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Abstract

The CC chemokine receptor 5 (CCR5) molecule is an important co-receptor for HIV. The effect of the CCR5*D32 al-
lele in susceptibility to HIV infection and AIDS disease is well known. Other alleles than CCR5*D32 have not been
analysed before, neither in Amerindians nor in the majority of the populations all over the world. We investigated the
distribution of the CCR5 coding region alleles in South Brazil and noticed a high CCR5*D32 frequency in the
Euro-Brazilian population of the Paraná State (9.3%), which is the highest thus far reported for Latin America. The
D32 frequency is even higher among the Euro-Brazilian Mennonites (14.2%). This allele is uncommon in Afro-
Brazilians (2.0%), rare in the Guarani Amerindians (0.4%) and absent in the Kaingang Amerindians and the Orien-
tal-Brazilians. R223Q is common in the Oriental-Brazilians (7.7%) and R60S in the Afro-Brazilians (5.0%). A29S and
L55Q present an impaired response to �-chemokines and occurred in Afro- and Euro-Brazilians with cumulative fre-
quencies of 4.4% and 2.7%, respectively. Two new non-synonymous alleles were found in Amerindians: C323F
(g.3729G > T) in Guarani (1.4%) and Y68C (g.2964A > G) in Kaingang (10.3%). The functional characteristics of
these alleles should be defined and considered in epidemiological investigations about HIV-1 infection and AIDS in-
cidence in Amerindian populations.

Key words: CCR5, Brazilian, Amerindian, HIV, polymorphism.

Received: May 20, 2008; Accepted: July 21, 2008.

Introduction

The human immunodeficiency virus type 1 (HIV-1)
epidemic shows great variation among the different Brazil-
ian regions. A progressive reduction in the number of
deaths from acquired immunodeficiency syndrome (AIDS)
was observed after the introduction of potent antiretroviral
therapy in 1996, but the deceleration of the AIDS epidemic
was not homogenous throughout all the Brazilian regions
(Brito et al., 2005). The Southeast region has experienced
the lowest increase in the AIDS epidemic from 1990 to
1996, contrasting with a steep rise in the North and South

regions (Szwarcwald et al., 2000). Since 1996, the inci-
dence rates of AIDS in Brazil as a whole and in the State of
São Paulo in particular show a trend towards stability,
whereas in the Brazilian Northeast the incidence rates of
the disease continue to grow (Brito et al., 2005). The differ-
ent spreading of the disease is due to multiple variables,
including biological, behavioural, demographic and eco-
nomic/political factors that influence the rate of contact be-
tween infected and susceptible individuals, as well as the
individual’s infectiousness and susceptibility. Among
these factors are genetic variants of host genes that facili-
tate or hamper viral entry into the cells and modulate im-
mune responses against the infection.

The chemokine (C-C motif) receptor 5 gene (CCR5)
comprises three exons. The polypeptide of 352 amino acid
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residues is encoded by exon 3 (formerly named exon 4)
(Mummidi et al., 1997). CCR5 transduces the signals of
several different chemokines in phagocytes and T lympho-
cytes and serves as an essential co-receptor for the entry of
R5-tropic HIV-1 into those cells (Blanpain et al., 2001).
This is the viral form that most frequently infects people in
Brazil (Ferraro et al., 2001). Therefore, CCR5 alleles that
code for proteins poorly or not expressed at the cell surface
are strong candidates for protection against the infection
and for the delay of AIDS onset. This is the case of the trun-
cated CCR5*D32 allele, and probably also of the Fs299 and
R60S alleles (Dean et al., 1996; Shioda et al., 2001; Tama-
sauskas et al., 2001). CCR5*D32 was also favourably asso-
ciated with autoimmune diseases such as multiple sclerosis,
rheumatoid arthritis and type 1 diabetes mellitus, but in-
creases the risk for abdominal aortic aneurysm and sar-
coidosis (for a review, see Navratilova, 2006).

The interaction between the CCR5 receptor and its
ligands can block HIV-1 entry and thus retard disease pro-
gression. The A29S and L55Q alleles encode products with
a reduced affinity for (C-C motif) chemokines and might be
associated with a shorter time interval from HIV infection
to AIDS onset (Howard et al., 1999).

During AIDS, the acquisition of mutations in the
HIV-1 gp120 envelope glycoprotein gene leads to the
switch from primary R5 (CCR5-using) to highly cytopathic
X4 (CXCR4-using) HIV-1 variants. According to the so-
matic hypermutation hypothesis, this switch takes place in
the germinal center B cells, due to aberrant somatic hyper-
mutation of the gp-120-coding region of the HIV-1 env
gene (Suslov, 2004). This process seems to be more effec-
tive in CCR5*D32 heterozygotes, which were found at a
2.5 times higher risk of harbouring X4 HIV-1 variants be-
fore the onset of highly active antiretroviral therapy. The
presence of X4 variants in the patients seems not to com-
promise the therapy outcome (Brumme et al., 2005),
whereas the presence of a CCR5*D32 allele was found as-
sociated with a better response (Accetturi et al., 2000;
Guerin et al., 2000).

In order to better understand the diversity of the
CCR5 gene and to supply data for studies on the functional
effect and epidemiological consequences of the CCR5 vari-
ants, we investigated the distribution of CCR5*D32 and
other known exon 3 coding region CCR5 alleles in five
populations of South Brazil. These alleles and their known
functional characteristics are listed in Table 1. We also se-
quenced part of the coding region of the gene, in order to
search for new variants.

Materials and Methods

Samples

One hundred and seventy two Afro-Brazilians, 172
Euro-Brazilians, 18 Oriental-Brazilians, 115 Guarani (89
of which belong to the M’byá sub-group) and 160
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Kaingang were investigated. All individuals were ran-
domly selected and live in the State of Paraná, in South
Brazil, with the exception of 26 Guarani belonging to the
Kaiowá and Ñandeva subgroups which live in the State of
Mato Grosso do Sul in Central-Western Brazil. For some
CCR5 alleles, the number of individuals analysed was
lower. The classification of individuals as Euro-Brazilians
and Afro-Brazilians was based on morphological features.
The Euro-Brazilians included 53 unrelated German-
speaking individuals whose ancestors came from or joined
Mennonite settlements in South Brazil. No HLA genotyp-
ing data was available for this subsample. Based on HLA
allelic frequencies previously determined for all other pop-
ulation samples, an average European component of 34%
and an average Amerindian component of 6% were esti-
mated for the Afro-Brazilians. For the non-Mennonite
Euro-Brazilians, the African and Amerindian components
are approximately 9% and 5%, respectively (Braun-Prado
et al., 2000; Probst CM, MSc Dissertation, Universidade
Federal do Paraná, Curitiba, 2000; Probst et al., 2000). The
average admixture values of the Guarani and Kaingang
with the immigrants from Europe and Africa were esti-
mated to be 4% and 7%, respectively (Petzl-Erler et al.,
1993; Probst CM, MSc Dissertation, Universidade Federal
do Paraná, Curitiba, 2000; Tsuneto et al., 2003). The gene
flow between these two Amerindian groups is also low, be-
ing approximately 1.4% in Guarani and 0.5% in Kaingang
(Petzl-Erler et al., 1993).

Typing method

DNA was extracted from peripheral blood cells using
the standard phenol/chloroform/isoamyl alcohol or salt-
ing-out techniques. The coding region of exon 3 of the
CCR5 gene was amplified by PCR as described previously
(Boldt and Petzl-Erler, 2002). The product was applied on
nylon membranes in the form of dot-blots and allowed to
hybridize with sequence-specific oligonucleotide probes
(SSOP, Table 2), according to the protocol of the XII Inter-
national Histocompatibility Workshop (Fernandez-Viña
and Bignon, 1997). Part of the coding region of exon 3 was
additionally sequenced using the CCR5rev internal primer
in 13 Guarani and 29 Kaingang, one Euro-Brazilian and
five Oriental-Brazilian samples. These samples and 59 ad-
ditional Guarani and 55 additional Kaingang samples were
also sequenced using the CCR5for internal primer. One
Guarani M’bya individual was genotyped only by sequenc-
ing. Sequencing reactions were performed with BigDye
Terminator version 1.1 chemistry (Applied Biosystems,
Foster City, CA). The sequences of the primers and probes
are listed in Table 2.

Statistical analysis

Genotype and allele frequencies were obtained by di-
rect counting with the aid of the Convert program version
1.1 (Program distributed by the author, CM Probst). The
Hardy-Weinberg equilibrium and population homogeneity

14 CCR5 polymorphism in Brazil

Table 2 - CCR5 PCR primers and sequence-specific probes.

Sequence 5’� 3’ Variant

PCR primer CCR5m TATGCACAGGGTGGAACAAG ——————————-

PCR primer CCR5jn CACAACTCTGACTGGGTCAC ——————————-

Seq. primer CCR5for AATGAGAAGAAGAGGCACAGGGCT ——————————-

Probe CCR5 9-
CCR5 9+

AAGCAAATCGCAGCC
AAGCAAATCTCAGCC

+

A29S

Probe CCR5 1-
CCR5 1+

CTCATCCTGATAAAC
CTCATCCAGATAAAC

+

L55Q

Probe CCR5 10-
CCR5 10+

GCAAAAGGCTGAAGA
GCAAAAGTCTGAAGA

+

R60S

Probe CCR5 2-
CCR5 2+

CAGTATCAATTCTGG

CCATACATTAAAGATAG
+

D32

Probe CCR5 3+
CCR5 3-

CTCTGTTTCGGTGTC
CTCTGCTTCAGTGTC

+
R223Q

Probe CCR5 14-
CCR5 14+

CATCTATGCCTTTGT
TCATCTATGCTTTGT

+
Fs299

Probe CCR5 6-
CCR5 6+

AGGCTCCCGAGCGAG
AGGCTCCTGAGCGAG

+
P332P

Probe CCR5 7-
CCR5 7+

GAGCGAGCAAGCTCA
GAGCGAGTAAGCTCA

+
A335V

Probe CCR5 8-
CCR5 8+

TCAGTTTACACCCGA
TCAGTTTTCACCCGA

+
Y339F

PCR: polymerase chain reaction
Seq.: sequencing; +: major allele; in bold: variant nucleotides.



hypotheses were tested using the approach of Guo and
Thompson and the Raymond and Rousset test, respec-
tively, in the ARLEQUIN software package version 3.1
(http://cmpg.unibe.ch/software/arlequin3) (Excoffier et al.,
2005). p = 0.05 was adopted as the significance limit.

Results

The CCR5 genotype distributions met the Hardy-
Weinberg equilibrium expectations in all populations. The
frequency of the most common CCR5 allele varied from
88% to 100% (Table 3). Alleles Fs299 and P332P were not
observed in the population samples studied. The other al-
leles were seen in at least one population, at frequencies
varying from about 0.5% to 5% for most of them, except
D32 and R223Q.

Three D32 homozygotes were found among the
Euro-Brazilians. The D32 heterozygote frequencies were
4.1% (7/172) in Afro-, 15.1% (26/172) in Euro-Brazilians,
and 0.9% (1/115) in the Guarani Amerindians. We did not
find the CCR5*D32 allele in Oriental-Brazilians nor in the
Kaingang Amerindians. This allele was more frequent in
the Euro-Brazilian sample (9.3%) than in any other sample
previously investigated in Latin America (Table 4). The
frequency of the D32 allele rose to 14.2% in a subsample of
53 German-speaking Euro-Brazilians, whose ancestors
came from or joined Mennonite settlements in the past.
Two of the three homozygotes and 15 of the 26 heterozy-
gotes seen in the Euro-Brazilian sample belonged to this
group. Nevertheless, there was no statistically significant
difference between the frequency distribution of the CCR5

genotypes of the Mennonite and the non-Mennonite Euro-
Brazilians investigated (p = 0.08, exact test of population
differentiation).

Allele R223Q was observed in Oriental-Brazilians
but not in the other population samples (Table 3). It oc-
curred in the heterozygotic state in two of 13 Oriental-
Brazilians (heterozygote frequency of 15.4%).

Sequencing analysis of the coding region of exon 3
revealed a new allele in the Guarani (g.3729G > T), causing
the substitution of cysteine by phenylalanine at amino acid
residue 323 (p.Cys323Phe) in the C-terminal intracellular
segment of the protein. The p.Cys323Phe allele occurred in
two heterozygotes out of the 72 Guarani individuals whose
DNA was sequenced, which allowed estimating an allelic
frequency of 1.4% in the Guarani population. The DNA
carrying this variant was reamplified and resequenced to
confirm the presence of this new allele. In the Kaingang, se-
quencing revealed another new allele (g.2964A > G) caus-
ing the substitution of tyrosine by cysteine at the conserved
residue 68 (p.Tyr68Cys) in the second transmembrane part
of the protein. This allele occurred in five heterozygotes out
of 29 sequenced individuals, which allowed estimating a
frequency of 10.3% in the Kaingang population. We also
confirmed the presence of the R223Q allele in one hetero-
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zygote out of the 5 Oriental-Brazilians whose exon 3 was
sequenced.

Discussion

This is the first study investigating the A29S and R60S

alleles in European-derived populations. Also, alleles other
than D32 have not been analysed before in Amerindians.

Based on the CCR5 allelic frequencies in the Chinese,
North- and South-American populations (Table 3), it is
possible to infer that A29S, R60S, A335V and Y339F most
likely originated in Africa; L55Q and D32 in Europe;
R223Q and Fs299 in Asia. The P332P allele, found only
once in one heterozygote Afro-American (Ansari-Lari et

al., 1997), was not found in our population samples nor in

16 CCR5 polymorphism in Brazil

Table 4 - D32 allelic frequencies and standard deviations in Latin American populations.

Population n D32 freq. Region Reference

Admixed Mexican 212 0.014 � 0.006 ————, MX (Zuniga et al., 2003)

Amerindian Mayo 70 0

Amerindian Teenek 61 0

Amerindian Mazatecan 61 0.016 � 0.011

Afro-Jamaican 242 0.01 � 0.005 ————, JM (Hisada et al., 2002)

Colombian 150 0.027 � 0.009 Medellin, CO (Diaz et al., 2000)

Amerindian 172 0.009 � 0.005 Arequipa, PE (Calzada et al., 2001)

Amerindian Tikuna 191 0 Northwest Amazonas, BR (Leboute et al., 1999)

Amerindian Baniwa 46 0

Amerindian Kashinawa 29 0 Southwest Amazonas, BR (Leboute et al., 1999)

Amerindian Kanamari 34 0

Amerindian Tiriyó 180 0 North Amazonas, BR (Grimaldi et al., 2002)

Amerindian Waiampi 221 0

Six Amerindian groups 89 0 North Pará, BR (De Pinho Lott Carvalhaes et al., 2004)

Brazilian 394 0.03 � 0.006

Afro-Brazilian 67 0.008 � 0.008

Oriental-Brazilian 111 0

Brazilian 104 0.02 � 0.01 Recife, Pernambuco, BR (de Souza et al., 2006)

Admixed Brazilian 549 0.026 � 0.005 Northeast Bahia, BR (Grimaldi et al., 2002)

Afro-Brazilian 54 0.019 � 0.013 Rio de Janeiro, BR (Chies and Hutz, 2003)

Brazilian 115 0.056 � 0.015 São Paulo, BR (Munerato et al., 2003)

Brazilian 100 0.035 � 0.013 Ribeirão Preto, São Paulo, BR (Passos Jr and Picanço, 1998)

Euro-Brazilian 102 0.044 � 0.014 Paraná, Santa Catarina and Rio
Grande do Sul, BR

(Chies and Hutz, 2003)

Brazilian 127 0.055 � 0.014 (Kaimen-Maciel et al., 2007)

Eight Amerindian groups 241 0.013 � 0.005 (Hunemeier et al., 2005)

Afro-Brazilian 172 0.02 � 0.008 Paraná, BR

Euro-Brazilian 172 0.093 � 0.016

Oriental-Brazilian 16 0 This work.

Guarani 114 0.004 � 0.004

Kaingang 160 0

Brazilian 100 0.05 � 0.015 Londrina, Paraná, BR (Brajão de Oliveira et al., 2007)

Euro-Brazilian 99 0.066 � 0.018 Santa Catarina, BR (Grimaldi et al., 2002)

Euro-Brazilian 59 0.068 � 0.023 Alegrete, Rio Grande do Sul, BR (Vargas et al., 2006)

Afro-Brazilian 13 0.038 � 0.038

Admixed Brazilian 31 0.064 � 0.032

Afro-Brazilians 58 0.009 � 0.009 Rio Grande do Sul, BR (Chies and Hutz, 2003)

Amerindian Chiriguano 42 0.012 � 0.012 Northwest Argentina, AR (Mangano et al., 2001)

Argentinean 751 0.03 � 0.004 ————, AR (Gonzalez et al., 2001)

Chilean 62 0.024 � 0.014 ————, CL (Desgranges et al., 2001)

n: number of individuals; freq.: frequency; ISO 3166-1 codes indicate countries.



screenings of about 700 Afro-Americans, 700 Euro-Ame-
ricans and 785 Chinese (Ansari-Lari et al., 1997; Carring-
ton et al., 1997; Zhao et al., 2005). The presence of the D32

allele in the Guarani seems to be the result of gene flow
from Neo-Brazilians, as suggested for Mura and Kaingang
in another study (Hunemeier et al., 2005).

The high D32 frequency in Euro-Brazilians is similar
to the frequencies found in Central Europe (Stephens et al.,
1998). It is compatible with the greater European compo-
nent in the Euro-Brazilian population of the Paraná State, in
comparison to other, previously analysed Brazilian popula-
tions of predominantly European ancestry (Probst et al.,
2000). The D32 frequency in the Mennonite subsample is
two times higher than in the non-Mennonite Euro-Brazilian
subsample and equals the high D32 frequencies in North
Europe (Stephens et al., 1998; Yudin et al., 1998). The fre-
quency of L55Q, another allele with likely European origin,
is three times higher in Mennonite compared to non-
Mennonite Euro-Brazilians. The Mennonites have Friesian
origin (North of Germany and the Netherlands) and exist as
a religious Anabaptist group since the second half of the
XVI century. The majority of individuals in this subsample
are direct descendants from 200 Mennonite families that
left their villages in the Ukraine and in Siberia and arrived
in South Brazil in 1930 (Pauls Jr., 1976). Thus, a founder or
bottleneck effect associated to random genetic drift most
probably caused the rise in the D32 and L55Q allelic fre-
quencies in this population.

The R223Q allele is the most frequent variant in the
Chinese population. It is equally distributed in HIV-1 in-
fected and non-infected Chinese groups and has similar
HIV-1 co-receptor activity as the major CCR5 allele (Zhao
et al., 2005). Other populations have thus far not been in-
vestigated. We also found this allele among the Orien-
tal-Brazilians.

The cysteine residue we found mutated to phenyl-
alanine at codon 323 (p.Cys323Phe) in two heterozygote
Guarani individuals is not conserved in CCR2, the homolo-
gous C-C chemokine-receptor protein with the highest se-
quence similarity to CCR5 (75%). The substitution of the
same residue by alanine was found to decrease the expres-
sion of the CCR5 protein on the cellular membrane by pre-
venting receptor palmitoylation (Blanpain et al., 2001). A
change in the secondary structure and function may also be
expected from the replacement of this residue by phenyl-
alanine. In the Kaingang, sequencing revealed another new
allele (g.2964A > G) causing the substitution of tyrosine by
cysteine at the otherwise conserved residue 68
(p.Tyr68Cys) in the second transmembrane part of the pro-
tein. This allele seems to be very common in the Kaingang
population and restricted to it. Possible protective effects of
both alleles regarding HIV-1 infection and progression to
AIDS have to be established in appropriate cohorts attend-
ing Amerindian(-derived) populations.

In summary, we studied the distribution of the CCR5
coding region alleles in various Brazilian populations and
noticed a high D32 frequency in the Euro-Brazilian popula-
tion of the Paraná State in South Brazil. The D32 frequency
is even higher among the Mennonites and is the highest
thus far reported for Latin America. We also identified two
new coding CCR5 mutations in the Amerindian popula-
tions, whose functional characteristics should be defined
and considered in epidemiological investigations about
HIV-1 infection and AIDS incidence in Amerindian popu-
lations.
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