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Abstract

Purpose

Develop and evaluate an electrochemical method to identify healthy individuals, malignant

hematopathic patients and solid tumor patients by detecting the leukocytes in whole-blood.

Methods

A total of 114 individual blood samples obtained from our affiliated hospital in China (June

2015- August 2015) were divided into three groups: healthy individuals (n = 35), hematologic

malignancies (n = 41) and solid tumors (n = 38). An electrochemical workstation system was

used to measure differential pulse voltammetry due to the different electrochemical behav-

iors of leukocytes in blood samples. Then, one-way analysis of variance (ANOVA) was

applied to analyze the scanning curves and to compare the peak potential and peak current.

Results

The scanning curve demonstrated the specific electrochemical behaviors of the blank

potassium ferricyanide solution and that mixed with blood samples in different groups. Sig-

nificant differences in mean peak potentials of mixture and shifts (ΔEp (mV)) were observed

of the three groups (P< = 0.001). 106.00±9.00 and 3.14±7.48 for Group healthy individuals,

120.90±11.18 and 18.10±8.81 for Group hematologic malignancies, 136.84±11.53 and

32.89±10.50 for Group solid tumors, respectively. In contrast, there were no significant dif-

ferences in the peak currents and shifts.

Conclusions

The newly developed method to apply the electrochemical workstation system to identify

hematologic malignancies and solid tumors with good sensitivity and specificity might be

effective, suggesting a potential utility in clinical application.
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Introduction
Hematologic malignancies have become a big threat to individuals of all ages and affected the
living quality of people worldwide [1, 2]. Although latest and suitable chemotherapy drugs on
targeted tumors are important to improve the clinical outcomes of patients with hematologic
malignancies, accurate early detection should be prioritized. Current methods and techniques in
the diagnosis of hematologic malignancies include biopsy [3], peripheral blood testing [4], bone
marrow biopsy [5], immunology testing [6], flow cytometry [7], radiologic examination[8],
chromosome analysis and DNA sequencing technology [9], etc. Due to the disadvantages such
as high cost, time consuming, complexity, and radioactive pollution of above mentioned clinical
detection techniques [10], it is interest to develop a new user-friendly and cost-effective technol-
ogy with good sensitivity to detect hematologic malignancies. Recently, the superior advantages
of bio-electrochemistry applied in clinical diagnostics such as high sensitivity, portability and
rapid detection have attracted attention of manyresearchers and physicians [11–14].

Electrochemical methods have been widely used in molecular biology [15, 16] and cytobiol-
ogy [17, 18]. For example, using differential pulse voltammetry (DPV) to detect the leukemia
cells with a limit of 1.0×104 cell/mL by methoxysilyl-butyrylchitosan/Au nanoparticles (NPs)
was reported by Du and colleagues [19]. Similar result was found by He et al. [20] with the leu-
kemia detection limit of 1.0×103 cell/mL after incubation time of 120 min using Au NPs in
DPV. Moreover, Zhu and coworkers [21] developed a novel electrochemical platform based on
aptamer–cell–aptamer sandwich architecture for the detection of Michigan cancer foundation-
7 human breast cancer cells with high selectivity and sensitivity. Physiological activities mainly
happen with directional transfer of electric charge [22] simultaneously from cells both in
excitement and quiescent stage [23]. The biochemical reaction of cells, which is just like the
electrochemical reaction in electrodes, is the foundation for basic physiology. In recent years,
accumulating researches have demonstrated the feasibility of detection and identification of
cells by electrochemical methods to distinguish normal and cancer cells[24, 25], as well as to
identify drug-resistant or sensitive cells [26, 27] according to the particular responses in the
electrode. However, there were few reports focusing on the application of electrochemical
methods in the analysis of human blood. Several recent studies have identified the characteris-
tics of different cells [28, 29] or drugs [30, 31] via detecting impedance of cells. The aim of this
study was to develop and evaluate a method to identify hematologic malignancies and solid
tumors by detecting the electrochemical characteristics of leukocytes in the peripheral blood of
patients, which might be effectively used in clinical application.

Materials and Methods

Ethics Statement
Human whole-blood samples were obtained from normal persons and patients at the depart-
ment of clinical laboratory in Zhongda Hospital, Affiliated to Southeast University in accor-
dance with the standard operating protocols of the National Guide to Clinical Laboratory
Procedures (Third Edition, 2006) that were approved by the Department of Medical Adminis-
tration, Ministry of Health, People’s Republic of China. Our study was included in the Key
Medical Projects of Jiangsu Province (BL2014078) which had been reviewed and approved by
the local ethics committee of Zhongda Hospital, Affiliated to Southeast University
(2015ZDSYLL024.1). All procedures used in this study were adhered to Declaration of Helsinki
Ethics, and verbal informed consent was obtained from all participants before enrollment.

Because it only required a small amount blood of each samples for the experiment (about
0.5 mL), the experimental subjects were the residual peripheral blood samples derived from
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laboratory department and had been applied for medical testing. We didn’t need to take addi-
tional information and blood samples from them. In this study, the obtained electrochemical
test data were going to be analyzed anonymously, such as ages and gender. Moreover, the
patients’ health, safety and privacy were not affected, we could be ensured that the obtained
data were only used for this research, the information were confidential and protected as well.
Therefore, the ethic committee of Zhongda Hospital, Affiliated to Southeast University specifi-
cally decided that we didn’t need the written informed consent, and the verbal informed con-
sent was obtained from all study participants after the nature of the study was explained by
senior physicians who were in our study, and documented by the researchers in our study.

Patient Population
From June to August 2015, 114 whole-blood samples were obtained randomly from the depart-
ment of clinical laboratory in Zhongda Hospital, Affiliated to Southeast University. We divided
them into three groups according to their different physical condition. There were 35 people in
Group healthy individuals, 41 people in Group hematologic malignancies and 38 people in
Group solid tumors. The data were extracted from the electronic medical records of Zhongda
Hospital, such as genders and ages. The demographic statistics and clinical characteristics are
shown in Table 1. The patients with malignant hematopathic were diagnosed by senior physi-
cians referring to the bone marrow cell morphology and pathology, and the patients with solid
tumor were diagnosed via biopsy.

Instruments and Reagents
Whole-blood samples were performed on a EmStat Electrochemical Workstation (EmStat in
PalmSens BV, Netherlands) at room temperature [32].The three-electrode system, screen-
printed carbon electrode (SPCE) were provided by State Key Laboratory of Bioelectronics
(Chien-Shiung Wu Laboratory), Southeast University and used in all electrochemical measure-
ments (Fig 1). Experiments were carried out in the potassium ferricyanide solution with the
three-electrode system, which was connected with the electrochemical workstation to measure
differential pulse (DPV). The measurement parameters for DPV were chosen as follows, scan-
ning voltammetry from -0.2 V to 0.4 V, scanning rate 25 mV/s and pulse period 0.2 s.

The ammonium chloride aqueous solution was prepared by dissolving 0.83 g NH4Cl in 100
mL deionized water to dissociate erythrocytes, the phosphate buffer solution (PBS, 0.01 mM,
pH = 7.4) was used as a medium, and the potassium ferricyanide solution (0.01 mM) was used
as redox probe. All the experimental water was ultrapure water and the experiments were car-
ried out at ambient temperature.

Processing and Detecting of Samples
The isolation of leukocytes was achieved by centrifugation the whole-blood sample in 0.83%
NH4Cl solution at 1500 rpm for 15 min twice and removal of fragmentized erythrocyte. After

Table 1. The demographic statistics and clinical characteristics of patients.

Group Age (years) Male/Female

Healthy individuals 46.00±5.63 16/19

Hematologic malignancies 48.24±18.72 21/20

Solid tumors 52.58±13.12 18/20

P-value 0.884 0.123

doi:10.1371/journal.pone.0153821.t001
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that, the isolated leukocytes were washed once by PBS once and then suspended in PBS
medium (300 μL). We extracted 50 μL leukocyte suspension and dripped it into 50 μL potas-
sium ferricyanide solution.

Thereafter, we scan the 30 μL potassium ferricyanide solution (0.01 mM) on the surface of
electrode via DPV as the standard comparison. After washing the electrode with the deionized
water once and drying it, 30 μL potassium ferricyanide solution mixed with leukocyte suspen-
sion onto the surface of dry electrode was scanned repeatedly and a stable scanning curve was
obtained.

Statistical Analysis
Data were expressed as mean±standard deviation (SD) (normally distributed data) or as per-
centage frequencies. The comparisons were performed by one-way analysis of variance
(ANOVA) at significance levels of p<0.05, and then the TurKey method was used for all pair-
wise comparisons after ANOVA tests. All the analysis were made using a standard statistical
package (SPSS for Windows Version 18.0; Chicago, IL).

Results
As shown in Fig 2, the scanning curves represented the electrochemical behaviours of the blank
potassium ferricyanide solution, as well as that mixed with leukocyte suspension. The peak
potential, the peak current, and the calculated shifts were shown in Table 2. The mean peak
potentials of potassium ferricyanide solution without leukocyte suspension were 102.86±8.07,
102.81±7.99, and 103.95±7.09 mV for Group healthy individuals, Group hematologic malig-
nancies and Group solid tumors, respectively, while the numbers with leukocyte suspension
were 106.00±9.00, 120.90±11.18, 136.84±11.53 mV for the three groups. The mean shifts of
peak potential (ΔEp (mV)) were 3.14±7.48 mV in Group healthy individual, 18.10±8.81 mV in
Group hematologic malignancies and 32.89±10.50 mV in Group solid tumor, with significant
difference among them (P< = 0.001). The median peak potentials of potassium ferricyanide
solution with/without leukocyte suspension, and the median shifts of peak potential (ΔEp
(mV)) have presented in Table 3. All the pairwise comparisons were also significantly different
when the TurKey method was applied. However, the mean shifts peak currents of potassium

Fig 1. A screen-printed three-electrode system.

doi:10.1371/journal.pone.0153821.g001
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ferricyanide and the mixture were of no significant difference among the three groups
(P = 0.470, 0.068, 0.257).

As shown in Fig 3, there were slight differences in the relevant peak potentials of blank
potassium ferricyanide solution among the three groups, but the situation was total different
when that was mixed with leukocyte suspension. To be specific, the peak potential shifts

Fig 2. Typical curves of the potassium ferricyanide solution (0.01 mM) with/without leukocyte suspension scanned by the differential pulse
voltammograms (DPV) techquine, scanning voltammetry from -0.2 V to 0.4 V and a 0.2 s pulse period.

doi:10.1371/journal.pone.0153821.g002

Table 2. The characteristics of the scanning curves. The standard deviations in electrochemical behavior of different samples.

Groups Peak potential (mV) Shifts of peak
potential (mV)

Peak current (μA) Shifts of peak
current (μA)

potassium ferricyanide sample potassium ferricyanide sample

Healthy individuals 102.86±8.07 106.00±9.00 3.14±7.48 1.28±0.51 0.85±0.41 0.43±0.54

Hematologic malignancies 102.81±7.99 120.90±11.18 18.10±8.81 1.18±0.58 0.68±0.26 0.50±0.49

Solid tumors 103.95±7.09 136.84±11.53 32.89±10.50 1.13±0.40 0.80±0.31 0.34±0.24

P-value 0.767 < = 0.001* < = 0.001* 0.470 0.068 0.257

* Statistically significant value

doi:10.1371/journal.pone.0153821.t002
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showed gradual increase in the order of Group healthy individuals, Group hematologic malig-
nancies and Group solid tumors. In addition, mean shifts of peak potential in three groups
were also detected (Fig 4), which follows the order: Group healthy individuals< Group hema-
tologic malignancies < Group solid tumors. The above results suggested that it is possible to
utilize this technique to identify different types of blood samples through corresponding peak
potential shifts. More broadly, it can be used to readily detect whether a person is either healthy
or with hematologic malignancies or solid tumors.

Discussion
Reports have shown that the redox system in living cells and the electrode may be connected
by proteins across the membrane system of the cells [33–35]. Coenzyme A (CoA) existing in
the cell wall played a similar role of mediating an electron transfer between the cells and the
electrode [36]. Leukocytes in human blood have different metabolisms under different physio-
logical and pathological conditions [37–40]. The abnormal metabolism of malignant cells and
the heteromorphosis of plasma membrane would further change proteins and CoA, resulting
in the abnormal electron transfer between the cells and the electrode.

It is well known that living organisms are complex electrochemical systems [41]. Redox cen-
ters in living cells would give response to the electrode when they were under the potential scan
[42], however, it would not apply to tumor cells, for which are in hypoxic environment [43,
44]. [Fe(CN)6]3/[Fe(CN)6]4 was generally used as the redox probe to measuring the electron
transfer resistivity of the electrode [45]. The redox reaction of potassium ferricyanide (III) was
very reversible [46–48], while the electrode redox of leukocytes were totally irreversible

Table 3. The characteristics of the scanning curves. The median in electrochemical behavior of different samples.

Groups Peak potential (V) Shifts of peak
potential (V)

Peak current (μA) Shifts of peak
current (μA)

potassium ferricyanide sample potassium ferricyanide sample

Healthy individuals 0.09999 0.105 0.005 1.198 0.705 0.37

Hematologic malignancies 0.09999 0.12 0.02 1.088 0.594 0.431

Solid tumors 0.108 0.135 0.0325 1.1315 0.7402 0.2705

doi:10.1371/journal.pone.0153821.t003

Fig 3. Box plots of peak potentials for blank potassium ferricyanide solution (0.01 mM) and that mixed
with leukocyte suspension.

doi:10.1371/journal.pone.0153821.g003
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processes [49]. Based on the above discussion, we chose a potassium ferricyanide solution as
the standard comparison in this study. The redox reaction of the potassium ferricyanide solu-
tion mixed with leukocyte suspension (30 μL) that extracted from blood samples was different
from that of blank potassium ferricyanide solution, which could further lead to the changes of
the scanning curves (Fig 2). The results of our experiments showed that the mean shifts (ΔEp
(mV)) of the peak potentials between the potassium ferricyanide solution and the mixture
were 3.14±7.48, 18.10±8.81, 32.89±10.50 mV in Group physical examinees, Group hematologic
malignancies and Group solid tumor respectively (Table 2). The significant difference was a
result of the different electron transfer between the cells and the electrode, which might be due
to the changes of proteins and CoA in the malignant cells [33–40].

When the mixture of and leukocyte suspension was placed onto the surface of electrode, the
shifts of the peak potentials, along with current peaks were both lower than blank potassium
ferricyanide solution. The influence of current peak was reported to be associated with the con-
centration of the solution rather than the types of the solute [50, 51]. Huan et al. reported the
peak current of potassium ferricyanide scanned by differential pulse voltammetry (DPV)
decreased linearly with increasing L-serine concentration from 10 to 100 mM [52]. Laputkova

Fig 4. Box plots of potassium hexacyanoferrate solution (0.01 mM) mixed with samples fromGroup healthy individuals, Group hematologic
malignancies and Group solid tumor.

doi:10.1371/journal.pone.0153821.g004
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et al. reported both the oxidation and the reduction current peaks of potassium ferricyanide
were decreasing at the presence of glucose in concentration range from 10 to 320 mM by
means of cyclic voltammetry (CV) [53]. In conclusion, the concentration of cell affected the
current peak, whereas, the type of the cell affected the peak potentials. In the extreme case that
there were ultralow concentration of cancer cells existing, we should also detect them and dis-
tinguish the blood sample from healthy people. In our experiment, the mean shifts between the
current peak of the blank potassium ferricyanide solution and that mixed with leukocyte sus-
pension were 0.43±0.54, 0.50±0.49, and 0.34±0.24 μA in Group healthy individuals, Group
hematologic malignancies and Group solid tumor respectively, which were no significant dif-
ference (P = 0.257) among them (Table 2). Therefore, we could infer that the current peak
didn’t help in the identification of different blood samples, which was the purpose of our
research.

There are still some limitations in our research. Firstly, the types of blood samples were not
further discriminated, for which leukemia and lymphadenoma may present slight difference in
electrochemical behaviours. Moreover, the patients were in the different stages of chemother-
apy, which may also affect the electrochemical characteristics of the leukocytes. Finally, the
number of patients was not enough and all patient data were from the same hospital, which
had adverse impact on the results of our experiment. In future studies, increasing the number
and collecting multi-center information of patients would improve the clinical application
value of monitoring results.

Conclusion
According to the significant difference among the scanning curves of healthy individuals and
patients with either hematologic malignancies or solid tumors, the electrochemical detection
method may be a selective and convenient technique for the identification of hematologic
malignancies and solid tumors in clinical applications. However, improving the accuracy and
stability for the detection of particular hematologic malignancies needs further research.

Supporting Information
S1 Initial Data. The data of samples are detected by DPV of electrochemical workstation.
(XLS)
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