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ABSTRACT Nosocomial infections with Acinetobacter baumannii are a global prob-
lem in intensive care units with high mortality rates. Increasing resistance to first-
and second-line antibiotics has forced the use of colistin as last-resort treatment,
and increasing development of colistin resistance in A. baumannii has been re-
ported. We evaluated the transcriptional regulator PmrA as potential drug target to
restore colistin efficacy in A. baumannii. Deletion of pmrA restored colistin suscepti-
bility in 10 of the 12 extensively drug-resistant A. baumannii clinical isolates studied,
indicating the importance of PmrA in the drug resistance phenotype. However, two
strains remained highly resistant, indicating that PmrA-mediated overexpression of
the phosphoethanolamine (PetN) transferase PmrC is not the exclusive colistin resis-
tance mechanism in A. baumannii. A detailed genetic characterization revealed a
new colistin resistance mechanism mediated by genetic integration of the insertion
element ISAbaI upstream of the PmrC homolog EptA (93% identity), leading to its
overexpression. We found that eptA was ubiquitously present in clinical strains be-
longing to the international clone 2, and ISAbaI integration upstream of eptA was re-
quired to mediate the colistin-resistant phenotype. In addition, we found a dupli-
cated ISAbaI-eptA cassette in one isolate, indicating that this colistin resistance
determinant may be embedded in a mobile genetic element. Our data disprove
PmrA as a drug target for adjuvant therapy but highlight the importance of PetN
transferase-mediated colistin resistance in clinical strains. We suggest that direct tar-
geting of the homologous PetN transferases PmrC/EptA may have the potential to
overcome colistin resistance in A. baumannii.

IMPORTANCE The discovery of antibiotics revolutionized modern medicine and en-
abled us to cure previously deadly bacterial infections. However, a progressive in-
crease in antibiotic resistance rates is a major and global threat for our health care
system. Colistin represents one of our last-resort antibiotics that is still active against
most Gram-negative bacterial pathogens, but increasing resistance is reported
worldwide, in particular due to the plasmid-encoded protein MCR-1 present in
pathogens such as Escherichia coli and Klebsiella pneumoniae. Here, we showed that
colistin resistance in A. baumannii, a top-priority pathogen causing deadly nosoco-
mial infections, is mediated through different avenues that result in increased activ-
ity of homologous phosphoethanolamine (PetN) transferases. Considering that
MCR-1 is also a PetN transferase, our findings indicate that PetN transferases might
be the Achilles heel of superbugs and that direct targeting of them may have the
potential to preserve the activity of polymyxin antibiotics.
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Antimicrobial resistance is a serious threat to global health systems, resulting in the
loss of treatment options to fight a growing number of bacterial infections (1).

Considering the paucity of newly developed antibiotics in the last decades, old anti-
biotics such as polymyxins have been increasingly used to treat infections caused by
multidrug-resistant (MDR) Gram-negative pathogens (2–4). Nowadays, the polymyxin
antibiotics polymyxin E (colistin) and polymyxin B represent the last resort for the
treatment of serious Gram-negative infections, such as infections caused by
carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR
Acinetobacter baumannii (5, 6). Unfortunately, the increasing use of polymyxins to treat
serious infections caused by these pathogens leads to a spread of resistance to these
last-line drugs (7). There is a high unmet medical need for new drugs effective against
Gram-negative bacteria to treat infections caused by these pathogens (8). Besides this,
an alternative strategy resides in the recovery of colistin efficacy by blocking bacterial
colistin resistance mechanisms. Antibiotic adjuvant therapies consist in the combina-
tion of a potent antibiotic with a nonantibiotic agent interfering with specific antibiotic
resistance or virulence mechanisms. This strategy may provide a new tool to fight
infections caused by drug-resistant pathogens by restoring or boosting the efficacy of
an approved antibiotic (9).

Colistin resistance is conferred by lipopolysaccharide (LPS) modifications at the
outer cell envelope. Reduction of the negative charge on LPS results in a reduced
affinity of colistin to LPS (10). The two main LPS modifications conferring colistin
resistance are the addition of 4-amino-4-deoxy-L-arabinose (AraN) and phosphoetha-
nolamine (PetN) to the lipid A (11). The expression of LPS-modifying enzymes is
regulated by the concerted action of several two-component systems (TCSs). In Enter-
obacteriaceae, PhoPQ and PmrAB TCSs regulate the expression of colistin resistance
mechanisms, whereas in P. aeruginosa the PhoPQ, PmrAB, ParRS, ColRS, and CprRS TCSs
seem to be involved (11). Plasmid-mediated colistin resistance has been recently
reported in Enterobacteriaceae due to the PetN transferase MCR-1. The presence of
MCR-1 on a plasmid leads to its rapid geographical and interspecies spread (12, 13).
Nevertheless, mcr-1 seems to be restricted to Enterobacteriaceae species and has never
been detected in A. baumannii. In A. baumannii, colistin resistance is mediated by PetN
addition to the lipid A, and this resistance mechanism is regulated by the PmrAB TCS.
In contrast to other pathogens, the AraN lipid A modification pathway is not present in
A. baumannii (11), rendering A. baumannii a suitable pathogen to develop an adjuvant
therapy approach to rejuvenate colistin efficacy by blocking the PmrAB TCS.

Colistin resistance in A. baumannii clinical isolates is associated with alterations in
the pmrCAB operon. The pmrC gene codes for a PetN transferase, and pmrA and pmrB
code for the TCS (14). It has been shown that mutations in the PmrAB TCS induce the
overexpression of pmrC, leading to the modification of lipid A with PetN and colistin
resistance (14–18). Because PmrA is the transcriptional regulator that triggers PmrC
overexpression, inhibition of PmrA with a small molecule may potentially block PmrC
overexpression and therefore switch off colistin resistance in A. baumannii (19). This
study was designed to evaluate the clinical relevance of PmrA as a drug target to
restore colistin efficacy in A. baumannii. We demonstrate that in the absence of
PmrA-mediated expression of PmrC, transposition of an insertion sequence (IS) element
leads to overexpression of the alternative highly similar PetN transferase EptA, which
also confers colistin resistance in A. baumannii clinical isolates. Our results show that in
all studied clinical isolates, overexpression of at least one PetN transferase (PmrC or
various EptA variants) was responsible for colistin resistance, indicating that PetN
transferases may be a suitable drug target to overcome colistin resistance in A.
baumannii.

RESULTS
PmrA is not essential for colistin resistance in A. baumannii clinical isolates. We

deleted pmrA from the genome of a panel of 12 colistin-resistant A. baumannii strains
to evaluate the transcriptional regulator PmrA as a potential drug target to rejuvenate
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colistin efficacy in A. baumannii. The strains in the panel consisted of recently isolated
colistin-resistant clinical strains collected from diverse geographical origins. They be-
long to three distinct and highly successful clonal lineages, the international clone 1
(ST1), international clone 2 (ST2), and ST25 clonal lineages (Table 1) (20–22). All strains
were classified as extensively drug resistant according to the criteria of Magiorakos et
al. (23). These data underscore the clinical relevance and the diversity of the strain
panel. The colistin-susceptible A. baumannii ATCC 17978 strain was included as a
reference strain. In all strains, pmrA was deleted by applying a previously described
method that allows efficient scarless genome engineering even in extensively resistant
A. baumannii clinical isolates (24).

The colistin sensitivity of the parental clinical isolates and their corresponding pmrA
knockout mutants (ΔpmrA) was determined by broth microdilution method. pmrA
deletion reduced MICs 64- to 1,024-fold in 10 out of 12 initially colistin-resistant clinical
isolates (83%), thus restoring susceptibility to colistin (MIC, �2 �g/ml) (Table 2). To our
surprise, however, two strains (BV94 and BV189) retained colistin resistance even in the
absence of pmrA.

We investigated the differences between strains that became susceptible after pmrA
deletion and those that remained resistant by analyzing the sequence variations of the
PmrAB TCS in the strain panel. The PmrA and PmrB sequences of the A. baumannii AYE,
ACICU, and NIPH 146 strains were used as references for ST1, ST2, and ST25 clonal

TABLE 1 Characterization of the A. baumannii clinical isolate panel used in this studya

Strain designation

Strain isolation

MLST

MIC (�g/ml) of drug:

Country Yr GENT MERO CIP TZP CTX SXT SAM TET

ATCC 17978 France 1951 77 2 0.5 1 8/4 16 >8/152 4/2 2
BV94 USA 2011 2 >128 32 256 >256/4 >256 >8/152 16/8 32
BV95 Colombia 2010 25 1 64 128 256/4 32 >8/152 16/8 >256
BV172 Israel 2012 2 >128 64 32 256/4 >256 >8/152 64/32 >256
BV173 Greece 2012 2 >128 >64 128 >256/4 >256 >8/152 128/64 >256
BV174 USA 2012 2 8 64 256 256/4 256 >8/152 32/16 32
BV175 Turkey 2012 2 128 32 256 >256/4 256 >8/152 32/16 256
BV185 Mexico 2013 2 >128 >64 128 >256/4 >256 >8/152 64/32 256
BV186 USA 2013 2 16 64 256 >256/4 >256 >8/152 32/16 8
BV187 USA 2013 2 32 64 256 >256/4 >256 >8/152 16/8 8
BV189 Spain 2013 2 128 32 128 >256/4 256 >8/152 32/16 16
BV190 Greece 2012 1 >128 64 64 >256/4 >256 >8/152 64/32 256
BV191 China 2013 2 >128 >64 256 >256/4 >256 >8/152 128/64 >256
ATCC 25922 (quality control) 1 �0.06 �0.25 4/4 �0.25 0.125/2.34 4/2 2
aAbbreviations: CIP, ciprofloxacin; CTX, cefotaxime; GENT, gentamicin; MERO, meropenem; MLST, multilocus sequence type; SAM, ampicillin-sulbactam; SXT,
trimethoprim-sulfamethoxazole; TET, tetracycline; TZP, piperacillin-tazobactam. Classification of antibiotic resistance was done according to breakpoints published by
the Clinical and Laboratory Standards Institute: susceptible (italics), intermediate (underlined), and resistant (bold) (34).

TABLE 2 Effect of loss of PmrA on colistin susceptibility and PmrB mutations in the strain
panel

Strain designation

Colistin MIC (�g/ml)a

PmrB mutations (amino acid substitutions)Wild type �pmrA

ATCC 17978 0.25 0.25 Reference
BV94 64 32 Wild type
BV95 32 0.5 L274W
BV172 256 1 Q43L and L267F
BV173 128 1 A138T and A226V
BV174 64 1 Q277R
BV175 256 0.5 L267W
BV185 256 0.25 P233S
BV186 16 0.25 Q277R
BV187 16 0.25 Q277R
BV189 64 64 Wild type
BV190 256 0.5 A138T and A226V
BV191 256 0.25 A138T and P233S
aSusceptibility breakpoint, �2 �g/ml. Susceptible, italics; resistant, bold.
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lineages, respectively. Nonsynonymous mutations were found only in the PmrB sensor
kinase (Table 2). Interestingly, the two strains with an unaltered PmrB sequence were
those that remained colistin resistant after pmrA deletion (BV94 and BV189). Our data
suggest that colistin resistance in these two strains is not conferred by PmrA-mediated
PmrC overexpression. We confirmed this hypothesis by quantifying the expression of
pmrC using quantitative reverse transcription-PCR (qRT-PCR) (Fig. 1). The control strain
ATCC 17978 and the two refractory strains BV94 and BV189 showed only marginal
levels of pmrC expression. In contrast, the 10 other strains showed pmrC overexpres-
sion, and this overexpression was abolished in the ΔpmrA mutant.

Taken together, colistin resistance in A. baumannii is predominantly conferred by
mutations in the PmrB TCS sensor kinase that lead to overexpression of PmrC, as shown
in 10 out of 12 clinical strains. However, some isolates (2 out of 12 strains in our panel)
may use an alternative colistin resistance mechanism independent of PmrA-mediated
PmrC overexpression to resist the antibacterial activity of colistin.

EptA, a PmrC homolog, is present in the A. baumannii strains of international
clone 2. Lesho et al. described the presence of the alternative PetN transferase EptA in
A. baumannii (17). EptA and PmrC are homologous proteins with 93% amino acid
identity, suggesting similar enzymatic activities. However, the role of EptA in A. bau-
mannii colistin resistance is still unclear (17). To investigate the prevalence of eptA in A.
baumannii, we took advantage of sequence differences between pmrC and eptA at the
N- and C-terminal ends of the open reading frames and designed oligonucleotides
(oVT152/oVT153) that can discriminate eptA from pmrC (Fig. 2A; see also Table S1 in the
supplemental material). Using these eptA-specific primers, we detected eptA in all our
international clone 2 strains but not in international clone 1 strains (Table 3 and Fig. S1).
This finding was further confirmed by screening 12 additional isolates from the
BioVersys strain collection (data not shown).

The integrated insertion element ISAbaI causes eptA overexpression in BV94
and BV189. Two isoforms of eptA, eptA-1 and eptA-2 (GenBank accession numbers
KC700024 and KC700023, respectively) have been described at different locations in the
genome of various A. baumannii strains (17). Taking advantage of the different flanking
regions, we designed primers able to discriminate eptA-1 from eptA-2 (oVT198/oVT199
and oVT201/oVT202, respectively) (Fig. 2A and Table S1). By genotyping the strain
panel, we demonstrated that all strains that belong to the international clone 2
contained eptA-1 and four of them contained an additional copy of eptA-2 (Table 3 and
Fig. S1). Interestingly, the PCR products obtained for eptA-2 in BV94 and eptA-1 in BV189
were approximately 1 kb larger than the expected fragment size. Sequencing of the
PCR products identified the insertion element ISAbaI upstream of eptA-2 and eptA-1 in
BV94 and BV189, respectively. The ISAbaI orientation enabled its strong promoter (Pout)

FIG 1 Quantification of pmrC expression levels in colistin-resistant A. baumannii clinical isolates and their
ΔpmrA mutants. Expression levels of pmrC were quantified by qRT-PCR in colistin-resistant A. baumannii
isolates (white bars) and their ΔpmrA mutants (black bars). The expression levels were normalized to the
pmrC expression in the ATCC 17978 reference strain.
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to drive eptA overexpression as previously described for other antibiotic resistance
determinants (Fig. 3) (25, 26).

Using probes specific for eptA or pmrC, we quantified their respective expression
levels in our strains. eptA was 550- and 25-fold higher expressed in BV94 and BV189,
respectively, than the homologous isoform pmrC in the control strain ATCC 17978
(which does not contain eptA) (Fig. 2B). This eptA overexpression was not altered in the
ΔpmrA mutant strains, suggesting that eptA expression in both strains is independent
of the PmrAB TCS. These data suggest that an ISAbaI-driven eptA overexpression may
represent an alternative and PmrAB-independent colistin resistance mechanism in A.
baumannii clinical strains.

ISAbaI-driven eptA overexpression confers colistin resistance in A. baumannii
clinical isolates. To validate the hypothesis that ISAbaI-driven eptA overexpression
confers colistin resistance in A. baumannii clinical isolates, we deleted eptA-1 in the
clinical isolates BV189 and BV94 and determined MIC values. Indeed, BV189 (which
carries ISAbaI upstream of eptA-1) became colistin susceptible upon eptA-1 deletion,

FIG 2 Discrimination and quantification of pmrC and eptA. (A) Schematic representation of differences
in the pmrC, eptA-1, and eptA-2 coding sequence. Primers marked by black (oVT162/oVT163) and red
(oVT164/oVT165) arrows were used to detect pmrC and eptA in qRT-PCR experiments, respectively. The
primers marked by green arrows (oVT152/oVT153) were used to genotype the eptA isoforms. Primers
marked by blue (oVT198/oVT199) and orange (oVT201/oVT202) arrows were used to discriminate eptA-1
and eptA-2, respectively. (B) Expression levels of eptA were quantified by qRT-PCR in colistin-resistant A.
baumannii isolates BV94 and BV189 (white bars) and their ΔpmrA mutants (black bars). The expression
levels were normalized to the pmrC expression in the ATCC 17978 reference strain.

TABLE 3 Distribution of the eptA variants in the strain panel

Strain designation MLST eptA variant(s)

ATCC 17978 77
BV94 2 eptA-1, ISAbaI-eptA-2, ISAbaI-eptA-3
BV95 25
BV172 2 eptA-1
BV173 2 eptA-1
BV174 2 eptA-1, eptA-2
BV175 2 eptA-1
BV185 2 eptA-1
BV186 2 eptA-1, eptA-2
BV187 2 eptA-1, eptA-2
BV189 2 ISAbaI-eptA-1
BV190 1
BV191 2 eptA-1
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indicating an essential role of ISAbaI-eptA-1 in conferring colistin resistance in this strain
(Table 4). In contrast, BV94, carrying both eptA-1 and eptA-2 isoforms but carrying an
ISAbaI insertion only upstream of eptA-2, remained colistin resistant after deletion of
eptA-1, suggesting the key role of ISAbaI insertion for colistin resistance in A. baumannii.
To further confirm the importance of ISAbaI, we constructed the double mutant
BV94ΔeptA-1/ΔeptA-2 and evaluated its colistin susceptibility. A 4-fold MIC reduction was
observed in the BV94ΔeptA-1/ΔeptA-2 mutant compared to BV94 and BV94ΔeptA-1, indicat-
ing that eptA-2 with an upstream ISAbaI is involved in the colistin resistance mechanism
of BV94. However, we were surprised to see that BV94ΔeptA-1/ΔeptA-2 remained resistant
to colistin with a MIC of 16 �g/ml, indicating that there must be yet another colistin
resistance mechanism present in this isolate.

Three different eptA variants can confer colistin resistance in A. baumannii. We
genotyped the BV94ΔeptA-1/ΔeptA-2 double mutant and confirmed the successful deletion
of eptA-1 and eptA-2. However, we detected the presence of at least one additional eptA

FIG 3 Representation of the different ISAbaI-eptA genomic regions present in BV94 and BV189. The nucleic acid sequence of the ISAbaI inverted repeats right
and left (IRR and IRL, respectively) and Pout promoter are shown until the eptA start codon. The 9-bp target site duplications (TSD) up- and downstream of ISAbaI
are not present for eptA-3, which is consistent with an ISAbaI-eptA-2 duplication. The junction between ABK1_3144 and ISAbaI-eptA-3 has been sequenced, while
the sequence downstream of ABK1_2603 could not be resolved. The ABK1 gene annotation is shown according to the genomic sequence of A. baumannii strain
1656-2 (GenBank accession number NC_017162).

TABLE 4 Recovery of colistin susceptibility after deletion of different eptA isoforms

Strain

Colistin MIC (�g/ml)a

Wild type �eptA-1 �eptA-1/�eptA-2 �eptA-1/�eptA-2/�eptA-3

BV189 128 0.5
BV94 64 64 16 1
aSusceptibility breakpoint, 2 �g/ml. Susceptible, italics; resistant, bold.
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copy (eptA-3) in the double mutant (Fig. S2). We performed a fusion primer and nested
integrated PCR experiment (FPNI-PCR) to amplify the genomic flanking regions of the
additional eptA-3 variant (27). Sequencing revealed the ISAbaI insertion element and
the gene ABK1_2603 present upstream and downstream of eptA-3, respectively (Fig. 3).
This eptA-3 gene context in BV94 was identical to the eptA-2 gene context present in
the A. baumannii strain 1656-2 (GenBank accession number NC_017162). However,
further upstream there were marked differences. ISAbaI-eptA-3 in BV94 was adjacent to
the gene ABK1_3144, while ISAbaI-eptA-2 in 1656-2 was adjacent to a different gene
(Fig. 3). We could not determine the downstream flanking region of ISAbaI-eptA3
ABK1_2603 in multiple attempts. Nevertheless, the 9-bp target site duplications (TSD)
created by ISAbaI transposition could not be identified directly outside the ISAbaI
upstream eptA-3 (25). In contrast, TSD were present next to the right and left inverted
repeats of the ISAbaI upstream eptA-1 and eptA-2, which is consistent with a single
transposition event. These observations indicate that ISAbaI did not insert upstream
eptA-3 in a single transposition event, and therefore, ISAbaI-eptA-3 in BV94 might be a
result of an ISAbaI-eptA-2 cassette gene duplication, implying that the ISAbaI-eptA
colistin resistance determinant is contained in a mobile genetic element.

We finally deleted the DNA fragment between ABK1_3144 and ABK1_3143 contain-
ing eptA-3 to confirm that ISAbaI-eptA-3 was responsible for the high residual colistin
resistance in BV94ΔeptA-1/ΔeptA-2. In addition, we performed PCR-based eptA genotyping
on the resulting triple mutant BV94ΔeptA-1/ΔeptA-2/ΔeptA-3 to exclude the presence of yet
another eptA copy (Fig. S2). The loss of all 3 eptA isoforms in BV94ΔeptA-1/ΔeptA-2/ΔeptA-3

rendered this triple mutant susceptible to colistin, indicating that colistin resistance in
BV94 was entirely conferred by the overexpression of EptA-isoforms (Table 4).

Targeting PetN transferases may overcome colistin resistance in A. baumannii.
We have shown that colistin resistance was mediated in 10 out of 12 analyzed clinical
strains by PmrA-mediated overexpression of PmrC. In the remaining two strains,
ISAbaI-driven EptA expression conferred colistin resistance. Taken together, in all tested
clinical isolates colistin resistance was mediated by the overexpression of PetN trans-
ferases, suggesting that inhibition of these homologous enzymes with small molecules
may have the potential to overcome colistin resistance in A. baumannii. Chin and
colleagues recently suggested that the acetyl-galactosamine (GalNAc) deacetylase
NaxD plays a role in colistin resistance in A. baumannii (28). In this report, the expression
of NaxD, which was regulated by the PmrAB TCS, mediated galactosamine (GalN)
addition to lipid A, conferring colistin resistance in A. baumannii. We performed
additional experiments to exclude the possibility that the colistin resensitization ob-
served in our clinical isolates after deletion of pmrA was based on a modulation of naxD
expression and not pmrC expression. We first confirmed the PmrAB-controlled naxD
expression based on qRT-PCR data for BV191 and BV191ΔpmrA. BV191 has a mutated
PmrB that likely triggers PmrA-mediated pmrC overexpression (Table 2). Similarly, naxD
expression was 15-fold higher in the colistin-resistant strain BV191 than the susceptible
strain ATCC 17978 (Fig. 4). In BV191ΔpmrA, lacking the response regulator PmrA, pmrC
and naxD overexpression was abolished, confirming that both genes were regulated
by the PmrAB TCS. Notably, pmrC overexpression was 20-fold higher than naxD
overexpression, suggesting a minor contribution of NaxD compared to PmrC in
colistin resistance. To confirm the major role of PmrC in PmrA-mediated colistin
resistance and to exclude that another PmrA-regulated gene, such as naxD, is
involved in colistin resistance, we directly deleted the effector pmrC from the
genome of BV191. The loss of PmrC rendered BV191 susceptible to colistin (MIC of
0.5 �g/ml) and resulted in a similar phenotype as in BV191ΔpmrA (Table 2). In
contrast, naxD was still 15-fold overexpressed in BV191ΔpmrC (Fig. 4). This result
suggests that overexpression of naxD is not sufficient to confer colistin resistance
in BV191 and indicates that PmrC is the main effector of PmrA-mediated colistin-
resistant A. baumannii strains, such as BV191.
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DISCUSSION

Bacteria have evolved multiple ways to escape the hazardous action of antibiotics.
In nosocomial infections, the individual strain history of antibiotic exposures during
patient treatment may result in the development and accumulation of different resis-
tance mechanisms in different strains of the same species. Therefore, it is important to
study resistance mechanisms on multiple strains. Moreover, it is crucial to study these
mechanisms on strains that developed resistance during patient treatment due to the
discrepancy that may be observed between in vitro- and in vivo-developed mecha-
nisms. For instance, A. baumannii polymyxin resistance is commonly mediated by LPS
loss when A. baumannii is exposed to the drug in vitro, but this mechanism is not viable
in vivo due to the strong fitness cost that it engenders (16, 29).

In this study, we dissected the mechanisms conferring colistin resistance in 12
clinically relevant A. baumannii strains. To our knowledge, this is the first time that
colistin resistance is genetically characterized in a panel of A. baumannii clinical strains
that developed resistance during patient treatment and not strains that artificially
acquired resistance by in vitro selection/passaging. This gap in knowledge originates
from the difficulties in manipulating the genome of A. baumannii colistin-resistant
clinical strains. Indeed, as exemplified in our strain panel, such strains are generally
resistant to all other antibiotics because colistin is used as a last option in the treatment
of A. baumannii infections, only when other antibiotics fail. To break the barrier of
antibiotic resistance in these strains, we applied a genome editing method based on a
nonantibiotic resistance marker, which is efficient regardless of the resistance profile of
the strain (24).

We demonstrated two different ways to overexpress PetN transferases that cause
colistin resistance in A. baumannii clinical isolates (Fig. 5). The predominant colistin
resistance mechanism found in 83% of the studied clinical isolates was mediated by
pmrC overexpression. The overexpression of pmrC in these strains was entirely caused
by mutations in the sensor kinase PmrB, although previous studies also found muta-
tions in the response regulator PmrA (14, 15, 17). We found 7 different PmrB variants
among the 10 PmrC-mediated colistin-resistant strains, indicating the diversity of
mutations that lead to PmrC overexpression. Except fo r the A226V and P233S muta-
tions, the identified PmrB mutations were not yet reported in A. baumannii (11, 15, 16).

Interestingly, we found two clinical isolates in which colistin resistance was con-
ferred by a genomic insertion of ISAbaI, resulting in a strong overexpression of the pmrC
homolog eptA. eptA-1 and eptA-2 genes have been previously identified in A. bauman-
nii; however, their distribution, expression regulation, and role in colistin resistance
were not assessed (17). Our study revealed that A. baumannii strains of the international
clone 2, which represent the most problematic strains in hospitals, carry at least one

FIG 4 Quantification of pmrC and naxD expression levels in A. baumannii BV191 and its ΔpmrA mutants.
The expression of pmrC (white bars) and naxD (black bars) was quantified by qRT-PCR and normalized
to the gene expression level in the reference strain ATCC 17978.
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eptA variant. In contrast, international clone 1 strains did not carry eptA. Our data further
show that eptA expression is not regulated by the PmrAB TCS, but instead, integration
of ISAbaI upstream of any eptA isoform is required to confer the resistance phenotype,
presumably by ISAbaI-driven eptA overexpression. Consequently, detection of an eptA
gene alone is not sufficient to classify A. baumannii strains as colistin resistant.

The analysis of PmrA as a potential drug target confirmed the importance of this
protein in mediating colistin resistance in A. baumannii. However, the high prevalence
of eptA and the ability of ISAbaI to integrate upstream of eptA and drive its expression
independently of the PmrAB TCS disproved PmrA as a direct drug target for resensiti-
zation of A. baumannii to colistin (Fig. 5). An adjuvant therapy consisting of a PmrA
inhibitor in combination with colistin would most likely select for ISAbaI-driven EptA-
overexpressing colistin-resistant strains. As demonstrated by the two clinical isolates
BV94 and BV189, such strains are already present in hospitals. One of the strains also
contained a duplicated ISAbaI-eptA cassette, suggesting that this functional cassette
mediating colistin resistance was present on a mobile element. The presence of a
mobile colistin-resistance-mediating cassette increases the probability of intra- and
interspecies transfer of the resistance pathways by the integration into plasmids. This
phenomenon was recently illustrated with plasmid-carried PetN transferase mcr-1,
which was initially found in China but rapidly has spread globally and in different
species (12, 13). Nevertheless, mcr-1 seems to be limited to Enterobacteriaceae species
and has never yet been detected in A. baumannii.

One of the major colistin resistance pathways in Enterobacteriaceae and P. aerugi-
nosa is the addition of AraN to lipid A (11). Although we describe here two different
ways to overexpress PetN transferases, our results suggest that colistin resistance in
clinical A. baumannii isolates is exclusively conferred by PetN addition to lipid A. A
recent study suggested that a GalN-based modification of lipid A may be involved in
colistin resistance in A. baumannii (28). In contrast, our results suggest that alteration of
the lipid A structure by addition of PetN plays the major role in colistin resistance in A.
baumannii. It has also been described that loss of LPS may confer colistin resistance in

FIG 5 Schematic representation of A. baumannii colistin resistance mechanisms. The two pathways leading to phosphoe-
thanolamine (PetN) transferase overexpression and colistin resistance are represented. The major A. baumannii PetN
transferase overexpression pathway results from pmrC expression, which is activated by the transcriptional regulator PmrA
previously phosphorylated (activated) by a mutated variant of the sensor kinase PmrB (PmrB*). Alternatively, A. baumannii
PetN transferase overexpression can result from the integration of the ISAbaI insertion element upstream of an eptA
isoform. PetN transferase enzymes decorate the outer membrane lipid A with PetN, thereby lowering the negative charge
and preventing colistin binding. Potential PmrA inhibitors would only block the pmrC pathway (dark blue cross), while PetN
transferase inhibitors would block lipid A modification (red cross) and restore colistin efficacy against A. baumannii.
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A. baumannii (30). However, most of the LPS-deficient colistin-resistant mutants were
obtained in vitro after colistin evolution, and it has been shown that these mutants are
hypersusceptible to other antibiotic classes and are avirulent (16, 29). Emergence of
LPS-deficient colistin-resistant mutants in patients is therefore unlikely.

In conclusion, the overexpression of homologous PetN transferases caused colistin
resistance in all studied clinical isolates, but in some cases this occurred independently
of PmrAB. The crystal structure of Neisseria meningitidis PetN transferase has been
recently reported, and this enzyme has been proposed as a drug target for antiviru-
lence and antiresistance drug development to treat Neisseria gonorrhoeae and N.
meningitidis infections (31, 32). Our data suggest that a direct inhibitor of homologous
PetN transferases PmrC and EptA may have the potential to overcome colistin resis-
tance in A. baumannii clinical strains (Fig. 5).

MATERIALS AND METHODS
Bacterial strains, MIC, MLST, and oligonucleotides. The A. baumannii reference strain ATCC 17978

and 12 extensively drug-resistant A. baumannii clinical isolates from the BioVersys proprietary strain
collection were used in this study. The microdilution method was used to determine MICs according to
the CLSI guidelines (33). Multiple locus sequence type (MLST) was determined according to the Pasteur
scheme using specific primers (source: http://pubmlst.org/abaumannii/) (20). Oligonucleotides used in
this study are listed in Table S1 in the supplemental material.

Genomic deletions of pmrA, eptA-1, eptA-2, eptA-3, and pmrC in A. baumannii clinical isolates.
Scarless deletions of pmrA, pmrC, and the eptA isoforms were performed using a two-step recombination
method previously described (24).

DNA fragments corresponding to 700-bp up- and downstream genomic regions of the genes to be
deleted were amplified by PCR and cloned in the multiple cloning site of the knockout platform pVT77.
Oligonucleotides oVT49/oVT50 and oVT51/oVT52 were used to amplify the up- and downstream regions,
respectively, of pmrA. The resulting DNA fragments were ligated and introduced into pVT77 previously
digested by EcoRI and BamHI. Similarly, oligonucleotides oVT235/oVT236 and oVT237/oVT238 were used
to amplify the flanking regions of eptA-1, and oligonucleotides oVT305/oVT306 and oVT307/oVT242 were
used to amplify the flanking regions of eptA-2. The resulting DNA fragments for eptA-1 and eptA-2 were
introduced into pVT77 previously digested by XhoI and XbaI using NEBuilder HiFi DNA assembly (New
England Biolabs). For eptA-3 deletion, the genomic regions flanking the duplicated cassette were
amplified using oVT390/oVT391 and oVT392/oVT393. The resulting DNA fragments were cloned into
pVT77 previously digested with EcoRI and XbaI using NEBuilder HiFi DNA assembly. Last, the flanking
regions of pmrC were amplified using oVT324/oVT325 and oVT326/oVT327, and the resulting DNA
fragments were cloned into pVT77 previously digested with KpnI and PstI using NEBuilder HiFi DNA
assembly.

The cloned knockout plasmids were transformed in E. coli conjugative strain MFDpir to proceed with
the construction of markerless deletion in A. baumannii, as previously described (24). Briefly, after
conjugation, genomic plasmid integration was selected on LB agar plates containing 100 �g/ml sodium
tellurite. Clones were screened for up- or downstream integration by PCR using primer oVT8, which
anneals on the plasmid, and oVT91, oVT243, oVT311, or oVT328, which anneals upstream of pmrA, eptA-1,
eptA-2, or pmrC, respectively. For eptA-3, clones were screened using primers oVT8/oVT396 and oVT174/
oVT397 for up- and downstream integration, respectively. Clones containing up- and downstream
plasmid integrations were transferred on LB agar plates containing 1 mM isopropyl-�-D-1-
thiogalactopyranoside and 200 �g/ml 3=-azido-3=-deoxythymidine to select for plasmid removal from
the genome. Clones were screened for gene deletion and plasmid removal by PCR using primers
oVT91/oVT92, oVT243/oVT244, oVT246/oVT311, oVT396/oVT397, and oVT328/oVT14 for pmrA, eptA-1,
eptA-2, eptA-3, and pmrC, respectively. The genomic gene deletions were finally confirmed by DNA
sequencing (Microsynth AG, Balgach, Switzerland).

Genotyping of pmrA, pmrB, and eptA. A genomic DNA sequence including pmrA and pmrB was PCR
amplified from all the strains of the panel using oVT91 and oCK292, and the PCR products were sent for
sequencing (Microsynth AG, Balgach, Switzerland). The genotyping of eptA isoforms was performed by
PCR using eptA-specific primers oVT152 and oVT153, which anneal on all eptA isoforms but not on pmrC
(Fig. 2A). PCR using primers oVT198/oVT199 and oVT201/oVT202, which anneal on the flanking sides of
eptA-1 and eptA-2, respectively, were used to discriminate between eptA isoforms (Fig. 2A).

qRT-PCR. Quantitative reverse transcription-PCR was performed as previously described (24). The
specific expression of the PetN transferases encoded by pmrC and eptA was evaluated using oVT162/
oVT163 and oVT164/oVT165 primers, respectively (Fig. 2A). The expression of naxD was evaluated using
oVT314/oVT315 primers. Expression levels were normalized to that of the housekeeping gene rpoD using
the comparative threshold cycle (ΔΔCT) method. The expression of rpoD was evaluated using rpoD-qRT-
F/rpoD-qRT-R primers.

FPNI-PCR. Fusion primer and nested integrated PCR was performed as previously described (27). This
method relies on a three-step PCR using arbitrary degenerated oligonucleotides fused to known
adaptors and three sequence-specific oligonucleotides, which consist in our case of eptA-specific
oligonucleotides. FPNI-PCR experiments were performed on the BV94ΔeptA-1/ΔeptA-2 mutant with two sets
of three eptA-specific oligonucleotides, oligonucleotides oVT343, oVT344, and oVT345 and oligonucle-
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otides oVT340, oVT341, and oVT342, to identify the sequence up- and downstream of the new eptA copy,
respectively. The degenerated primers and the known adaptor primers were directly taken from the
previously described method (27). Briefly, the first round of PCRs was performed using the degenerated
primers and oVT343 for upstream identification and oVT340 for downstream identification. The second
round of PCRs was performed with the first adaptor primer FSP1 and oVT344 for upstream identification
and oVT341 for downstream identification. The last round of PCRs was performed with the second
adaptor primer FSP2 and oVT345 for upstream identification and oVT342 for downstream identification.
The brightest and most distinct PCR products obtained were sent for sequencing (Microsynth AG,
Balgach, Switzerland).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01083-19.
FIG S1, PDF file, 0.3 MB.
FIG S2, PDF file, 0.3 MB.
TABLE S1, PDF file, 0.2 MB.
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