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Abstract: Human endogenous retroviruses (HERVs) have been implicated in a variety of human
diseases including cancers. However, technical challenges in analyzing HERV sequence data have
limited locus-specific characterization of HERV expression. Here, we use the software Telescope
(developed to identify expressed transposable elements from metatranscriptomic data) on 43 paired
tumor and adjacent normal tissue samples from The Cancer Genome Atlas Program to produce
the first locus-specific retrotranscriptome of head and neck cancer. Telescope identified over 3000
expressed HERVs in tumor and adjacent normal tissue, and 1078 HERVs were differentially expressed
between the two tissue types. The majority of differentially expressed HERVs were expressed
at a higher level in tumor tissue. Differentially expressed HERVs were enriched in members of
the HERVH family. Hierarchical clustering based on HERV expression in tumor-adjacent normal
tissue resulted in two distinct clusters with significantly different survival probability. Together, these
results highlight the importance of future work on the role of HERVs across a range of cancers.
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1. Introduction

Human endogenous retroviruses (HERVs) make up approximately 8% of the human genome,
but their role in disease remains poorly understood [1–5]. Expression of human endogenous retroviruses
is altered in numerous cancers, including melanoma [6,7], breast cancer [8–10], and ovarian cancer [11].
Members of multiple HERV families, including HERVH, HERVK, HERVF, HERVR, and HERVS, have
been identified in cancer cell lines [12]. HERVs have been linked to oncogenesis at the DNA and protein
level, but there is also evidence of beneficial HERV effects [13]. Therefore, the relationship between
HERV expression and cancer is complex, and may have both positive and negative effects on cancer
progression and clinical outcomes. Although many studies have characterized HERV expression
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in cancer and other diseases, the high degree of repetitive and highly similar sequences in HERV elements
have made locus-specific characterization of HERVs a significant challenge. Thus, characterizing
the cancer retrotranscriptome has remained an elusive but important goal for cancer research.

Head and neck squamous cell carcinoma (HNSCC) affects more than 700,000 people per
year worldwide, with a mortality rate that exceeds 50% [14]. HNSCC typically originates from
the epithelial tissues of the oral cavity, larynx, oropharynx, or hypopharynx. HNSCC is a highly
heterogeneous disease, with distinct subtypes of different etiologies and presenting with different
molecular changes [15]. In particular, human papillomavirus (HPV) status, which is a risk factor
for developing HNSCC, has also been shown to result in a distinct subtype of HNSCC [16]. Several
existing studies have examined the transcriptome in HNSCC [17–19] and reviewed in Leemans
et al. [15] using protein-coding and non-coding genomic annotations. A few studies have
examined HERV family-level expression in the pan-cancer The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) cohort [20–23].
Yet no study to date has examined the implications of locus-specific HERV expression specific to HNSCC.

Here, we apply Telescope [24], a computational software pipeline which provides accurate
estimation of transposable element expression resolved to specific genomic locations, to 43 paired
tumor and tumor-adjacent normal tissue RNA-seq datasets available from TCGA [25]. This work
provides the first locus-specific retrotranscriptomic analysis of HNSCC.

2. Materials and Methods

2.1. TCGA Data

Paired-end RNA-sequencing data were obtained from TCGA [25]. A total of 43 head and neck
cancer cases with paired tumor and healthy tissue samples were downloaded from the Genomic Data
Commons (GDC) Data Portal [26]. Corresponding clinical data, including tumor stage, tumor location,
vital status, and tobacco history, were downloaded using the R package TCGAbiolinks [27] and further
supplemented by clinical data provided in [17].

2.2. Patient Demographics

The majority of the cancer cases were from the oral cavity (32/43); the remainder of the tumors
were laryngeal in origin (11/43). Although HNSCC also occurs in the oropharynx, none of the available
paired RNA-seq samples originated from oropharyngeal tumors. Tumor samples represented stages
I–IVa (stage I: 2; stage II: 15; stage III: 8; stage IVa: 17; not reported: 1). Patients were majority male
(29/43), and mostly current or former smokers. Patients without tobacco history data (8/43) were
categorized as smokers, as in [17].

2.3. Sequence Data Quality Control and Trimming

Files were downloaded from GDC as BAM files (*.bam) and were converted to FASTQ (*.fastq) for
quality control and trimming using the SamToFastq tool in Picard version 2.6 [28]. The downloaded
files contained between 37,379,141 and 116,430,322 reads, with an average of 73,776,707 ± 1,841,593
(mean ± standard error). Illumina adapters were removed and reads were trimmed for quality using
Trimmomatic version 0.33 [29], removing leading and trailing bases below quality 3 and a 4-base
sliding window with a quality threshold of 15. Reads with a length less than 36 bases after trimming
were discarded. On average, 95% of reads remained after trimming, for a final range of 34,997,325 to
109,343,593 trimmed reads per sample.

2.4. Retrotranscriptome Quantification

Trimmed reads were aligned to the human genome (hg38) using Bowtie2 [30], as described in [24].
Briefly, the Bowtie2 alignment options were set to perform a local alignment search (–very-sensitive-local),
allowing up to 100 alignments per read (-k 100), with a minimum alignment score threshold such
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that fragments with ~95%+ sequence identity would be reported. Overall alignment rates ranged
from 86 to 93%. Bowtie2 alignments were then provided to the Telescope v1.0.2 assign module
using the HERV annotation provided by [24] and theta prior of 200,000. Final count numbers were
loaded into DESeq2 [31] using the DESeqDataSetFromMatrix function, with tissue origin (larynx or oral
cavity) and tissue type (normal or tumor) as variables in the model formula. The variance-stabilizing
transformation was used for principal component and clustering analysis. Normalization and
differential expression analysis were performed using the DESeq function in DESeq2 [31], which
implements a negative binomial model and Wald test. A false-discovery rate (FDR) threshold of 0.05
was used for HERV expression. The full output of DESeq2 analysis of differential HERV expression is
provided in Supplementary Table S1.

Hierarchical clustering of the top 100 differentially expressed HERVs was performed using
pvclust [32]. Chi-squared tests were performed between the two tumor clusters and between the two
normal clusters to determine statistical differences in gender, tissue type, smoking history, or early
(stage I–II) vs. late (stage III–IVa) tumor stage. Statistical significance was determined at p < 0.05.

2.5. Transcriptome Quantification

Gene expression was quantified using kallisto v0.43.1 [33] using the Ensembl v96 transcriptome
assembly [34]. The kallisto index was built using default settings [33]. Quantification was performed
using kallisto quant with default settings. The resulting abundance tables were imported into R using
tximport [35] and the transcript-to-gene mapping file provided with the Ensembl v96 index files
(https://github.com/pachterlab/kallisto-transcriptome-indices). The model formula was specified
as described above, with tissue origin (larynx or oral cavity) and tissue type (normal or tumor).
On average, kallisto pseudoaligned 95% of reads. The variance-stabilizing transformation was used for
principal component and clustering analysis. Normalization and differential expression analysis were
performed using the DESeq function in DESeq2 [31], which implements a negative binomial model and
Wald test. A FDR threshold of 0.01 was used for gene expression. The full output of DESeq2 analysis
of host differential expression is provided in Supplementary Table S2.

2.6. Determination of HPV Status

HPV status was evaluated using PathoScope 2.0 [36] because the TCGA metadata did not
include HPV status on all patients from which RNA-seq data were collected. Trimmed reads
were aligned to the representative and reference viroid and virus genome databases from GenBank
(https://www.ncbi.nlm.nih.gov/genbank/) using the PathoScope 2.0 MAP module. Reads that aligned
to the human genome (hg38) were filtered from the alignment. Taxonomic assignment was performed
using the PathoScope 2.0 ID module. The R package taxonomizr [37] was used to retrieve full
taxonomic lineages from taxonomy identifiers, and composition and taxonomic data were imported
into the R package phyloseq [38] for further manipulation. HPV status was defined by the presence
of >10 reads mapped to the genus Alphapapillomavirus. Two patients met the criteria for being HPV
positive in this study.

2.7. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) [39] was performed to determine enrichment of HERV
families in tumor tissue. A list of HERVs ranked by differential expression was calculated by
sign(logFC)×−log10(adjusted p-value). A custom gene set for HERV families was created using
the HERV annotation generated in [24]. The ranked gene list and custom gene set database were
provided to GSEAPreranked (GSEA v4.0.0), and analysis was performed with 1000 permutations
and the “classic” enrichment statistic. A FDR cutoff of 0.25 was used according to the author’s
instructions [39].

https://github.com/pachterlab/kallisto-transcriptome-indices
https://www.ncbi.nlm.nih.gov/genbank/
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2.8. Clustering and Survival Analysis

In order to identify and characterize subtypes of HNSCC, clustering was performed on
variance-stabilized HERV expression data from tumor and normal tissue. Clustering was performed
separately on each tissue type using a Euclidean distance matrix and the “ward.D2” method
implemented in hclust [40]. In each case, clusters were identified using the function cutree. Tumor
samples were divided into two clusters. One outlier sample was removed. Survival analysis was
performed on the two clusters which incorporated 38 samples. Normal samples were divided into two
clusters. Survival analysis was performed using the R package survival v2.44 [41,42]. According to
the approach implemented in [17], survival times were censored at 5 years because most cancer-related
events occur before that time. For patients recorded as alive, data were censored at last follow up.
Patients without death or follow-up data were excluded from the analysis, which left 39 patients in total.
Survival curves were fit using the Kaplan–Meier model, stratifying by cluster membership. Significance
was determined with the log-rank test at a p-value threshold of 0.05, but because we conduct tests
independently on normal and tumor clusters, we also employ the Benjamini–Hochberg [43] multiple
test correction for the two clusters at the p-value threshold of 0.10. Such corrections have not been
routinely performed in prior work on TCGA data [17,44,45]. Resulting curves were plotted using
the ggsurvplot function in survminer [46].

3. Results

3.1. HERV Expression

Using Telescope [24], we identified 3520 HERVs expressed at a minimum of 5 counts in at least 2
samples across tumor and adjacent normal tissue from HNSCC cancer cases. Tumor tissue expressed
significantly more HERVs than adjacent normal tissue; on average, 1846 HERVs were expressed
in tumor samples compared to 1550 HERVs expressed in normal samples. The HERV expression
pattern between tumor and normal tissue is distinct, as shown by principal component analysis
(Figure 1A).

Figure 1. Human endogenous retrovirus (HERV) expression in head and neck squamous cell carcinoma
(HNSCC) tumor and paired normal samples. (A) Principal component analysis, with shape and color
indicating tumor vs normal tissue. (B) Volcano plot of differential expression between tumor and normal
tissue. Positive log-fold change indicates higher expression in tumor tissue. The dashed horizontal line
indicates adjusted p-value threshold of 0.05. The dashed vertical line indicates a log2-fold change of +/−1.5.

Out of 3520 identified HERVs, 1078 were differentially expressed between tumor and normal
samples. Of these, the majority (802) were expressed at a higher level in tumor tissue compared to
normal tissue (Figure 1B).
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GSEA was performed to determine whether differentially expressed HERVs were enriched
in particular HERV families. Among upregulated HERVs in tumor tissue, the HERVH and HARLEQUIN
families were significantly enriched at q < 0.25 (Supplementary Table S3). The HERVE, HML6, PRIMA4,
and HERVEA families were all significantly enriched (q < 0.25) among downregulated HERVs
(Supplementary Table S4).

3.2. HERV Expression, Phenotypic and Genotypic Associations

The expression signature of top differentially expressed HERVs differed based on the tissue of
origin. Clustering of the top 100 differentially expressed HERVs resulted in two distinct tumor clusters
and two distinct normal clusters (Figure 2), which had significantly different tissue origins (chi-squared
test, p < 0.05). In both cases, one cluster was dominated by oral cavity tumors (normal cluster: 10/10;
tumor cluster: 22/23), which included mouth and tongue tumors, as well as tumors which overlapped
the lip, oral cavity, and pharynx. The second cluster in both cases was split between oral cavity and
laryngeal tumors (normal cluster: 19/30 oral cavity; tumor cluster: 13/23 oral cavity). The sublocation
of oral cavity tumors varied between the two clusters; those which clustered with laryngeal tumors
were more likely to be from the tongue; in contrast, the majority of oral cavity tumors in the other
cluster corresponded to tumors which overlapped the lip, oral cavity, and pharynx. Smoking status,
gender, age at diagnosis, and tumor stage (early vs. late) were not significantly different between
the two tumor clusters or between the two normal clusters. Three normal tissue samples clustered with
tumor samples. In all three cases, the paired tumor sample was found in the same cluster, and in two
(HNSC06 and HNSC18), the tumor and normal sample clustered tightly together. These results may
be indicative of tumor-like expression patterns in some tumor-adjacent tissues. Although HPV status
is an important risk factor in HNSCC, only two patients from this cohort were HPV positive (samples
HNSC16 and HNSC27). Interestingly, HPV-positive patients in this analysis did not cluster together,
indicating that other variables were driving the expression patterns in these cases.

Figure 2. Expression for the top 100 differentially expressed HERVs. Heatmap colors represent
the difference between each sample’s expression level and the mean expression level of each HERV
(sample expression−mean expression). Row colors indicate HERV family membership. HERV families
with five or fewer members present in the top 100 differentially expressed HERVs are presented as “other”.
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Clustering of the top 100 differentially expressed HERVs was performed on variance-stabilized
expression data using the method ward.D2 in R [40]. An ordered list of the HERV loci shown in this
figure is available in Supplementary Table S5. Heatmap was generated with pheatmap [47], with
the viridis [48] and RColorBrewer color palette [49].

In order to compare HERV expression with non-HERV gene expression, we identified differentially
expressed host genes with kallisto [33]. Among significantly differentially expressed genes were
many genes identified in previous studies, including TP63, CDKN2A, and FADD [17,50,51]. Similar
to HERV expression, principal component analysis showed distinct expression patterns between
tumor and normal tissue (Supplementary Figure S1A). As previously described [17], many genes are
differentially expressed between these tissue types. Out of 33,260 genes expressed in this dataset,
4348 were significantly upregulated and 4295 were significantly downregulated (FDR < 0.01) in tumor
tissue (Supplementary Figure S1B). Differentially expressed genes were found throughout the genome,
similar to patterns observed for HERVs (Figure 3).

Figure 3. Circos plot showing differentially expressed host genes (inner ring) and HERVs (outer ring)
across chromosomal locations. Values are plotted on a −log (adjusted p-value) scale. Color indicates
degree of significance, with the darkest colors corresponding to lowest significant p-value (0.05), with
the brightest red corresponding to an adjusted p-value of p < 0.00000000001. Plot was generated using
circlize in R [52].
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3.3. Survival Analysis

In order to evaluate the impact of HERV expression patterns on subtypes of HNSCC which
are associated with patient survival probability, we performed hierarchical clustering on the HERV
expression data followed by survival analysis. For this analysis, hierarchical clustering was performed
separately on tumor and normal tissue, using all HERV expression data.

Two clusters were identified from tumor tissue after removing a single outlier sample. Gender,
smoking status, and tumor stage (early vs. late, as described previously) were not significantly
different between these two clusters. Differences in tissue origin were significant, with one cluster
composed entirely of oral cavity tumors, and the other split between laryngeal and oral cavity tumors
(chi-squared test, p < 0.05). These clusters were also evident in the principal component analysis
(Supplementary Figure S2). For the two tumor clusters, probability of patient survival was not
significantly related to cluster membership (Supplementary Figure S3).

Similarly, two clusters were identified from normal tissue (Supplementary Figure S4). However,
gender, tumor stage, tissue origin, and smoking status were not significantly different between these
clusters (chi-squared test, p < 0.05). Patient survival probability differed significantly between the two
normal tissue clusters (Figure 4). There was no significant enrichment of any HERV family between
the two clusters, as determined by GSEA.

Figure 4. Survival analysis of HNSCC subtypes resulting from hierarchical clustering of HERV
expression in tumor-adjacent normal tissue (Supplementary Figure S4). Vertical lines indicate censored
data. Curves were fit using the Kaplan–Meier model and statistical significance was calculated using
the log-rank test.

4. Discussion

HERVs have been implicated in a wide range of cancers, including breast, prostate, lymphoma,
melanoma, and ovarian cancers (reviewed in [13]). Much of the work linking HERVs and cancer has
focused on the HERV-K family, the most active family of HERVs, many of which are full length or nearly
full length [13]. HERVK (HML2) has even been identified as a biomarker for breast cancer [53,54].
Interestingly, HERVK (HML2) was not implicated in our analysis of HNSCC cancers, whereas HERVK
(HML6) was identified as being significantly enriched in the downregulated set of HERVs, indicating
that although the HERVK has been implicated in many other types of cancers, not all members of this
superfamily of retroelements are involved in all cancers.
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In our analysis, the HERVH family was significantly enriched in tumor tissue in HNSCC. Although
HERVH is not the most commonly implicated HERV in cancer, HERVH has been identified in various
cancer cell lines [12,55] and pan-cancer studies [23]. Kong et al. [23] observed overexpression of
HERVH-internal, the proviral portion of HERVH, in six cancer types including HNSCC. HERVH is one
of the most abundant HERV families, with thousands of HERVH elements in the human genome [56].
Despite its prevalence, very few HERVH genes encode intact envelope proteins [56]. Future work
should assess whether HERVH is a bystander or serves a functional role in HNSCC.

Other HERV families were found at either higher levels (HARLEQUIN) or lower levels (HERVE,
HML6, PRIMA4, and HERVEA) in tumor tissues compared to adjacent normal tissues. Little is known
about the role of these HERV families in HNSCC or other cancers. Future work should explore potential
roles of these smaller HERV families in HNSCC.

Here, we show that HERV expression patterns as defined by hierarchical clustering
in tumor-adjacent normal tissue is related to altered probability of patient survival. A similar
result was previously shown by [57], who identified two clusters of non-HERV gene expression
in normal tissue which were associated with differential survival. Similar to our findings, differential
survival was not observed when clustering expression from tumor tissue. Although it may seem
counterintuitive that expression from tumor tissue does not predict patient survival and tumor-adjacent
normal tissue does, similar results have been found by a number of research groups. Transcriptional
profiles were analyzed from six TCGA datasets and found that tumor-adjacent normal tissue was more
predictive of patient survival than tumor tissue [58]. The authors hypothesized that tumor-adjacent
normal tissue may reflect a patient’s overall immunity or metabolic level, and therefore may be more
informative of patient outcomes than genome dysregulation found in tumor tissue [58]. Tumor-adjacent
normal tissue is known to be morphologically and phenotypically distinct from normal tissue and
possesses molecular alterations that make it a unique intermediate between tumor tissue and true
normal tissue [59]. Furthermore, gene expression in tumor-adjacent normal tissue has been used
to predict survival in colorectal cancer patients [60], predict clinical outcome in breast cancer [61],
and identify breast cancer subtypes [62]. Our findings provide additional evidence that not only are
gene patterns distinct in tumor-adjacent normal tissue, but also HERV expression patterns. Therefore,
future work should evaluate the links between HERV expression and other tumor characteristics which
affect patient survival.

5. Conclusions

Here, we provide the first locus-specific analysis of HERV expression in head and neck cancer.
We found that many HERV loci are expressed in both tumor and tumor-adjacent normal tissue, with
many differentially expressed loci between the two tissue types. Interestingly, members of the HERVH
family were expressed at higher levels in tumor tissue, whereas HERVK (HML2) expression, which
has been associated with other types of cancer, did not vary. Furthermore, HERV expression patterns
in tumor-adjacent normal tissue, as described by hierarchical clustering, were associated with differential
survival. These findings emphasize the potential differences in HERV expression patterns between
different cancers and emphasize the need for future work on the role of HERVs in head and neck cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/9/956/s1.
Figure S1: Non-HERV gene expression in tumor and paired normal samples; Figure S2: Principal component
analysis of HERV expression; Figure S3: Hierarchical clustering of HERV expression in tumor tissue with survival
analysis of HNSCC subtypes, Figure S4: Hierarchical clustering of HERV expression in tumor-adjacent normal
tissue with survival analysis; Table S1: HERV differential expression analyzed by DESeq2; Table S2: Host
gene differential expression analyzed by DESeq2; Table S3: GSEA output showing HERV families enriched
among upregulated HERVs in tumor tissue; Table S4: GSEA output showing HERV families enriched among
downregulated HERVs in tumor tissue; Table S5: Ordering of rows in Figure 2, resulting from hierarchical
clustering of top 100 differentially expressed HERVs.
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