment, neoadjuvant chemoradiotherapy efficacy 
prediction, chemotherapy efficacy and toxicity prediction, 
immunotherapy efficacy prediction, targeted therapy efficacy 
prediction, endoscopic therapy selection, and surgical therapy 
management. In terms of prognosis evaluation, we summarize 
the performance of ML and DL approaches in CRC, 
respectively.

A literature search was conducted strictly and comprehen-
sively in Medline, EMBASE, Web of Science. The investiga-
tors’ search studies available up to October 5, 2023, according 
to predetermined protocols. The following keywords and/or 
medical subject heading terms searched were used: “Colorectal 
cancer,” “Artificial intelligence,” “Neoadjuvant chemoradio-
therapy,” “Chemotherapy,” “Immunotherapy,” “Targeted ther-
apy,” “Endoscopic therapy,” “Surgical therapy,” “Prognosis,” 
“Machine learning,” and “Deep learning.” The investigators 
performed the initial screening of titles and abstracts. Full-
length articles of identified studies were retrieved to ensure the 
representativeness of the included references. We also searched 
Clinicaltrials.gov to identify the ongoing clinical trials of AI 
applications in CRC treatment.

Therapeutic Strategies
Artificial intelligence could be applied in neoadjuvant ther-
apy, chemotherapy, immunotherapy, targeted therapy, endo-
scopic therapy, and surgical therapy for CRC (Figure 1). 
Previous studies have demonstrated the promising perfor-
mance of AI applied to CRC therapeutic strategy selection 
(Table 1).

AI in neoadjuvant chemoradiotherapy eff icacy 
prediction

For locally advanced rectal cancer (LARC), preoperative neo-
adjuvant chemoradiotherapy (nCRT) and surgery are the 
standard therapy.49 Preoperative nCRT is administered to 
achieve tumor shrinkage and to increase the probability of 
complete tumor clearance in surgical resection.50 However, 
about 15% to 27% of cases will achieve a pathologic complete 
response (pCR) after nCRT.51 Patients cured by neoadjuvant 
chemotherapy do not need to be referred for bowel surgery, and 
their postoperative pathological sections show no residual 
tumor cells. Therefore, it is of great significance to identify 
pCR after nCRT to avoid the impairment brought by surgical 
resection. Nevertheless, accurate prediction of pCR is currently 
challenging.

As a potential approach, AI was applied to predict treat-
ment response by radiomics. Radiomics allows the digital 
decoding of radiographic images into quantitative features, 
including shape, texture features, etc.52 Radiomic texture fea-
tures from magnetic resonance imaging (MRI) may reflect the 
biological characteristics of the tumor.53 The T2-weighted 
sequence was the most investigated sequence in rectal radiom-
ics.54 A study15 proposed a radiomics model to predict pCR in 
rectal adenocarcinoma patients based on pretreatment 
T2-weighted MRI. In this research, a set of radiomics texture 
features were identified and used to construct a random forests 
(RF) classification model. The results showed that the RF 
model reached an area under the curve (AUC) of 0.712 with an 
accuracy of 70.5% on a hold-out validation data set containing 
44 cases. The AUC of this model was general, and an external 
validation cohort with a larger sample size should be used to 
validate the model. Another research16 used recursive feature 
elimination to select texture features in pre-nCRT T2-weighted 
MRI and developed a logistic regression classifier to predict 
pCR in LARC patients. The model yielded the best AUC of 
0.80 on the hold-out test set. A combination of pretreatment, 

Figure 1.  Artificial intelligence applications in therapeutic strategies of colorectal cancer.

Abbreviations: EGFR, epidermal growth factor receptor.
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mid-treatment, and post-treatment MRI radiomics could 
characterize pCR after nCRT. Another team of researchers17 
proposed a RF classifier model based on pretreatment, mid-
treatment, and post-treatment T2-weighted MRI of patients 
with LARC. The RF model could identify nonresponders to 
nCTR with a mean AUC of 0.83 in a validation cohort.

In addition to the T2-weighted sequence, radiomics fea-
tures could also be extracted from diffusion-weighted mag-
netic resonance images (DWIs) alone or combined with 
other sequences to predict treatment response. Researchers18 
utilized features extracted from the apparent diffusion coef-
ficient (ADC) maps of DWI to construct least absolute 
shrinkage and selection operator (LASSO)-logistic regres-
sion models, which were capable of predicting nCRT thera-
peutic response in patients with LARC. Of note, the model 
based on features extracted by a pre-trained CNN yielded a 
higher mean AUC of 0.73 than the model built with hand-
crafted features (AUC = 0.64). However, this study focused 
on differentiating between patients who responded to nCRT 
and nonresponders. In another research,19 3 algorithms for 
feature selection combined with 4 ML classifiers were tested 
to predict pCR in LARC. Interestingly, texture features of 
the models were extracted from T2w as well as ADC maps, 
and 3-dimensional segmentations were accomplished by a 
DL algorithm or radiology residents. The model constructed 
by ranking approach as feature selection combined with 
SVM as classifier achieved the best performances. The auto-
matic segmentation reached a higher accuracy of 75% than 
manual segmentation, with an accuracy of 68% on the vali-
dation set. Besides, a previous study20 designed a deep neural 
network (DNN) based on radiomics features extracted from 
computerized tomography (CT). The DNN could predict 
pCR after nCRT with an overall accuracy of 80% on an 
external validation set, which also showed a good predictive 
capacity of CT.

Pathomics also has the potential to predict the treatment 
response of nCRT. A study21 constructed a SVM classifier 
based on collagen structural features (CFs) in the tumor micro-
environment to predict pCR among LARC patients. The CFs 
of pre-nCRT patients were analyzed by multiphoton imaging 
technology. Finally, the CFs-SVM classifier displayed good 
discrimination, achieving a high AUC of 0.854 on the valida-
tion data set.

AI in chemotherapy eff icacy and toxicity prediction

For patients with colorectal cancer liver metastasis (CRLM) 
who are not eligible for surgery, chemotherapy is the usual 
treatment option. Identifying the therapeutic response of 
lesions to chemotherapy is essential for selecting treatment 
strategies in CRLM patients.55 Previous studies have dem-
onstrated that AI can predict treatment response to 

chemotherapy, which is challenging for physicians. Of note, the 
short-term treatment response was generally characterized by 
tumor shrinkage on imaging.

A previous study22 proposed a radiomics model for predict-
ing the therapeutic response of an individual liver lesion in 
patients with CRLM. The radiomics model was based on ML 
algorithms and achieved a per-lesion sensitivity of 73% and a 
specificity of 47% on a validation data set composed of portal 
CT scans. The sensitivity of this model is moderate, and the 
specificity is very low, showing the limitations of its clinical 
applications. Besides, the delta-radiomics score can also iden-
tify nonresponsive lesions to FOLFOX chemotherapy. A 
delta-radiomics model23 achieved a high sensitivity of 85% 
and a high specificity of 92% in predicting nonresponsive liver 
metastatic CRC lesions. Recently, long noncoding RNAs 
(lncRNAs) have been considered potential biomarkers of 
CRC prognosis.56 The lncRNAs are revealed to be associated 
with immune modifications in CRC.24 A group of research-
ers24 proposed a ML-based composite model, thus presenting 
a consensus immune-related lncRNA signature. The lncRNA 
signature can identify nonresponders to fluorouracil-based 
adjuvant chemotherapy and achieved a high AUC of 0.854 on 
the validation data set. Another study25 used 10 ML algo-
rithms to construct a consensus ML-derived lncRNA signa-
ture, which can also characterize patients who benefited from 
fluorouracil-based adjuvant chemotherapy. To sum up, AI 
enables individualized assessment of chemotherapy treatment 
response.

Artificial intelligence is also applied to predict the toxicities 
of chemotherapy. A study26 developed ML models to predict 
cardiotoxicity in CRC patients who received fluoropyrimi-
dine-based chemotherapy. Of all the algorithms tested, 
XGBoost achieved the highest precision of 0.607 in predicting 
the 30-day cardiotoxicity. A previous study has shown that the 
predicted factors for chemotherapy cardiotoxicity are relatively 
few and are associated with treatment regimens chosen.57 
Pretreatment predictions of cardiotoxicity are limited for indi-
viduals on the same treatment regimen in humans. Hence, AI 
could be introduced into clinical practice as a novel tool that 
may achieve better predictive performance in predicting car-
diotoxicity than health personnel. Another research27 demon-
strated that ML can predict the toxicity of Irinotecan for each 
cycle of treatment, which is characterized by leukopenia, neu-
tropenia, and diarrhea. In patients with CRC, ML achieved 
accuracies of over 75% in predicting all 3 symptoms. In this 
study, although artificial intelligence has high accuracy in pre-
dicting adverse reactions, it requires using pharmacokinetic 
data after drug administration. Therefore, its practicability 
may be weaker than human assessment of risk factors for 
chemotherapy toxicity. For individuals, personalized predic-
tion of adverse reactions is of great significance for medical 
decision-making.
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AI in immunotherapy eff icacy prediction

Previous studies have applied AI models in predicting the 
response of immunotherapy in various types of cancers, includ-
ing CRC.58,59 Microsatellite instability (MSI) is reported as a 
common molecular phenomenon in CRC, which is attributed 
to DNA mismatch repair deficiency (dMMR).60 MSI was 
found in approximately 15% of colorectal tumors.60 Initially, 
MSI was considered related to the efficacy of 5-fluorouracil in 
patients with CRC.61 In recent years, the application of detect-
ing MSI status for tumor immunotherapy has gradually been 
emphasized. Patients with MSI-high tumors may be more 
responsive to immune checkpoint inhibitors (ICIs),62,63 which 
is essential for the selection of immunotherapy. In clinical prac-
tice, MSI status was usually discriminated by immunohisto-
chemistry or genetic analysis of a biopsy or resected specimens.28 
However, the current methods are not universal due to the cost 
and technical constraints. As a new approach, AI has been 
applied to identify MSI effectively.

A study28 presented DL models based on MRI to identify 
the MSI status in rectal cancer. The pure MRI-based model 
reached an AUC of 0.820, while a clinical model based on 
clinical factors only had an AUC of 0.573 on the testing data 
set. When combining the MRI-based model and the clinical 
model, the integrated model had the highest AUC of 0.868. 
Moreover, histology-based models can also detect MSI status 
to predict immunotherapy efficacy. Another research29 pro-
posed a multiple-instance-learning-based DL model named 
Ensembled Patch Likelihood Aggregation (EPLA) to identify 
MSI-high and MSI-low/ microsatellite stability (MSS) in 
colorectal tumors. Ensembled Patch Likelihood Aggregation 
was based on histopathology images and had a low AUC of 
0.6497 in an external validation data set. Researchers further 
applied transfer learning to generalize EPLA in addressing the 
wide variations in clinical practice. Transfer learning can learn 
from related learning problems.64 For instance, there are differ-
ences between image acquisitions in the data sets because dis-
tinct scanners or scanning protocols are employed. Transfer 
learning may be able to eliminate data discrepancies that exist 
in clinical practice. After transfer learning, EPLA achieved a 
high AUC of 0.8504 on the external validation data set. Even 
if AUC is only part of the model performance evaluation, the 
dramatic improvement in AUC after transfer learning is 
encouraging.

Currently, tumor mutational burden (TMB) is applicable 
for identifying the sensitization to immunotherapy. Metastatic 
CRC with MSS/MMR-proficient performed a significantly 
lower TMB, which means resistance to anti-PD-1-based treat-
ment.65 Researchers30 developed a DL method to evaluate 
TMB from hematoxylin and eosin (HE) staining CRC sec-
tions. Based on the Residual Network (ResNet) 50, the method 
achieved the highest AUC of 0.774 among all tested algo-
rithms. Compared to the current standard method of measur-
ing TMB, the model based on DL can reduce costs and improve 
efficiency.

AI in targeted therapy eff icacy prediction

Generally, KRAS mutations can be found in approximately 
40% of CRC.66 In CRC patients with KRAS mutations, 
anti-EGFR-targeted therapy lacks benefits.67 Therefore, 
KRAS mutations are considered as a negative biomarker for 
anti-EGFR-targeted therapy.68 Detecting KRAS mutation has 
been suggested by the practice guidelines and is of great impor-
tance for the selection of anti-EGFR-targeted therapy in met-
astatic CRC patients.69 A study31 used a radiomics model to 
predict KRAS mutations in rectal cancer patients. Researchers 
proposed several T2-weighted image-based classifiers, includ-
ing logistic regression, decision tree, and SVM. Among them, 
the SVM classifier achieved the best performance, with an 
AUC value of 0.714 on an external validation data set. 
Another32 study designed a DL model based on both 
T2-weighted images and clinicopathological characteristics to 
detect KRAS mutations in rectal cancer. The combined model 
yielded an AUC of 0.841. Artificial intelligence may serve as 
an assistance method for the noninvasive assessment of KRAS 
mutations. Combined detection of KRAS, NRAS, and BRAF 
gene mutations contributes to the selection of anti-EGFR-
targeted therapy in CRC patients. A previous study33 designed 
DL models utilizing radiomics and semantic features. The 
models are capable of predicting KRAS, NRAS, and BRAF 
mutations in cases having CRLM. The model combined radi-
omics with the effective semantic score and achieved an AUC 
value of 0.79 in a validation cohort. Artificial intelligence ena-
bles rapid and accurate selection of anti-EGFR-targeted 
therapy.

Artificial intelligence has also been developed to predict the 
therapeutic response of targeted therapy. A research team 
reported that 70% of patients with metastatic CRC with 
HER2 amplification or overexpression benefited from trastu-
zumab plus lapatinib treatment.70 Researchers34 further con-
structed a DL model based on pretreatment CT to distinguish 
responders and nonresponders in CRC patients with hepatic 
metastases who received trastuzumab and lapatinib treatment. 
On an external validation cohort, the model has a sensitivity of 
90% and a specificity of 42% per lesion. More cases are required 
to validate the performance of the model in predicting trastu-
zumab plus lapatinib treatment response.

AI in endoscopic therapy management

Artificial intelligence can support medical decision-making in 
endoscopic therapy. Endoscopic resection has emerged as an 
effective method to remove some early-stage CRCs before 
open surgery.71 Unnecessary surgical resection may pose addi-
tional risks. However, 8% of patients with T1 and 18.5% of 
patients with T2 CRCs have lymph node metastases (LNM), 
which is a contraindication to endoscopic resection.72 Currently, 
LNM in early CRCs cannot be accurately predicted. Therefore, 
some AI models have been developed to predict LNM, thus 
determining endoscopic treatment strategy. A previous study35 
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proposed a ML model based on 45 clinicopathological factors 
to predict preoperative LNM in patients with T1 CRCs. On an 
external data set, the model reached a sensitivity of 100%. 
Whereas compared with guidelines of different countries, the 
model had specificity ranging from 0% to 66% and accuracy 
ranging from 9% to 69%. The high-performing model can 
decrease the high rate of unnecessary surgery brought by the 
guidelines. Researchers36 developed models to predict LNM in 
patients with T1 CRCs after endoscopic resection. Some clin-
icopathological factors were identified by the RF classifier or 
generalized linear algorithm, respectively, and the RF classifier 
yielded a higher AUC of 0.85 on an external validation data 
set. In patients with T2 CRCs, the presence of LNM can also 
be identified by AI. A research team37 constructed a model 
based on RF to predict LNM in patients with T2 CRCs after 
endoscopic resection. In this model, 8 clinicopathological fac-
tors, such as age, were utilized. The RF-based model achieved 
a robust AUC of 0.93 on a validation cohort and can help 
LNM-negative patients undergoing endoscopic full-thickness 
resections to avoid additional surgical resections. Another 
study38 designed a LASSO-based algorithm to select clinico-
pathological variables. The model achieved an AUC of 0.765 
in a validation cohort, which is higher than the Japanese guide-
line. Histopathological sections were also applied indepen-
dently to predict the presence of LNM. A previous study39 
designed a CNN model to predict CRC LNM from histologi-
cal slides. The model had an AUC of 0.710 on the internal test 
data set, which is higher than the model based on clinical data. 
However, genomics phenotypes73 and clinical factors such as 
the T stage can be combined to improve model performance.

More importantly, AI technology can assist in the endo-
scopic resection of CRC. A study40 proposed a DeepLabv3-
based model to depict blood vessels and other structures on 
endoscopic images. As a DL model, the method achieved a 
mean vessel detection rate of 85%. This finding could reduce 
the risk of bleeding and perforation in endoscopic submucosal 
dissection performed by operators. However, studies investi-
gating using AI technology to assist in the endoscopic resec-
tion of CRC were relatively scarce. More primary and validation 
studies are needed.

AI in surgical therapy management

Artificial intelligence can predict preoperative pathological 
variables for CRC surgery to support surgical management. 
Perineural invasion (PNI) is considered to be a negative prog-
nostic factor. Patients undergoing radical resection of rectal 
cancer with PNI have higher postoperative mortality.74 To 
predict PNI, a previous study41 constructed SVM models 
based on preoperative CT. The classifiers achieved an AUC of 
0.793 for detecting PNI in a colon cancer validation set. 
Preoperative prediction of PNI may be important for formu-
lating surgical plans and postoperative management. In 

addition to preoperative prediction, AI can play an essential 
role in predicting postoperative complications. Anastomosis 
leakage (AL) is a common postoperative complication of 
CRC surgery, and some AI models have been developed to 
predict the occurrence of AL. A research team42,43 used SVM 
and composite kernels to predict AL from preoperative elec-
tronic health records, with a high AUC of 0.92. Besides, a 
study44 proposed ML models based on clinical data to predict 
AL in postoperative CRC patients. In internal validation, the 
LASSO-based model achieved the highest AUC of 0.690 
among all algorithms. A study45 used machine learning mod-
els, including logistic regression, SVM, decision trees, RF, and 
ANN, to predict low anterior resection syndrome following 
CRC resection operation. These authors concluded that logis-
tic regression is the most practical since it has a high sensitiv-
ity of 0.911 and can be used as a screening tool for low anterior 
resection syndrome. However, the results lack external valida-
tion set verification. Another study46 used Gated Recurrent 
Unit with Decay based DL frameworks to predict postopera-
tive wound and organ space infection in real time. The models 
can complete a bedside risk assessment with dynamic and 
static clinical variables, achieving an AUC of 0.68 in predict-
ing wound infection and 0.78 in predicting organ space infec-
tion. Despite the low AUC, this novel tool also has the capacity 
to assist surgeons in making timely adjustments to treatment 
regimens. Artificial intelligence can use preoperative data to 
predict postoperative complications, which is essential for the 
management of CRC surgery.

Of note, the applications of AI in surgery could also be 
expressed in robotics. However, the use of AI in surgery, espe-
cially AI algorithms, is currently rarely associated with surgical 
technology. Therefore, we only reviewed the studies investigat-
ing AI applications in managing surgical complications.

Personalized Treatment
With the growing need for precision medicine, providing per-
sonalized treatment for CRC patients has become a challenge 
for oncologists and surgeons. However, the treatment of CRC 
is a complicated decision-making process that relies on diverse 
factors, including treatment guidelines, the condition of 
patients, and the physicians themselves. Clinical Decision 
Support Systems (CDSSs) based on AI technologies are con-
sidered as potential approaches to help solve the challenge. 
Based on clinical medical information, CDSSs can support 
physicians in their demand for making treatment decisions, 
providing personalized treatment, minimizing medical errors, 
and improving the quality of care.75

As shown in Table 1, some AI-based CDSSs have been pro-
posed for precision medicine. A previous study47 developed a 
DL-based CDSS to enable the personalized selection of adju-
vant treatment in CRC patients. The CDSS can stratified 
CRC patients into 3 risk groups based on HE-stained tissue 
sections and pathological staging markers. Thus, adjuvant 
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chemotherapy could be avoided in stratified low-risk patients 
to reduce morbidity, mortality, and costs. Another48 study 
developed a multistain deep learning model to evaluate 
AImmunoscore for CRC patients. AImmunoscore was a 
parameter based on multiple immunohistopathological images 
of various immune cell subtypes. The results showed that 
AImmunoscore is an independent prognostic factor for CRC 
and can predict treatment response to neoadjuvant therapy. In 
clinical practice, AImmunoscore can provide clinicians with 
additional rationale for performing neoadjuvant chemotherapy. 
AImmunoscore could be considered a decision tool for clini-
cians to promote precision medicine.

Besides, some other CDSSs, such as IBM(R) Watson for 
Oncology, were also introduced into clinical practice to provide 
personalized treatment recommendations for CRC. Their 
effectiveness has also been validated.76-79 Generally, the evalua-
tion criterion in most validation studies is the consistency 
between AI and human experts. The results suggest that the 
best setting for using AI-based CDSS is probably in centers 
with limited expert CRC resources. Besides, AI-given regi-
mens inconsistent with expert regimens are not necessarily 
incorrect options that physicians have considered and rejected. 
These may be regimens that physicians have not considered. 
AI-based CDSS may provide additional regimens with evi-
dence, prompting physicians to query evidence and improve 
decision-making accuracy. These AI-based CDSS can consid-
erably assist physicians in making personalized medical deci-
sions for CRC patients.

Prognosis Evaluation
Previous studies have demonstrated the promising perfor-
mance of AI applied to CRC prognosis evaluation (Table 2). 
Some previous studies have used AI to predict the prognosis of 
CRC patients, including recurrence, metastasis, and survival.

AI in recurrence prediction

Tumor recurrence after surgical resection is correlated with 
poor prognosis. In stage II and III CRC patients, 5-year cumu-
lative local recurrence rates after surgery were 11.0% and 
23.5%, respectively.95 A previous study80 proposed radiomics 
models based on 3 different ML algorithms to predict the 
recurrence in patients having stage II and III CRC and validate 
the performance of different algorithms. Radiomics features 
for model construction were extracted from the preoperative 
CT image of the tumor. Among the 3 tested algorithms, mul-
tivariate regression (MR) and RF achieved better predictive 
performance than SVM. However, the MR-based model com-
bining radiomics features with clinicopathological factors 
achieved the highest balanced accuracy of 0.78 and a Matthews 
correlation coefficient (MCC) of 0.6. Machine learning 
approaches can also construct models independently to predict 
the recurrence of patients with CRC based on T stage, KRAS 

mutations, and other clinicopathological factors. Based on clin-
icopathological factors such as KRAS mutation, researchers 
developed a score derived from the bootstrap method and mul-
tivariable mixed-effects logistic regression. The scoring model 
achieved an AUC of 0.693 in predicting 1-year disease-free 
survival (DFS) in patients with CRLM after hepatectomy.81 
Another group of researchers82 tested the performance of 4 
ML algorithms for predicting postoperative recurrence in 
patients with stage IV CRC. Based on several clinicopatho-
logical factors, GradientBoosting achieved the highest AUC of 
0.761 among logistic regression, decision tree, GradientBoosting, 
and Light Gradient Boosting Machine. A study88 used DL to 
construct a CT-based model capable of evaluating the progno-
sis of patients with CRC. In the research, an innovative end-
to-end multi-size convolutional neural network (MSCNN) 
was developed to effectively evaluate DFS, and the Kaplan-
Meier analysis was conducted to prove that CT signature can 
predict DFS (P < 0.001). These studies also demonstrated that 
AI-based models may be better than traditional models in pre-
dicting tumor recurrence.

AI in metastasis prediction

Tumor metastasis in CRC patients is considered to be associ-
ated with a high risk of death.96 About 18% to 25% of patients 
without distant metastases at the time of primary diagnosis will 
develop distant metastases within 5 years.97 Therefore, early 
prediction of distant metastases from CRC is valuable for 
prognosis prediction. The liver is the most frequently metasta-
sized organ of CRC, and liver metastasis occurs in approxi-
mately 50% of cases within the course of disease.96 A study83 
tests the performance of models based on different ML algo-
rithms to predict liver metastases of T1 stage CRC patients at 
primary diagnosis. Clinicopathological factors such as tumor 
information from the training set samples can significantly 
predict liver metastasis through all 7 common ML algorithms. 
To achieve the highest performance, the researchers finally 
optimized and integrated 7 models using the Bootstrap aggre-
gating algorithm and stacked regression to obtain a stacking 
bagging model. The stacking bagging model yielded the high-
est AUC of 0.9631, which provides reliable evidence for prog-
nosis prediction at primary diagnosis.

AI in survival prediction

Some researchers have concentrated on the advances of AI in 
predicting the prognosis of CRC patients receiving chemother-
apy. Chemotherapy may bring risks or benefits to patients with 
CRC. A previous study84 constructed a ML model based on pre-
treatment clinicopathological data to predict mortality within 
30 days after cancer chemotherapy. This model used the gradi-
ent-boosted trees algorithm and was validated for performance 
on external data sets. For CRC patients, an AUC of 0.924 was 
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displayed in predicting 30-day mortality, which could help 
reduce unnecessary chemotherapy that may pose a high risk. 
Another study85 developed a ML-derived molecular signature 
named FOLFOXai for predicting treatment efficacy for meta-
static CRC patients who received oxaliplatin-containing chem-
otherapy. Validation on independent data sets demonstrated that 
FOLFOXai can directly predict treatment efficacy, which is 
characterized by progression-free survival, the time to next treat-
ment (TTNT), and overall survival (OS). For the treatment 
selection of CRC patients, ML models based on clinical and 
molecular data can help balance the benefits and risks of chemo-
therapy through prognostic prediction. For CRC patients under-
going surgical resection, the ML approaches can also be used to 
predict prognosis. A previous study86 developed a radiomics 
model to predict postoperative prognosis for patients with CRC. 
Researchers employed ML algorithms to select PET/CT radi-
omic features and clinical features and constructed random sur-
vival forest (RSF) models. The best RSF model achieved a 
C-index of 0.820 in prognosis prediction of cases having stage 
III colon cancer, which is essential for therapeutic strategy selec-
tion. Another research89 proposed a fusion model based on radi-
omics and deep convolutional neural networks (DCNN)to 
evaluate the prognosis of stage II CRC patients. Radiomics and 
DCNN features were obtained from CT of the primary tumors 
and peripheral lymph nodes to construct the model. The model 
achieved an AUC of 0.76 ± 0.08 in predicting DFS and 
0.91 ± 0.05 in predicting OS. Studies have demonstrated the 
potential of CT-based AI models for prognostic prediction.

Besides, AI is also applied in histopathological images to 
perform prognostic evaluation. Artificial intelligence can auto-
matically quantify indicators that can evaluate the survival of 
patients with CRC from histopathology images. A multicenter 
study90 validates the performance of a CNN model based on 
HE-stained tumor tissue sections to predict the prognosis of 
CRC patients. This model assessed prognosis by extracting 
microenvironment biomarkers in histopathological pictures. 
On an external validation data set, the “deep stroma score” 
based on the DL model is an independent prognosticator for 
CRC patients, which is highly correlated with OS, disease-
specific survival (DSS), and relapse-free survival (RFS). 
Another study91 developed a CNN model based on HE-stained 
histopathological images to identify a poor or good prognosis 
of CRC patients who received capecitabine treatment. On a 
large validation cohort, the prognosticator selected by CNN 
had a sensitivity of 52% and a specificity of 78% in predicting 
3-year DSS. In addition, integrating biomarkers selected by 
DL algorithms and clinicopathologic factors may achieve bet-
ter performance in prognostic prediction.98 A study92 validated 
the performance of a CNN model to automatically evaluate 
tumor-stroma ratio (TSR) from HE-stained tumor sections. 
In the validation cohort, high TSR based on the tested CNN 
model was correlated with increased OS (P < 0.004). In 
another study,93 the CNN-quantified mucus proportion was 

also validated to be correlated with the prognosis of colorectal 
mucinous adenocarcinoma patients (P < 0.008). Another inno-
vative study94 focused on classifying consensus molecular sub-
types (CMSs) based on histopathology images of colorectal 
tumors. Derived from molecular classification, CMSs are iden-
tified into 4 robust subtypes at the gene-expression level and 
are associated with the prognosis of CRC patients.99 
Researchers developed neural networks to classify CMSs on 
histopathology images instead of high-cost bulk transcriptom-
ics.94,100 The DL model showed results at the AUC value of 
0.85 on an external validation set, which significantly facilitates 
the clinical application of CMSs in prognosis classification. 
These DL models are important for the prognostic stratifica-
tion and treatment selection of CRC patients.

In addition to traditional single-omics data, recently, multi-
omics data such as gene and tissue microbes has also performed 
well in predicting the survival of CRC patients.87 A study87 
identified tissue bacterial biomarkers that predict the survival 
of CRC patients and developed a microbiome-based ML 
model. This model has more outstanding predictive perfor-
mance than models based on mRNA or miRNA data. Recent 
studies101 have revealed the mechanisms behind the relation-
ship between microbes and tumor progression. Based on ML 
approaches, microbiome and other multi-omics information 
provide reliable new directions for prognosis prediction of 
CRC patients. These studies also demonstrated the great 
potential of the AI approaches for predicting prognosis in 
CRC patients.

Ongoing Clinical Trials
We listed the ongoing clinical trials utilizing AI in the treat-
ment of CRC in Table 3. Most clinical trials focus on predict-
ing the treatment response of neoadjuvant chemotherapy. In 
addition, some clinical trials are using AI to predict occurrence 
of complications after surgery. Other areas being focused on are 
prognostic prediction and targeted therapy response 
prediction.

Discussion
AI plays an essential role in computer science and is emerging 
as an important approach in medical research. While integrat-
ing AI into daily patient management still confronts numerous 
practical issues, its outstanding performance remains inspiring. 
Artificial intelligence can predict treatment outcomes, which 
may help clinicians select treatment strategies in CRC. For 
conventional therapies such as chemotherapy, surgery, and 
endoscopic resection, AI can help clinicians predict treatment 
effectiveness, toxicity, and complications. In addition, AI tech-
nology can directly assist surgeons in completing endoscopic 
resection. For novel therapies such as immunotherapy and tar-
geted therapies, AI enables screening the appropriate popula-
tions for the treatment and reducing resource consumption. 
For CRC, AI techniques have also made great strides in 
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prognosis prediction, involving recurrence, metastasis, and sur-
vival prediction.

In the era of precision medicine, personalized treatment 
decision selection has become a new requirement for cancer 
care. Based on the selection of treatment strategies by AI, the 
application of AI in cancer may make personalized treatment a 
reality. Previous studies have proposed some CDSSs for making 
direct treatment recommendations promoting precision medi-
cine. However, some of the included CDSSs were not validated 
on diverse patient cohorts. Large retrospective studies with 
robust external validation are necessary to further integrate AI 
into clinical practice. Moreover, the evaluation criterion in most 

validation studies is the consistency between AI-based CDSSs 
and human experts. The good performance of CDSSs indicated 
that our best setting for using CDSSs may be in centers with 
limited expert resources. Besides, in some previous validation 
studies,76,79 AI-based CDSSs may suggest treatment recom-
mendations that experts considered outdated and inappropriate. 
Almost all of the studies76,77,79 considered these divergences as 
negative. However, we should realize that AI may occasionally 
provide better advice. Since CDSSs are not yet commonly used 
in clinical practice, no studies have yet investigated this issue. 
After the CDSSs are applied in clinical practice, future studies 
could be designed to directly compare the advantages and 

Table 3.  Summary of the ongoing clinical trials of artificial intelligence applications in colorectal cancer treatment.

Registration 
number

Trail 
name

Population Methods Main purpose Estimated/
actual 
enrolment

Location

NCT05723965 NA Rectal cancer 
stage III

CNN To predict cancer survival outcomes 
based on CT images

720 China

NCT05816902 NA CRC ML To predict lung metastasis in CRC 
based on clinicopathological 
characteristics

2779 China

NCT04985981 PANIC CRC ML To preoperatively predict anastomotic 
insufficiency after colon and colorectal 
surgery

11 000 Switzerland

NCT04999007 NA Rectal cancer NA To guide surgeons in performing a 
temporary ileostomy in anterior 
resection

616 China

NCT05493930 NA Rectal cancer NA To preoperatively identify the lymph 
node metastasis status based on 
clinical data

6578 China

NCT06023173 NA Colorectal 
cancer liver 
metastases

NA To predict bevacizumab treatment 
response and outcome based on PET/
CT and clinicopathological data

307 China

NCT04273451 RPAI-TRG Locally 
advanced rectal 
cancer

NA To predict neoadjuvant 
chemoradiotherapy response based on 
MRI and biopsy images

100 China

NCT05873972 NA Ras wild 
unresectable 
colorectal 
cancer with liver 
metastases

DL To predict cetuximab treatment 
response

100 China

NCT05279287 VAMIS Rectal cancer NA To analyze surgical phases, skill and 
errors based on video and kinematic 
data recording of minimally invasive 
surgical procedure

500 UK

NCT05610904 NA Rectal cancer ML To predict the occurrence of 
anastomotic leakage after surgery

418 China

NCT05523245 	
NA

Locally 
advanced rectal 
cancer

DL To predict neoadjuvant 
chemoradiotherapy response based on 
MRI combined with DCE images

1700 China

NCT05150548 NA CRC ML To predict when major complications 
occur after elective colectomy surgery 
based on clinical data

130 000 Canada

Abbreviations: CNN, convolution neural network; CRC, colorectal cancer; CT, computerized tomography; DL, deep learning; ML, machine learning; MRI, magnetic 
resonance imaging; NA, not applicable; PANIC, Prediction of Anastomotic Insufficiency Risk After Colorectal Surgery; DCE, dynamic contrast-enhanced; PET, positron 
emission tomography; RPAI-TRG, RadioPathomics Artificial Intelligence Model to Predict Tumor Regression Grading; VAMIS, Video Analysis in Minimally Invasive Surgery.



14	 Clinical Medicine Insights: Oncology ﻿

disadvantages of the treatment decisions given by the CDSS 
with those given by the experts. In addition, the application sce-
narios of CDSSs in CRC are relatively limited currently. 
Artificial intelligence models could be applied in augmenting 
the decision to operate, identification and mitigation of modifi-
able risk factors, prediction and management of complica-
tions.102 They also have the potential to screen the appropriate 
populations for immunotherapy and targeted therapy. Future 
applications of AI-based CDSS could greatly help surgeons and 
physicians make treatment decisions for CRC in clinical 
practice.

AI has surpassed traditional models in some fields, and it 
can still advance more. Prognostic models for cancer patients 
are based on multimodal data, including electronic medical 
records, molecular data, radiological data, and digital pathology 
data.12 Previous studies have demonstrated that ML can theo-
retically automate and merge these multimodal data for cancer 
treatment.12 Nevertheless, for high-dimensional data such as 
omics information, DL-based multimodal approaches allow 
for better integration.14 This partly shows the advantages of the 
DL techniques for the personalized prediction of cancer treat-
ments. Besides, for medical image data processing and analysis, 
DL can obtain better performance than ML owing to its excel-
lent properties.103 Recently, some novel DL algorithms, such as 
transformer have shown better performance in image recogni-
tion. Transformer can potentially process medical images for 
more accurate treatment outcome prediction in CRC 
patients.104 Advances in algorithms could facilitate cancer 
treatment outcome prediction.

The AI models included in this review also have some limi-
tations. Before AI can be introduced into clinical practice, it 
must be critically evaluated to ensure the validity and safety of 
the model. First, a key step in the evaluation process is validat-
ing model performance on an external validation data set. 
External data set validation is an important part of trusting AI 
algorithms. Notably, a proportion of the included studies did 
not have external data set validation. This could lead to descrip-
tions of overfitted and not generalizable models. Second, we 
reported metrics such as AUC, recall, and precision to partially 
represent the reliability of AI models in the included studies. 
Some of the studies select the appropriate models by evaluating 
discrimination, which can be measured using AUC. However, 
AUC only measures ranking and does not deal with the cali-
bration of the models. Calibration refers to the agreement 
between the estimated and the “true” risk of an outcome, which 
is different from discrimination.105,106 Calibration is important 
for the evaluation of AI models for clinical prediction.107 Of 
note, only a small number of included studies in this review 
reported calibration. Therefore, the performance of AI models 
without calibration should be interpreted more cautiously. 
Third, the small sample sizes of some included studies also 
made their results not robust.

There are still several issues that need to be addressed for 
further application of AI models in CRC treatment. First, the 
AI models currently being developed are the “weak AIs” that 
do not implement tasks in the same way as humans. The “weak 
AIs” are merely driven by the designer’s program and achieve 
satisfying results in actual problem-solving.108 These models 
play only a supplementary role in clinical practice. And any 
eventual clinical decisions must be determined by physicians. 
However, “strong AI” with consciousness and intentionality 
may be proposed for assisting clinical decision making in the 
future. The problems associated with the use of “strong AI” in 
clinical practice should be considered in advance, such as vali-
dation and ethical issues. Second, AI involves many ethical 
issues, including data privacy disclosure, patient consent, and 
the risk of decision errors. The AI models are based on the 
patients’ private and sensitive information, such as identity, 
health, diagnosis, and treatment information. The data security 
is at risk. For patients, collecting their information without 
informed consent will infringe on their rights and interests if, 
for example, the information is stolen or misused. Researchers 
have developed approaches such as the k-anonymity privacy 
protection algorithm to address the issues.109 However, the 
application of these methods is limited by time and cost. In 
addition, the problem of attributing responsibility for medical 
decision errors caused by AI still exists. Artificial intelligence 
has not yet been applied to clinical practice on a large scale, 
which is somewhat limited by the fact that the issue of liability 
for medical malpractice is still controversial. Medical malprac-
tice caused by AI has not yet been legally defined and is a 
thorny issue. Despite the difficulties we face, we still believe 
that AI approaches could play a greater part in medical predic-
tion and classification.

Limitations
This narrative review provides a relatively comprehensive over-
view of artificial intelligence in CRC treatment. However, this 
review also has some limitations. First, we have not performed 
a systematic review. Because of the rapid advances in the AI 
field, some outdated studies were not appropriate to be 
reviewed. We only included studies representative enough in 
the field of AI. We are conscious that some studies were elimi-
nated due to their lack of good results or sufficient data to sup-
port them. Second, we only summarized key information 
including AUC, external validation, calibration to report the 
limitations of the included studies. More comprehensive infor-
mation would be required to evaluate the quality of included 
studies.
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