
sensors

Article

Spiking Neural Network with Linear Computational
Complexity for Waveform Analysis in Amperometry

Szymon Szczęsny * , Damian Huderek and Łukasz Przyborowski

����������
�������

Citation: Szczęsny, S.; Huderek, D.;

Przyborowski, Ł. Spiking Neural

Network with Linear Computational

Complexity for Waveform Analysis in

Amperometry. Sensors 2021, 21, 3276.

https://doi.org/10.3390/s21093276

Academic Editor: Raul Marin Prades

Received: 15 April 2021

Accepted: 8 May 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of
Technology, Piotrowo 3A Street, 61-138 Poznań, Poland; damian.huderek@put.poznan.pl (D.H.);
lukasz.i.przyborowski@doctorate.put.poznan.pl (Ł.P.)
* Correspondence: szymon.szczesny@put.poznan.pl

Abstract: The paper describes the architecture of a Spiking Neural Network (SNN) for time waveform
analyses using edge computing. The network model was based on the principles of preprocessing
signals in the diencephalon and using tonic spiking and inhibition-induced spiking models typical
for the thalamus area. The research focused on a significant reduction of the complexity of the
SNN algorithm by eliminating most synaptic connections and ensuring zero dispersion of weight
values concerning connections between neuron layers. The paper describes a network mapping and
learning algorithm, in which the number of variables in the learning process is linearly dependent
on the size of the patterns. The works included testing the stability of the accuracy parameter for
various network sizes. The described approach used the ability of spiking neurons to process currents
of less than 100 pA, typical of amperometric techniques. An example of a practical application is
an analysis of vesicle fusion signals using an amperometric system based on Carbon NanoTube
(CNT) sensors. The paper concludes with a discussion of the costs of implementing the network as a
semiconductor structure.

Keywords: amperometry; edge computing; spiking neural network; exocytosis; vesicle fusion

1. Introduction

Processing data close to its source is a frequently used approach in IoT [1]. However,
performing calculations directly in sensors is a big challenge due to the need to process
specific signals for the given technique. One of the most difficult techniques in this regard
is amperometry—processing signals with values below 100 pA [2]. This technique is
used to detect compounds such as cyanide, sulfide, sulfate, and hydrazine. Yet, it is
also often used in analyzing the life processes of cells [3]. Monitoring the processes of
exocytosis and endocytosis taking place in cells is possible using amperometric systems,
which make it possible to analyze currents with values below 80 pA. The conversion
of such signals into a digital form remains a challenge despite using ADC converters
based on Σ∆ modulators and implemented using CMOS technologies and operating in
the moderate-inversion mode [4]. Although circuits of such a type process currents with
values below 1 nA, typical applications of amperometric techniques require processing
signals an order of magnitude smaller. A certain alternative is to use the weak-inversion
mode [5] in computing circuits, yet this mode limits the maximum operating frequency
of converters to several hundred Hz. Alternatives to the low-voltage CMOS converters
and preprocessors are hardware implementations of Spiking Neural Networks (SNNs),
which are modeled on biological neurons and interpret currents in the range of 0–100 pA,
generating signals with frequencies up to several dozen kHz [6]. Currently, semiconductor
implementations of spiking neurons published in literature are characterized by both small
dimensions at the level of single micrometers and very low power consumption at the
level of a single fJ/spike [7]. However, while the parameters of individual spiking neurons
implemented in CMOS technology are impressive, the parameters of entire SNNs are no

Sensors 2021, 21, 3276. https://doi.org/10.3390/s21093276 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8446-6769
https://orcid.org/0000-0002-3832-3118
https://orcid.org/0000-0003-4974-9971
https://doi.org/10.3390/s21093276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093276
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093276?type=check_update&version=1


Sensors 2021, 21, 3276 2 of 16

longer satisfactory due to the large, often exponential complexity of neural networks and
the need to use multiple layers of neurons and multiple layers of connections.

Currently, the development of the subject of artificial neural networks is dominated
by deep networks. Currently, the most complex structure known to the authors is the
ResNet152 network [8]. Using multilayer networks increases, on the one hand, the precision
of the generated responses, but on the other hand, it leads to a significant increase in the
complexity of network algorithms. Further development of this research area requires
using large computing centers, which makes the developed solutions impossible to apply in
practical applications [9]. The exponential complexity of neural networks and the number
of connections between neurons, translating into the number of needed multiplications,
are the main barriers concerning the use of neural networks in edge computing. In the
IoT sector, for example, the implementation possibilities of deep neural networks are
limited by the available resources of microprocessor architectures, FPGAs, and GPUs. It is
worth emphasizing that deep networks are primarily strong data processing algorithms,
while conceptually being quite distant from the basic assumptions of artificial intelligence.
Alternatives are biologically inspired networks. Spiking neural networks are currently
one of the most rapidly developed research areas in the field of artificial intelligence and
cognitive science. There are high hopes concerning these networks due to their better
perception properties compared to the so-called second-generation networks. For example,
individual spiking neurons are capable of solving nonlinear problems [10]. Thanks to
the possibility of implementing spiking neurons using silicon structures, their complex
mathematical models are no longer limitations. This is because spiking neurons can be
implemented using just a dozen field-effect transistors [7]. For this reason, this subject
has also attracted the attention of IT companies, which offer neuroprocessors based on
SNNs, e.g., the Intel-Loihi processor [11] and IBM TrueNorth processor [12]. There are
many indications that a hardware implementation of spiking neurons will contribute to a
significant development of this area of artificial intelligence in the near future.

This paper focused on issues concerning implementing hardware SNNs in edge
computing applications. The basic area of application of such solutions is the processing
(compression, classification, conversion) of signals from sensors adjacent to data sources
using mobile devices. The available resources of mobile devices require using simple, but
effective neural network architectures. This paper proposed an SNN with linear complexity,
with a significantly reduced number of weights, which makes it possible to overcome the
limitations related to the availability of multipliers, and a reduced dispersion of weights,
which makes it possible to use smaller bit representations.

The paper is organized as follows. Section 2 describes a network architecture and
models of the spiking neurons used. Section 3 focuses on the training of the proposed
network architecture. Section 4 presents the amperometric system based on SNNs and
an example of a practical application of the network in the task of classifying the patterns
of current signals. The paper concludes with a brief discussion of the costs of hardware
implementation, mismatch analysis, and a summary.

2. Network Architecture

This section describes the structure of an SNN with linear complexity. The choice of
two types of neurons and their mathematical models are justified. Particular attention is
paid to routing neurons.

2.1. Thalamo-Based Neurons

In the search for the appropriate types of spiking neurons, the authors focused on
tonic spiking and inhibition-induced spiking neurons, characteristic of the thalamus area
in the diencephalon [13]. The task of this area of the brain is to process most of the signals
coming from all senses except smell. The thalamus preprocesses and routes sensory and
movement data before sending them to other areas of the brain. The functionality of the



Sensors 2021, 21, 3276 3 of 16

thalamus as a sensory data preprocessor was used to develop a compact SNN dedicated to
processing sensor data as part of edge computing.

Modeling included using the Izhikevich model, characterized by a complexity similar
to the integrate-and-fire model and the fidelity of the mapping of a biological neuron
comparable to the complex Hodgkin–Huxley model. Due to the use in edge computing
applications, the key is the number of floating point operations, which for these models is
as follows: integrate-and-fire, 5; Izhikevich, 13; Hodgkin–Huxley, 1200 [14]. The Izhikevich
model is defined by Equations (1)–(3) [15].

dv
dt

= 0.04v2 + 5v + 140− u + Iapp (1)

du
dt

= a(bv− u) (2)

i f v ≥ 30mV then
{

v← c
u← u + d

(3)

In the above model, the variables v and u are calculated based on the value of input
current Iapp and constants a, b, c, d, the values of which make it possible to select the type
of neuron. As mentioned, we used two types of neurons in our approach. For tonic
spiking neurons, the parameters had the following values: a = 0.02, b = −0.1, c = −65,
d = 6. The characteristics of this neuron are shown in Figure 1. It is only valid for positive
input currents.

Figure 1. Tonic spiking neuron response for the input current in the range of 0 ÷ 50 pA.

For inhibition-induced spiking neurons, these parameters have the following values:
a = −0.02, b = −1, c = −60, d = 8. The characteristics of these neurons are shown in Figure 2.
These neurons show complementary characteristics to the spiking tonic neurons. They
work correctly in a wide range of positive currents, for which they show a lower frequency
of generated spikes, and of negative currents, for which the frequency of the generated
spikes increases. Due to the symmetrical polarization, in the case of inhibition-induced
spiking neurons, it is acceptable to use negative weights in the input layer of the network
with data standardized in the range of positive values.



Sensors 2021, 21, 3276 4 of 16

Figure 2. Inhibition-induced spiking neuron response for an input current of −30 ÷ 70 pA.

2.2. Network Routing

The aim of our research was to develop an SNN architecture guaranteeing high
processing precision using the lowest possible algorithm complexity. Most networks pro-
cessing data from sensors are multi-layer networks, the layers of which are fully connected,
often with additional backward connections [16,17]. An often used solution, at the stage
of selecting an architecture, is to define, apart from the input layer, a separate excitatory
neuron layer and a separate inhibitory neuron layer [17–19]. The multi-layer architecture
and the large number of connections between neurons are the source of the high complexity
of the network algorithm. Taking into account the number of connections in multi-layer
networks, we decided to give up the classic approach of using separate excitatory neu-
ron layers and inhibitory neuron layers and limited ourselves to using tonic spiking and
inhibition-induced spiking neurons in a common single layer. Thus, the backward con-
nections were also omitted. We proposed the network architecture shown in Figure 3. It
is a solution dedicated to time waveform analysis in the form of sensor data. Therefore,
the input data are signals sampled with a certain frequency and sequenced in registers.
The input layer size of N corresponds to the sampling of the analyzed signals. A single
sample is fed to one of the neurons in the first layer of neurons n1− nN. The number
of neurons in this layer corresponds to sampling and equals N. Similarly, the number of
weights connecting the data layer to the first layer of neurons equals N. Two types of
neurons may occur in the first layer: tonic spiking neurons marked in white in Figure 3
and inhibition-induced spiking neurons marked in black. The type of the neuron depends
on the value of the weight that connects it to the network input.

A detailed algorithm for determining the values of weights w11− w1N is described
in Section 3. The mapping process (selecting the type of neuron) is therefore a part of the
network learning process. The network has an output layer, marked in Figure 3 as n0. This
neuron has N inputs; each connects it to a single neuron in the preceding layer. It should
be emphasized that all weights of these connections are positive and, above all, identical.
This means that they do not change during the learning process. In the diagram, they
are marked as w2. Using identical weights, i.e., the ones that guarantee zero dispersion,
resulted in a significant reduction of the complexity of the hardware implementation. The
value of the weights w2 equaled 0.0025 and was determined by simulating networks of
different sizes for different sampling.



Sensors 2021, 21, 3276 5 of 16

Figure 3. SNN architecture with linear computational complexity.

In connections between neurons, the authors used a mechanism for modeling synapse
plasticity using a capacitor [20]. The current at the output of the synapse equaled the sum
of resistance currents R of the synapse (reciprocal of its weight) and the capacitor charging
current according to Equation (4). For all synapses, the value of capacitance Cre f was the
same and equaled 0.0083.

Isoma = IRes + ICap =
V
R
+

dV
dt

Cre f (4)

The learning process required selecting N input weights, which become variables,
and determining types of neurons in their first layer. Each neuron was defined with
constants a, b, c, d according to Equations (2) and (3). The constants for the neurons of
the last layer were always the same as for the tonic spiking neuron and did not require
mapping. Similarly, the weights and capacitances connecting layers of neurons did not
require determination. Ultimately, the complexity of the network algorithm equaled: N
variables and 4N + 6 constants.

3. Network Learning

The aim of the learning process was to determine the values of the input weights and
to map the first layer of neurons using these weights. Due to the small number of variables,
the authors did not use the method of Spike-Timing-Dependent Plasticity (STDP) [21], nor
the classical optimization using, e.g., backpropagation for spiking neural networks [22].
These methods turned out to be ineffective and did not guarantee appropriate parameters
of precision or the selectivity of patterns. On the other hand, the learning process used
mechanisms similar to methods based on pseudo-inversion matrices or Hebbian methods,
but with reference to associative memories, in which it is possible to determine weights
analytically. Therefore, the classic approach of selecting weight values using iterative
algorithms was not used. The coding method used was directly related to the applied
learning algorithm. Due to the very small number of variables, the following methods
turned out to be ineffective: time to first spike, resonant burst coding, coding by synchrony,
phase coding. The authors used a modified coding method, namely latency coding based
on the exact timing of spikes [23], shown in Figure 4, based on the analysis of the latency
times between subsequent spikes of the response-producing neuron.



Sensors 2021, 21, 3276 6 of 16

Figure 4. The applied SNN response coding.

Due to learning without a teacher, latency times ∆t1, ∆t2, ∆t3 . . . were specific to
patterns and did not require modification during the learning process. The number of
latencies necessary for pattern analysis depended on the complexity of patterns and affected
the specificity of the network algorithm. In practice, for the examples of time waveforms
tested for network analysis, in order to obtain a precision above 0.96, it was sufficient to
compare two latencies, i.e., the times of occurrence of the first two spikes.

The detailed workflow of the learning algorithm was defined as the pseudocode in
Algorithm 1. The input data of the algorithm, except of learning set IN, were constants
in the form of weight values of output layer wout and the capacitances Cre f of synapses
connecting layers. The input data also included parameters a, b, c, d defining tonic spiking
(TS()) and inhibition-induced (I IS()) models and the constant map of connections in the
network (SNN()), the size of which was the result of the size of patterns in set IN. The
algorithm begins with the analysis of Set (1), i.e., determining the number of patterns and
their samplingsize. In case of IoT applications, the size of patterns is usually defined by
the system architect. Steps (3)–(7) define the process of determining input weights using a
simple linear function, out of the elements of the set according to the matrix Equation (5).
Vector W1 contains all input weights, while the AVG vector stores the averaged values of
the signal samples.

W1 = δ(κ − AVG) (5)

It was required to select learning parameters δ and κ. Their values for standardized in-
put currents are given in Section 4, with a description of an example of network learning con-
cerning the problem of data analysis from a set containing samples of biomedical signals.

The loop that maps neurons of the first layer (Lines 8–12) assigns models of neurons
depending on the sign of weight values. Such a criterion requires standardization of input
currents in terms of positive values, so that the input current at tonic spiking neurons is
always positive. Negative current values are still acceptable from the point of view of the
neuron model, but are interpreted as a zero current, and the information they carry is lost.
Weights of the subsequent layer (13) and synaptic capacitances (14) are assigned based
on constants.

Latency times ∆t1, ∆t2 are determined as a mode of the SNN response for all elements
of the learning set (16). For test set M of size m, the mean squared error of the network
response is defined according to Equation (6).

MSE =
1
m

m

∑
i=1

[(∆t1− ∆t1M(i))
2 + (∆t2− ∆t2M(i))

2] (6)

Output data of the learning algorithm are weights, capacitances, a neuron map,
and latency.



Sensors 2021, 21, 3276 7 of 16

Algorithm 1 Network mapping and routing.

Require: dataset IN; constant output weight wout; constant synapse capacitance Cre f ;
neuron models I IS() and TS(); function of neural network SNN()

Ensure: First layer weights w1; second layer weight w2; synapse capacitance C; first layer
neuron map; linear function f (); response code ∆t1 and ∆t2
Reading the set:

1: [sampling, patterns] = size(IN)
2: for i = 1 to sampling do
3: for j = 1 to patterns do
4: L(i)← L(i) + IN(i, j)
5: end for
6: avg(i)← L(i)/patterns

Calculation of input weights:
7: w1(i)← f (avg(i))
8: if w1(i) < 0 then
9: n(i)← I IS()

10: else
11: n(i)← TS()
12: end if

Assigning output weight:
13: w2(i)← wout

Assigning synapse capacitance:
14: C(i)← Cre f
15: end for

Response coding:
16: [∆t1, ∆t2]← mode(SNN(IN))
17: return [w1, w2, C, n, ∆t1, ∆t2]

4. Pattern Classification

In this section, we present a practical application of an SNN with linear complexity in
the processing task of edge computing of biomedical time waveforms. The section presents
network parameters for different levels of signal sampling.

4.1. Current-Mode Signals

As an example of a practical application, the authors chose an amperometric system
for use in monitoring vesicle release in the process of exocytosis [24]. The advantage of this
measurement method is the acquisition of data in the form of current waveforms, which
due to the current-voltage nature of the neuron model (Equation (1)) made it possible
to directly process data from sensors in the SNN. Sensors in amperometry are usually
electrodes implemented using Carbon NanoTubes (CNTs) [25], and the analyzed currents
were in the range of zero to several dozen pA. The diagram of a waveform monitoring
system using a neuroprocessor is shown in Figure 5.

The system uses a set of three electrodes: auxiliary, working, and reference electrodes.
The AFE (Analog-Front-End) circuit is an analog shift register [26], to which single samples
of current signals from electrodes are sent in discrete time. The output of the analog
register is an analog data bus with a size corresponding to the sampling parameter used
in Algorithm 1 and the network N size, as shown in Figure 3. The processing unit was
implemented using the network presented in the above-mentioned diagram.



Sensors 2021, 21, 3276 8 of 16

Figure 5. Application of the described SNN in the task of analyzing data from CNT sensors.

The detection of substances using amperometric techniques is a relatively simple
operation requiring only the use of comparators. Waveform analysis, on the other hand,
is a computational problem. An example of a computational task requiring the classifica-
tion of amperometric waveforms is tracking processes of cell exocytosis based on vesicle
fusion taking place inside cells. This approach is used in cancer metastases’ analysis [27]
and early diagnostics of diseases such as Alzheimer’s [28], cholestasis [29], hypoxia [30],
thrombosis [31], and tetanus [32]. The main problem is the need to analyze signals not
coming from a single cell and a single set of CNT electrodes, but from tens of thousands of
cells and a huge number of electrode sets. The hardware implementation of such a large
number of neural networks requires using exceptionally simple and effective network
algorithms. It is therefore an excellent example of a practical application of the approach
described in this paper.

CNT electrodes for the above-mentioned applications are generally implemented
as carbon nanotube arrays [33]. They make it possible to monitor current waveforms
corresponding to vesicle fusion events inside a tissue. An example of a current waveform
of the electrodes corresponding to a single fusion is shown in Figure 6. Current values
made it possible to directly stimulate synaptic connections in the SNN using signals from
the CNT electrodes.

Figure 6. Amperometric waveform showing full vesicle fusion.



Sensors 2021, 21, 3276 9 of 16

It is worth mentioning, when discussing the current mode of network operation
in the presynaptic area, that spiking neurons in hardware implementations are mainly
found in the form of silicon structures designed using CMOS technologies [6,34–36]. The
miniaturization of nanometer CMOS technologies forces the designers of such circuits to
replace the voltage processing mode with the current mode [7,37]. An SNN application
for amperometric techniques in the IoT is an excellent answer to the problem of the
miniaturization of the technology for implementing modern neuroprocessors.

4.2. Classifier Efficiency

In this part, we present the results of an SNN implementation in the task of the
classification of vesicle fusion waveforms for different waveform sampling frequencies and,
thus, for different network sizes: 10-1, 15-1, 20-1, 25-1, 30-1, 35-1, 40-1. The analyses used
set 40 positive patterns and 40 negative patterns. The patterns of positive and negative
waveforms are presented in Figure 7.

Figure 7. Positive − and negative − patterns used in SNN training with the sampling parameter
N = 20.

The implementation details are described for the example of the network 20-1. The
network input layer consisted of 17 tonic spiking neurons and three inhibition-induced
spiking neurons. Weights for tonic spiking neurons were in the range of 8.08 ÷ 29.23 and
for inhibition-induced neurons in the range of −55.71 ÷ −2.64. Learning parameters had
the following values: δ = 1.4, κ = 26. Two-latency-based coding was used.

The result of the classifier 20-1 operation is presented in Table 1. The first part of
the table shows network responses for positive patterns and the second part for negative
patterns. In both parts, the patterns are ordered according to the increasing Squared Error
(SE) they generated, calculated according to Equation (6) with m = 1 in each case. The mode
determined based on positive patterns equaled: ∆t1 = 3 ms, ∆t2 = 3 ms. For 21 positive
patterns, the network response followed the mode; therefore, their SE error equaled zero.
The remaining positive patterns generated a non-zero SE error with a maximum value of
10. For all negative patterns, this error was at least twice as large, as shown in Table 1. Since
the error for all negative patterns was greater than the largest error for positive patterns,
the accuracy equaled one. A decrease in accuracy may be only due to obtaining a smaller
SE for at least one of the negative patterns, rather than the highest SE for positive patterns.



Sensors 2021, 21, 3276 10 of 16

Table 1. Network answer.

Patterns ∆t1 (ms) ∆t2 (ms) SE

po
si

ti
ve

*

1 3.0 3.0 0
2 3.0 3.0 0
3 3.0 3.0 0
... ... ... ...
21 3.0 3.0 0
22 4.0 5.0 5
23 4.0 5.0 5
... ... ... ...
38 4.0 6.0 10
39 4.0 6.0 10
40 4.0 6.0 10

ne
ga

ti
ve

1 5.0 7.0 20.0
2 8.0 4.0 26.0
3 8.0 5.0 29.0
4 8.0 5.0 29.0
5 8.0 5.0 29.0
6 9.0 4.0 37.0
... ... ... ...
36 18.0 15.0 369.0
37 18.0 15.0 369.0
38 19.0 15.0 400.0
39 25.0 13.0 584.0
40 27.0 8.0 601.0

* mode = [3.0, 3.0].

Table 2 lists network parameters of various sizes. Columns TS and IIS list the number
of Tonic Spiking and Inhibition-Induced Spiking neurons, respectively. The subsequent
columns present the analysis results of the following set: TP, True Positive; TN, True
Negative; FP, False Positive; FN, False Negative. Accuracy was calculated based on these
four values according to Equation (7). The accuracy for all architectures was higher than
0.96 and for most examples, especially the more complex ones, equaled one. It is worth
emphasizing that the decrease in accuracy was not directly caused by the complexity of the
network, but by too poor sampling for the cases 10-1 and 15-1. Thus, it is not a feature of
the network itself, but of sampling of the signal using too low accuracy.

ACC =
TP + TN

TP + FN + FP + TN
(7)

The last column presents the complexity of individual networks calculated based
on the diagram in Figure 3 according to Equation (8), with (v-variable, c-constant). The
complexity of the network was therefore linear, and the number of variables equaled
exactly the size of the input data.

COMPLEX = Nv + (4N + 6)c (8)

All examples used coding based on two latencies. The adopted coding method defines
the maximum sampling frequency of the amperometric signal. The maximum sampling
frequency is the reciprocal of the sum of the maximum latencies for the positive patterns
and was 100 Hz for the analyzed example.

The values of parameters δ and κ were different for each network. Parameter δ was in
the range of 0.95÷ 1.4, and parameter κ was in the range of 26÷ 32. There is no analytical
method to determine them, but both parameters depend on the size of input layer N
according to Equation (9).

κ ∼ N, δ ∼ 1
N

(9)



Sensors 2021, 21, 3276 11 of 16

Table 2. Comparison of network parameters of different sizes.

SNN TS IIS TP TN FP FN ACC COMPLEX

40-1 35 5 40 40 0 0 1 40v + 166c
35-1 31 4 40 40 0 0 1 35v + 146c
30-1 26 4 40 40 0 0 1 30v + 126c
25-1 22 3 40 40 0 0 1 25v + 106c
20-1 17 3 40 40 0 0 1 20v + 86c
15-1 13 2 40 38 2 0 0.975 15v + 66c
10-1 9 1 40 37 3 0 0.9625 10v + 46c

In conclusion, the study featured a learning method based on the algorithm described
using the Algorithm 1 pseudocode including dedicated coding. As mentioned at the
beginning of Section 3, the traditional approach using common coding methods proved
ineffective. Table 3 contains the parameters of a 20-1 architecture network obtained for dif-
ferent approaches: the detection time of a single fusion, i.e., the maximum generation time
of the response for a positive pattern and the accuracy parameter. Some of the approaches
made it possible to detect the positive pattern two times faster, but featured an accuracy
below 0.8. Due to using a classifier in the analysis of slowly changing amperometric signals,
it is more effective to use an approach that guarantees high precision, even with a longer
analysis time. The most similar to the approach based on two latencies is counting time
to first spike. The method described in the paper was an extension of this coding method
with counting time to the next impulse, which made it possible to increase the level of
precision from 0.95 to 1.0. According to Table 2, for the method based on two latencies, the
accuracy was kept at the same level for all of the described architectures; whereas limiting
oneself to a single impulse resulted in the following accuracies for the given architectures:
25-1: ACC = 0.978, 30-1: ACC = 0.956, 35-1: ACC = 0.961, 40-1: ACC = 0.966.

Table 3. Comparison of the 20-1 network parameters vs. coding methods.

Period (ms) ACC

resonant burst coding 10 0.783
coding by synchrony 5 0.798

phase coding 12 0.941
time to first spike 4 0.946

two latencies 10 1

4.3. Mismatch Analysis

Finally, we would like to present the results of the analysis of the sensitivity of the
discussed network to phenomena typical for the implementation of SNNs as semiconductor
circuits. The basic problem of fabricating circuits in nanometer technologies is the mismatch
of process parameters leading to a change in the thickness of the gate oxide in field-effect
transistors [38]. As for SNNs, the change in threshold voltages of MOS transistors caused
by this phenomenon leads to a change in scaling factors of the current mirror multipliers,
and thus in the weights of connections in the network [39]. The mismatch problem is
the basic source of damages to integrated circuits at the fabrication stage and requires
proposing effective testing methods [40].

Due to changes in the values of weights in synaptic connections at the fabrication
stage, we analyzed the degradation of the network response to a random dispersion of
weights w11− w1N and w2 for the network 20-1 in detail. Results of the analysis are
presented in Figure 8. The change in the thickness of the gate oxide in the process had a
gradient character and was similar for transistors placed in the same substrate area. For
this reason, the analysis was performed depending on the percentage error and separately
for positive and negative errors. The analysis was performed for 50 random samples in
each percentage range, and Figure 8 presents the trend of the mean value with error bars



Sensors 2021, 21, 3276 12 of 16

representing extreme values. What draws attention is the strong asymmetry in network
sensitivity. While for negative dispersion, the network maintains accuracy at the level of 0.9
up to −20% changed in synaptic weights, the same level of accuracy was only maintained
for 2% of positive dispersion. When planning a semiconductor network implementation,
it is worth considering a 10% correction of values of weights w11− w1N and w2 in order
to eliminate network sensitivity, especially as the network showed great tolerance for
mismatch in the range of −20%÷ 2%. In the case of a software implementation or using
an FPGA, this feature does not apply, unless, due to the reduction of weight values, it
significantly reduces the bit representation of the performed operations.

Figure 8. Accuracy vs. weight mismatch.

5. Discussion

In the current section, we would like to conduct a cost analysis of a hardware imple-
mentation of the discussed network, which is dedicated to IoT problems. There are different
structures of spiking neurons implemented using semiconductor technologies [6,35,36]. Ac-
cording to the best knowledge of the authors of this article, implementations of the lowest
complexity require using six field-effect transistors and two capacitors [7] or 15 transistors
without a capacitor [41]. As for the implementation of synapses, due to the current mode,
the multiplication operations are performed using circuits with reconfigurable current
mirrors [42], which also makes it possible to invert the current flow direction, and thus also
the implementation of negative weights. The cost of implementing positive weights with
a dispersion in the range of 0÷ 64.0 is 56 transistors and concerning negative weights in
the range of −64.0÷ 0 is 60 transistors. The second layer weights, which connect neurons,
due to the zero dispersion, can be implemented using mirrors without reconfiguration.
The cost of implementing such synapses is four transistors. The cost of implementing
the entire SNN 20-1 network with ACC = 1 described in the previous section was 1338
transistors and 62 capacitors in the case of CMOS neurons of type [7] or 1527 transistors and
20 capacitors in case of CMOS neurons of type [41]. For comparison, the implementation
of a 1 bit digital multiplication operation requires using 48 transistors [43]. This means
that a single weight implemented with a 32 bit precision requires using 1536 transistors,
while the entire SNN was implemented using a similar amount of resources. We estimated
the parameters of a semiconductor implementation of a network of type [41] with the
20-1 architecture. The analysis was performed using the TSMC 65 nm technology and the
Eldo simulator. According to the estimation, the classifier’s power consumption equaled
146 nW. The energy consumption calculated for the whole network equaled 2.9 pJ/spike.



Sensors 2021, 21, 3276 13 of 16

The maximum operating frequency of the classifier was 1170 patterns/s with the coding
shown in Table 1.

It is worth mentioning that ensuring zero dispersion of weights in connections between
neurons is an introduction to a wider research of the authors on training SNNs. The results
of these studies showed that the network kept all its parameters of precision, selectivity,
specificity, and sensitivity, even with complete elimination of weights from its entire
structure, i.e., using weights of the same value in all elements of the network. The results
of these studies are at the publication stage. In this article, we wanted to draw attention
to the specific insensitivity of the network to the value of weights and to the possibility
of eliminating most connections in the network without compromising its parameters.
Total reduction of weight spread in the second layer of the network, ensuring low network
sensitivity to mismatch, and the reduction of the complexity of the network algorithm itself
reduced the cost of calculations performed in sensors.

Reducing the network algorithm complexity is one of the more frequently discussed
topics in literature. One of the hardware friendly architectures of SNNs was the implemen-
tation described in paper [17]. The paper presented the implementation of a neuroprocessor
as a CMOS circuit. The network architecture consisted of an input layer, a fully connected
excitatory neuron layer, and an inhibitory neuron layer with feed-forward and -backward
connections. Despite the fabrication-oriented implementation, the network complexity was
high due to the large number of connections. For this reason, seventy-eight-point-seven
percent of the surface of the layout of the described neuroprocessor was occupied by
synapses. The network was tested for patterns 14.4 times wider than in case of our network
with the 40-1 architecture. However, the number of synapses in this case was 2875 times
greater. Another implementation, which has a particularly low complexity, is the network
described in paper [44] dedicated to processing black-and-white photos. The simplified
architecture of the SNN, described in the paper, was focused on implementation using
an FPGA, in which case, the number of available resources is very limited. The authors
of the study put much emphasis on a strong reduction of the number of neurons in the
network, yet the linear complexity of the network was not guaranteed. As the authors
pointed out, the number of neurons must be increased in relation to the number of classes
for the network to correctly classify patterns. A limitation was also the number of required
200 Time Units (TUs) for the correct classification of patterns. Providing the adopted
refractory period of 30 TUs, the classification required generating six impulses. In our
coding, we limited ourselves to two impulses, and analyses presented in Table 1 showed
a correct classification of patterns already at 10 TUs. Thanks to such coding, we were
able to obtain a 20 times faster pattern processing speed. The network described in paper
[44] was used to analyze black-and-white patterns with a few percent of noise added or
partially obscured. In our study, we analyzed analog signals changing in the entire range
of acceptable values of network input currents. Thanks to this, the solution can be used in
sensor techniques.

Lastly, the authors would like to point out potential limitations of the presented
approach. The main disadvantage was using neurons based on the Izhikevich model,
which admittedly are characterized by low complexity, yet the number of floating point
operations in their case is greater compared to the integrate-and-fire model. Moreover,
in order to ensure high precision in the classification task, the learning process featured
an original method of determining weights instead of the commonly used methods. As a
limitation of the described approach, it is also worth indicating the range of processed input
currents. Passing data to the network directly from electrodes is possible only assuming
that input currents do not exceed values typical for amperometry, i.e., 100 pA. Otherwise,
it is required to use additional input current scaling circuits operating in current mode.
Similarly, when it is necessary to analyze currents of smaller values, the input layer requires
using weights with a larger dispersion of values.



Sensors 2021, 21, 3276 14 of 16

6. Conclusions

This paper presented a waveform classifier based on spiking neural networks for
applications in edge computing. We proposed a structure of a network based on the
activity of the diencephalon and with linear computational complexity, in which the
number of variables, i.e., connection weights, was significantly reduced, limiting it only
to the number of processed samples. Additionally, we completely eliminated variables
between network layers and replaced them with connections of identical values. Despite
significant reductions in the weighting mechanism, analyses of networks of various sizes
showed very good accuracy parameters, regardless of the size of the network. Additionally,
the paper analyzed the cost of implementing the discussed structures as CMOS circuits.

Author Contributions: Conceptualization, S.S., D.H., and Ł.P.; methodology, S.S. and D.H.; software,
S.S.; validation, S.S., Ł.P.; writing—original draft preparation, S.S.; writing—review and editing, S.S.,
D.H., and Ł.P.; supervision, S.S.; project administration, S.S. and D.H. All authors read and agreed to
the published version of the manuscript.

Funding: This research was supported by the Statutory Activities for Young Staff No. 0311/SBAD/
0714 of the Faculty of Computing and Telecommunications at the Poznan University of Technology
in Poland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SNN Spiking Neural Network
CNT Carbon NanoTube
CMOS Complementary Metal Oxide Semiconductor
ADC Analog-to-Digital Converter
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
STDP Spike Timing-Dependent-Plasticity
TS Tonic Spiking
IIS Inhibition-Induced Spiking
AFE Analog Front-End
SE Square Error
TP True Positive
TN True Negative
FP False Positive
FN False Negative
TUs Time Units

References
1. Song, Z.; Cheng, J.; Chauhan, A.; Tilevich, E. Pushing Participatory Sensing Further to the Edge. In Proceedings of the 2019 IEEE

International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019.
2. Banks, C.; Mortimer, R.; McIntosh, S. Electrochemistry; The Royal Society of Chemistry: London, UK, 2015.
3. Wu, Q.; Zhang, Q.; Liu, B.; Li, Y.; Wu, X.; Kuo, S.; Zheng, L.; Wang, C.; Zhu, F.; Zhou, Z. Dynamin 1 Restrains Vesicular Release to

a Subquantal Mode In Mammalian Adrenal Chromaffin Cells. J. Neurosci. 2019, 39, 199–211. [CrossRef] [PubMed]
4. Szczęsny, S.; Kropidłowski, M.; Naumowicz, M. 0.50-V Ultra-Low-Power Σ∆ Modulator for Sub-nA Signal Sensing in Amperom-

etry. IEEE Sens. J. 2020, 20, 5733–5740. [CrossRef]
5. Harrison, R. MOSFET Operation in Weak and Moderate Inversion; EE5720; University of Utah: Salt Lake City, UT, USA, 2014. Available

online: https://studylib.net/doc/18221859/mosfet-operation-in-weak-and-moderate-inversion (accessed on 11 April 2021)

http://doi.org/10.1523/JNEUROSCI.1255-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30381405
http://dx.doi.org/10.1109/JSEN.2020.2974701
https://studylib.net/doc/18221859/mosfet-operation-in-weak-and-moderate-inversion


Sensors 2021, 21, 3276 15 of 16

6. Wu, X.; Saxena, V.; Zhu, K.; Balagopal, S. A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses
and In-Situ Learning. IEEE Trans. Circ. Syst. II Express Briefs 2015, 62, 1088–1092. [CrossRef]

7. Sourikopoulos, I.; Hedayat, S.; Loyez, C.; Danneville, F.; Hoel, V.; Mercier, E.; Cappy, A. A 4-fJ/Spike Artificial Neuron in 65 nm
CMOS Technology. Front. Neurosci. 2017, 11, 123. [CrossRef]

8. Nguyen, L.; Lin, D.; Lin, Z.; Cao, J. Deep CNNs for microscopic image classification by exploiting transfer learning and feature
concatenation. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30
May 2018.

9. Thompson, N.C.; Greenewald, K.; Lee, K.; Manso, G.F. The Computational Limits of Deep Learning. MIT. 2020. Available online:
https://arxiv.org/abs/2007.05558 (accessed on 11 April 2021).

10. Rowcliffe, P.; Feng, J. Buxton, Spiking Perceptrons. IEEE Trans. Neural Netw. 2006, 17, 803–807. [CrossRef] [PubMed]
11. Davies, M.; Srinivasa, N.; Lin, T.; Chinya, G.; Joshi, P.; Lines, A.; Wild, A.; Wang, H. Loihi: A Neuromorphic Manycore Processor

with On-Chip Learning. IEEE Micro 2018. [CrossRef]
12. Cheng, H.P.; Wen, W.; Wu, C.; Li, S.; Li, H.H.; Chen, Y. Understanding the design of IBM neurosynaptic system and its tradeoffs:

A user perspective. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Lausanne, Switzerland,
27–31 March 2017.

13. Lymer, J.; Prescott, I.A.; Levy, R. Microstimulation-induced inhibition of thalamic reticular nucleus in non-human primates. Exp.
Brain Res. 2019, 237, 1511–1520. [CrossRef] [PubMed]

14. Abusnaina, A.A.; Abdullah, R. Spiking Neuron Models: A Review. Int. J. Digit. Content Technol. Its Appl. 2014, 8, 14–21.
15. Izhikevich, E.M. Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Netw. 2004, 15, 1063–1070. [CrossRef]
16. Corradi, F.; Adriaans, G.; Stuijk, S. Gyro: A Digital Spiking Neural Network Architecture for Multi-Sensory Data Analytics.

In Proceedings of the DroneSE and RAPIDO ’21: 2021 Drone Systems Engineering and Rapid Simulation and Performance
Evaluation: Methods and Tools Proceedings, Budapest, Hungary, 20 January 2021.

17. Hoyoung, T.; Heetak, K.; Hyeonseong, K.; Park, J. Spike Counts Based Low Complexity SNN Architecture with Binary Synapse.
IEEE Trans. Biomed. Circ. Syst. 2019, 13, 1664–1677.

18. Sulaiman, M.B.G.; Juang, K.C.; Lu, C.C. Weight Quantization in Spiking Neural Network for Hardware Implementation. In
Proceedings of the 2020 IEEE International Conference on Consumer Electronics, Taoyuan, Taiwan, 28–30 September 2020.

19. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef] [PubMed]

20. Nowak, L.G.; Sanchez-Vives, M.V.; McCormick, D.A. Influence of low and high frequency inputs on spike timing in visual cortical
neurons. Cereb. Cortex 1997, 7, 487–501. [CrossRef]

21. Tazerart, S.; Mitchell, D.E.; Miranda-Rottmann, S.; Araya, R. A spike-timing-dependent plasticity rule for dendritic spines. Nat.
Commun. 2020, 11, 1–16. [CrossRef]

22. Schrauwen, B.; Campenhout, J.V. Improving spikeprop: Enhancements to an error-backpropagation rule for spiking neural
networks. In Proceedings of the 15th ProRISC Workshop, Veldhoven, The Netherlands, 25–26 November 2004; Volume 11,
pp. 301–305.

23. Ponulak, F.; Kasiński, A. I Introduction to spiking neural networks: Information processing, learning and applications. Acta
Neurobiol. Exp. 2011, 17, 409–433.

24. Fathail, H.; Cans, A.-S. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers
Arch. 2018, 470, 125–134. [CrossRef] [PubMed]

25. Goudah, G.; Suliman, S.M.A.; Elfaki, E.A. Carbon nanotubes: Challenges and opportunities. In Proceedings of the International
Conference on Computing, Electrical And Electronic Engineering (ICCEEE), Khartoum, Sudan, 26–28 August 2013.

26. Li, Y.; Tsurumaki-Fukuchi, A.; Arita, M.; Morie, T.; Takahashi, Y. Switching Current of Ta2O5-Based Resistive Analog Memories.
In Proceedings of the 2019 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 9–10 June 2019.

27. Lucien, F.; Leong, H.S. The role of extracellular vesicles in cancer microenvironment and metastasis: Myths and challenges.
Biochem. Soc. Trans. 2019, 47, 273–280. [CrossRef] [PubMed]

28. Zoltowska, K.M.; Maesako, M.; Lushnikova, I.; Takeda, S.; Keller, L.J.; Skibo, G.; Hyman, B.T.; Berezovska, O. Dynamic presenilin
1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol. Neurodegener. 2017, 12, 15. [CrossRef]

29. Trampert, D.C.; Nathanson, M.H. Regulation of bile secretion by calcium signaling in health and diseas. Biochim. Biophys. Acta
BBA Mol. Cell Res. 2018, 1865 Pt B, 1761–1770. [CrossRef]

30. To, W.K.L.; Kumar, P.; Marshall, J.M. Hypoxia is an effective stimulus for vesicular release of ATP from human umbilical vein
endothelial cells. Placenta 2015, 36, 759–766.

31. Michels, A.; Albánez, S.; Mewburn, J.; Nesbitt, K.; Gould, T.J.; Liaw, P.C.; James, P.D.; Swystun, L.L.; Lillicrap, D. Histones link
inflammation and thrombosis through the induction of Weibel-Palade body exocytosis. J. Thromb. Haemost. 2016, 14, 2274–2286.
[CrossRef]

32. Hoogstraaten, R.I.; van Keimpema, L.; Toonen, R.F.; Verhage, M. Tetanus insensitive VAMP2 differentially restores synaptic and
dense core vesicle Fusion in tetanus neurotoxin treated neurons. Sci. Rep. 2020, 10, 10913. [CrossRef]

33. Li, J.; Meyyappan, M.; Cassell, A.M. National Aeronautics and Space Administration NASA, Biochemical Sensors Using Carbon
Nanotube Arrays. U.S. Patent 7939734B1, 10 May 2011.

http://dx.doi.org/10.1109/TCSII.2015.2456372
http://dx.doi.org/10.3389/fnins.2017.00123
https://arxiv.org/abs/2007.05558
http://dx.doi.org/10.1109/TNN.2006.873274
http://www.ncbi.nlm.nih.gov/pubmed/16722183
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1007/s00221-019-05526-x
http://www.ncbi.nlm.nih.gov/pubmed/30919013
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.3389/fncom.2015.00099
http://www.ncbi.nlm.nih.gov/pubmed/26941637
http://dx.doi.org/10.1093/cercor/7.6.487
http://dx.doi.org/10.1038/s41467-020-17861-7
http://dx.doi.org/10.1007/s00424-017-2069-9
http://www.ncbi.nlm.nih.gov/pubmed/28951968
http://dx.doi.org/10.1042/BST20180253
http://www.ncbi.nlm.nih.gov/pubmed/30647137
http://dx.doi.org/10.1186/s13024-017-0159-y
http://dx.doi.org/10.1016/j.bbamcr.2018.05.010
http://dx.doi.org/10.1111/jth.13493
http://dx.doi.org/10.1038/s41598-020-67988-2


Sensors 2021, 21, 3276 16 of 16

34. Morie, T. CMOS circuits and nanodevices for spike based neural computing. In Proceedings of the 2015 IEEE International
Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 4–5 June 2015.

35. Basu, A.; Hasler, P.E. Nullcline-based design of a silicon neuron. IEEE Trans. Circ. Syst. I Regul. Pap. 2010, 57, 2938–2947.
[CrossRef]

36. Joubert, A.; Belhadj, B.; Temam, O.; Heliot, R. Hardware spiking neurons design: Analog or digital? In Proceedings of the 2012
International Joint Conference on Neural Networks, Brisbane, QLD, Australia, 10–15 June 2012.

37. Szczęsny, S. Current-Mode FPAA with CMRR Elimination and Low Sensitivity to Mismatch. Circ. Syst. Signal Process. 2017,
36, 2672–2696. [CrossRef]

38. Yuan, X.; Shimizu, T.; Mahalingam, U.; Brown, J.S.; Habib, K.Z.; Tekleab, D.G.; Su, T.; Satadru, S.; Olsen, C.M.; Rim, K.; et al.
Transistor Mismatch Properties in Deep-Submicrometer CMOS Technologies. IEEE Trans. Electron Devices 2011, 58, 335–342.
[CrossRef]

39. Haberler, M.; Siegl, I.; Steffan, C.; Auer, M. Mismatch Reduction Techniques for Current-Mirror Based Potentiostats. In Proceedings
of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia,
28 September–2 October 2020.

40. Acero, C.; Feltham, D.; Liu, Y.; Moghaddam, E.; Mukherjee, N.; Patyra, M.; Rajski, J.; Reddy, S.M.; Tyszer, J.; Zawada, J. Embedded
Deterministic Test Points. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2017, 25, 2949–2961. [CrossRef]

41. Szczęsny, S.; Huderek, D. 60 pW 20 µm size CMOS implementation of an actual soma membrane. J. Comput. Electron. 2020,
19, 242–252. [CrossRef]

42. Szczęsny, S. High Speed and Low Sensitive Current-Mode CMOS Perceptron. Microelectron. Eng. 2016, 165, 41–51. [CrossRef]
43. Handkiewicz, A. Mixed-Signal Systems: A Guide to CMOS Circuit Design; Wiley: Hoboken, NJ, USA, 2002.
44. Iakymchuk, T.; Rosado-Muñoz, A.; Guerrero-Martínez, J.F.; Bataller-Mompeán, M.; Francés-Víllora, J.V. Simplified spiking neural

network architecture and STDP learning algorithm applied to image classification. EURASIP J. Image Video Process. 2015, 4, 1–11.
[CrossRef]

http://dx.doi.org/10.1109/TCSI.2010.2048772
http://dx.doi.org/10.1007/s00034-016-0449-6
http://dx.doi.org/10.1109/TED.2010.2090159
http://dx.doi.org/10.1109/TVLSI.2017.2717844
http://dx.doi.org/10.1007/s10825-019-01431-2
http://dx.doi.org/10.1016/j.mee.2016.08.010
http://dx.doi.org/10.1186/s13640-015-0059-4

	Introduction
	Network Architecture
	Thalamo-Based Neurons
	Network Routing

	Network Learning
	Pattern Classification
	Current-Mode Signals
	Classifier Efficiency
	Mismatch Analysis

	Discussion
	Conclusions
	References

