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Abstract

SNP heritability, the proportion of phenotypic variance explained by SNPs, has been reported for 

many hundreds of traits. Its estimation requires strong prior assumptions about the distribution of 

heritability across the genome, but the assumptions in current use have not been thoroughly tested. 

By analyzing imputed data for a large number of human traits, we empirically derive a model that 

more accurately describes how heritability varies with minor allele frequency, linkage 

disequilibrium and genotype certainty. Across 19 traits, our improved model leads to estimates of 

common SNP heritability on average 43% (standard deviation 3) higher than those obtained from 

the widely-used software GCTA, and 25% (standard deviation 2) higher than those from the 

recently-proposed extension GCTA-LDMS. Previously, DNaseI hypersensitivity sites were 
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reported to explain 79% of SNP heritability; using our improved heritability model their estimated 

contribution is only 24%.

The SNP heritability  of a trait is the fraction of phenotypic variance explained by 

additive contributions from SNPs.1 Accurate estimates of  are central to resolving the 

missing heritability debate, indicate the potential utility of SNP-based prediction and help 

design future genome-wide association studies (GWAS).2, 3 Whereas techniques for 

estimating (total) heritability have existed for decades,4, 5 the first method for estimating 

 was proposed only in 2010,1 but has since been applied to many hundreds of traits. 

Extensions of this method are now being used to partition heritability across chromosomes, 

biological pathways and by SNP function, and to calculate the genetic correlation between 

pairs of traits.6–8

As the number of SNPs in a GWAS is usually much larger than the number of individuals, 

estimation of  requires steps to avoid over-fitting. Most reported estimates of  are 

based on assigning the same Gaussian prior distribution to each SNP effect size, in a way 

which implies that all SNPs are expected to contribute equal heritability.1, 9 By examining a 

large collection of real datasets, we derive approximate relationships between the expected 

heritability of a SNP and minor allele frequency (MAF), levels of linkage disequilibrium 

(LD) with other SNPs and genotype certainty. This provides us with an improved model for 

heritability estimation and a better understanding of the genetic architecture of complex 

traits.

Results

When estimating  the “LDAK Model” assumes

(1)

where  is the expected heritability contribution of SNP j and fj is its (observed) MAF. 

The parameter α determines the assumed relationship between heritability and MAF. In 

human genetics it is commonly assumed that heritability does not depend on MAF, which is 

achieved by setting α = –1, however, we consider alternative relationships. The SNP weights 

w1,…, wm are computed based on local levels of LD;9 wj tends to be higher for SNPs in 

regions of low LD, and thus the LDAK Model assumes that these SNPs contribute more than 

those in high-LD regions. Finally, rj ∈ [0, 1] is an information score measuring genotype 

certainty; the LDAK Model expects that higher-quality SNPs contribute more than lower-

quality ones. rj is defined in Online Methods, where we also explain how (1) arises by 

assuming a genome-wide random regression in which SNP effect sizes are assigned 

Gaussian distributions.
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The “GCTA Model” is obtained from (1) by setting wj = 1 and rj = 1, and thus assumes that 

expected heritability does not vary with either LD or genotype certainty. To date, most 

reported estimates of  have used the GCTA Model with α = –1, which corresponds to 

the assumption that  is constant, and so the expected contribution of a SNP set 

depends only on the number of SNPs it contains.1 To appreciate the major difference 

between the GCTA and LDAK Models, consider a region containing two SNPs: under the 

GCTA Model, the expected heritability of these two SNPs is the same irrespective of the LD 

between them, whereas under the LDAK Model, two SNPs in perfect LD are expected to 

contribute only half the heritability of two SNPs showing no LD. See Figure 1 for a more 

detailed example.

An alternative method for estimating  is LDSC (LD Score Regression).10 The LDSC 

Model expects that each SNP contributes equal heritability,10, 11 and therefore closely 

resembles the GCTA Model with α = –1. When applied to the same dataset, estimates from 

LDSC will typically have standard error 25-100% higher than those from GCTA;11 this is 

partly because the LDSC Model includes an extra parameter, designed to capture 

confounding biases, and partly because LDSC estimates are moment-based, whereas GCTA 

(like LDAK) uses restricted maximum likelihood (REML).12, 13 However, as LDSC 

requires only summary statistics (i.e., p-values from single-SNP analysis), it can be used on 

much larger datasets than GCTA and LDAK, which need raw genotype data, and can be 

applied to results from large-scale meta-analyses.10

SNP partitioning

(1) can be generalized by dividing SNPs into tranches across which the constant of 

proportionality is allowed to vary (so  for SNPs in 

Tranche k). This is known as SNP partitioning.6 Two examples are GCTA-MS14 and 

GCTA-LDMS:15 when applied to common SNPs (MAF > 0.01), GCTA-MS divides the 

genome into five tranches based on MAF, using the boundaries 0.1, 0.2, 0.3 and 0.4, while 

GCTA-LDMS first divides SNPs into four tranches based on local average LD Score,10 then 

divides each of these into five based on MAF, resulting in a total of 20 tranches. In general, 

we prefer to avoid SNP partitioning when estimating  because it introduces (often 

arbitrary) discontinuities in the model assumptions and can cause convergence problems. 

However, we show below that partitioning based on MAF enables reliable estimation of 

when rare SNPs (MAF < 0.01) are included. Additionally, SNP partitioning provides a way 

to visually assess the fit of different heritability models; it allows us to estimate average 

for different SNP tranches, which can then be compared to the values predicted under 

different assumptions.

Datasets

In total, we analyze data for 42 traits. Table 1 describes the 19 “GWAS traits” (17 case-

control, 2 quantitative). For these, individuals were genotyped using either genome-wide 

Illumina or Affymetrix arrays (typically 500 K to 1.2 M SNPs). We additionally examine 
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data from eight cohorts of the UCLEB consortium,24 which comprise about 14 000 

individuals genotyped using the Metabochip;25 (a relatively sparse array of 200 K SNPs 

selected based on previous GWAS) and recorded for a wide range of clinical phenotypes. 

From these, we consider 23 quantitative phenotypes (average sample size 8 200), which can 

loosely be divided into anthropomorphic (height, weight, BMI and waist circumference), 

physiological (lung capacity and blood pressure), cardiac (e.g., PR and QT intervals), 

metabolic (glucose, insulin and lipid levels) and blood chemistry (e.g., fibrinogen, 

Interleukin 6 and haemoglobin levels). In general, our quality control is extremely strict; 

after imputation we retain only autosomal SNPs with MAF > 0.01 and information score rj > 
0.99. We only relax quality control when, using the UCLEB data, we explicitly examine the 

consequences of including lower-quality and rare SNPs.

Further details of our methods and datasets are provided in Online Methods. In particular, 

we explain how when estimating  we give special consideration to highly-associated 

SNPs, which we define as those with P < 10–20 from single-SNP analysis, and how for the 

UCLEB data, we confirm that genotyping errors do not correlate with phenotype (which is 

important for the analyses where we include lower-quality SNPs).

Relationship between heritability and MAF

Varying the value of α in (1) changes the assumed relationship between heritability and 

MAF; three example relationships are shown in Figure 2a. To determine suitable α, we 

analyze each of the 42 traits using seven values: –1.25, –1, –0.75, –0.5, –0.25, 0 and 0.25, 

seeing which lead to best model fit (highest likelihood). Full results are provided in 

Supplementary Figure 1 and Supplementary Table 2. First, to remove any confounding due 

to LD, we use only a pruned subset of SNPs (with wj = 1); next, we repeat without LD 

pruning (the results for the GWAS traits are shown in Figure 2b); finally, for the UCLEB 

traits, we repeat including lower-quality and rare SNPs. We find that model fit is typically 

highest for –0.5 ≤ α ≤ 0, whereas the most widely-used value, α = –1, reuslts in sub-optimal 

fit. On the basis that it performs consistently well across different traits and SNP filterings, 

we recommend that α = –0.25 becomes the default. This value implies that expected 

heritability declines with MAF; this is seen in Figure 2a which reports, averaged across the 

19 GWAS traits, the (weight-adjusted) per-SNP heritability for low- and high-MAF SNPs 

(see Supplementary Figure 2 for further details).

While α = –0.25 provides the best fit overall, for individual traits, optimal α may differ, and 

therefore we investigate sensitivity of  estimates to the value of α. Full results are 

provided in Supplementary Figures 3, 4 & 5, while Figure 6a provides a summary for the 

UCLEB traits. When analyzing only common SNPs, we find that changes in α have little 

impact on  For example, across the 23 UCLEB traits, estimates from high-quality 

common SNPs using α = –0.25 are on average only 5% (standard deviation 4) lower than 

those using α = –1, and 4% (standard deviation 4) higher than those using α = 0. However, 

this is no longer the case when rare SNPs are included in the analysis: for example, when the 

MAF threshold is reduced to 0.0005, estimates using α = –0.25 are on average 18% 

(standard deviation 4) lower than those using α = –1 and 30% (standard deviation 6) higher 
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than those from α = 0. Therefore, when including rare SNPs, we guard against 

misspecification of α by partitioning based on MAF (with boundaries at 0.001, 0.0025, 0.01 

and 0.1); we find that this provides stable estimates of  and also allows estimation of the 

relative contributions of rare and common variants (Figure 6a and Supplementary Figure 6).

Relationship between heritability and LD

The LDAK Model assumes that heritability varies according to local levels of LD, whereas 

the GCTA Model assumes that heritability is independent of LD. First we demonstrate that 

choice of model matters when estimating  SNP. For the GWAS traits, Figure 3a reports 

relative estimates of  from GCTA, GCTA-MS, GCTA-LDMS and LDAK (all using α = 

–0.25); see Supplementary Figure 7 for an extended version. We find that estimates based on 

the LDAK Model are on average 48% (standard deviation 3) higher than estimates based on 

the GCTA Model. For the UCLEB traits, estimates from LDAK are on average 88% 

(standard deviation 7) higher than those from GCTA (Supplementary Fig. 8). Figure 3a also 

includes results from LDSC, run as described in the original publication10 (see 

Supplementary Table 3 for numerical values). Estimates from LDSC are not significantly 

different to those from GCTA, which is to be expected considering that GCTA and LDSC 

assume the same relationship between heritability and LD. In Supplementary Figure 9 we 

consider alternative versions of LDSC (e.g., varying how LD Scores are computed, forcing 

the intercept term to be zero and excluding highly-associated SNPs). While changing 

settings can have a large impact, in all cases the average estimate  from LDSC remains 

substantially below that from LDAK.

A recent article which asserted that GCTA estimates  more accurately than LDAK, 

based this claim on a simulation study in which causal SNPs were assigned effect sizes from 

the same Gaussian distribution, irrespective of LD.6 This resembles the GCTA Model but 

not the LDAK Model, and so it is no surprise that GCTA performed better. Figure 3b shows 

that if instead effect size variances had been scaled by SNP weights, and so vary with LD 

similar to the LDAK Model, then the study would have found LDAK to be superior to 

GCTA. Thus using simulations to compare different heritability models is problematic, 

because the conclusions will depend on the assumptions used when generating phenotypes. 

See Supplementary Figure 10 for a full reanalysis of the reported simulation study and 

Supplementary Figure 11 for further simulations.

Rather than using simulations, we compare LDAK and GCTA empirically. Supplementary 

Table 4 shows that when α = –0.25, assuming the LDAK Model leads to higher likelihood 

than assuming the GCTA Model for all 19 GWAS traits and for 17 of the 23 UCLEB traits 

(if we instead use α = –1, likelihood is higher under the LDAK Model for 31 of the 42 

traits). To visually demonstrate the superior fit of the LDAK Model, we partition SNPs into 

low- and high-LD (for this, we rank SNPs according to the average LD Score10 of non-

overlapping 100 kb segments, the metric used by GCTA-LDMS15). First, we partition so 

that the two tranches contain an equal number of SNPs. The left half of Figure 4b reports, 

for each of the GWAS traits, the contribution of the low-LD tranche, estimated using the 

GCTA Model (with α = –0.25). Under the GCTA Model, the low-LD tranche is expected to 
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contribute 50% of ; under the LDAK Model, it is expected to contribute 72% of 

We see that the estimated contribution of the low-LD tranche is consistent with the GCTA 

Model (95% confidence interval includes 50%) for only 5 of the 19 traits, whereas it is 

consistent with the LDAK Model (confidence interval includes 72%) for 18. Next we 

partition so that the low-LD tranche contains a quarter of the SNPs; now the low-LD tranche 

is predicted to contribute 26% of  under the GCTA Model, but 47% of  under the 

LDAK Model. The right half of Figure 4b shows that its estimated contribution is consistent 

with the GCTA Model for only 7 of the 19 traits, but again consistent with the LDAK Model 

for 18. Additional results are provided in Supplementary Figure 12; these show that 

regardless of whether we estimate heritabilities using LDAK (rather than GCTA), whether 

we use α = –1 (instead of α = –0.25) or whether we analyze the UCLEB traits, it remains 

the case that the LDAK Model better predicts the heritability contribution of each tranche 

than the GCTA Model.

Relationship between heritability and genotype certainty

The LDAK Model assumes that SNP heritability contributions vary with genotype certainty 

(measured by the information score rj). So far, our analyses have used only very high-quality 

SNPs (rj > 0.99), so this assumption has been redundant. Now we also include lower-quality 

common SNPs; we focus on the UCLEB traits, as for these we were able to test for 

correlation between genotyping errors and phenotype (Supplementary Fig. 13). 

Supplementary Table 5 compares model fit with and without allowance for genotype 

certainty; it shows that including rj in the heritability model tends to provide a modest 

improvement in model fit, resulting in a higher likelihood for 18 out of 23 traits.

Estimates of  for the GWAS traits

Table 1 presents our final estimates of  for the 19 GWAS traits, obtained using the 

LDAK Model (with α = −0.25). For comparison, we include previously-reported estimates 

of  as well as the proportion of phenotypic variance explained by SNPs reported as 

genome-wide significant (see Supplementary Table 6). For the disease traits, estimates are 

on the liability scale, obtained by scaling according to the observed case-control ratio and 

(assumed) trait prevalence.26, 27 We are unable to find previous estimates of  for 

tuberculosis or intraocular pressure, indicating that for these two traits, we are the first to 

establish that common SNPs contribute sizable heritability. Extended results are provided in 

Supplementary Table 7. These show that our final estimates of  are on average 43% 

(standard deviation 3) and 25% (standard deviation 2) higher than, respectively, those 

obtained using the original versions (i.e., with α = −1) of GCTA28 and GCTA-LDMS.15

Role of DNaseI hypersensitivity sites (DHS)

Gusev et al.7 used SNP partitioning to assess the contributions of SNP classes defined by 

functional annotations. Across 11 diseases they concluded that the majority of  was 

explained by DHS, despite these containing less than 20% of all SNPs. For Figure 5, we 

perform a similar analysis using the 10 traits we have in common with their study (for 9 of 
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these, we are using the same data). When we copy Gusev et al. and assume the GCTA Model 

with α = −1, we estimate that on average DHS contribute 86% (standard deviation 4) of 

 close to the value they reported (79%). When instead we assume the LDAK Model 

(with α = −0.25), the estimated contribution of DHS reduces to 25% (standard deviation 2). 

Under the LDAK Model, DHS are predicted to contribute 18% of  so 25% represents 

1.4-fold enrichment. To add context, we also consider “genic” SNPs, which we define as 

SNPs inside or within 2 kb of an exon (using RefSeq annotations29), and “inter-genic,” 

SNPs further than 125 kb from an exon; these definitions ensure that these two SNP classes 

are also predicted to contribute 18% of  under the LDAK Model. We estimate that genic 

SNPs contribute 29% (standard deviation 2), while inter-genic SNPs contribute 10% 

(standard deviation 2), representing 1.6-fold and 0.6-fold enrichment, respectively. When we 

extend this analysis to all 42 traits, DHS on average contribute 24% (standard deviation 2) of 

 and in contrast to Gusev et al., enrichment remains constant when we reduce SNP 

density (Supplementary Fig. 14 & 15 and Supplementary Table 8).

Finucane et al.30 performed a similar analysis, but considered 52 SNP classes and estimated 

enrichment using LDSC; across nine traits, they identified five classes with >4-fold 

enrichment, the highest of which, “conserved SNPs,” had 13-fold enrichment. When we use 

LDAK to estimate enrichment for our 19 GWAS traits, the results are more modest; the 

highest enrichment is 2.5-fold, with only 1.3-fold enrichment for conserved SNPs 

(Supplementary Fig. 16).

Relaxing quality control

For the UCLEB data, we consider nine alternative SNP filterings. Supplementary Figure 17 

reports estimates of  for each trait / filtering, while Figure 6a provides a summary. First 

we vary the information score threshold: rj > 0.99, > 0.95, > 0.9, > 0.6, > 0.3 and > 0 (each 

time continuing to require MAF > 0.01). Simulations suggest that by including all 8.8 M 

common SNPs (rj > 0), instead of using just the 353 K high-quality ones (rj > 0.99), we can 

expect estimates of  to increase by 50-60% (Supplementary Fig. 18). This is similar to 

what we observe in practice, as across the 23 traits, estimates of  (using α = −0.25) are 

on average 45% (standard deviation 8) higher. The simulations further predict that, even 

though the Metabochip provides relatively low coverage of the genome (after quality 

control, it contains only 60 K SNPs, predominately within genes), we can expect estimates 

of  to be approximately 80% as high as those obtained starting from genome-wide 

genotyping arrays. While we are unable to test this claim directly, it is consistent with our 

results for height, body mass index and QT Interval, the three traits for which reasonably 

precise estimates of common SNP  are available6 (Figure 6b). For the final three SNP 

filterings, we vary the MAF threshold: MAF > 0.0025, MAF > 0.001 and MAF > 0.0005 (all 

with rj > 0). Across the 23 traits, we find that rare SNPs contribute substantially to : for 

example, when we use the 17.3 M SNPs with MAF > 0.0005, estimates of  (using α = 

−0.25 and MAF partitioning) are on average 29% (standard deviation 12) higher than those 
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based on the 8.8 M common SNPs (median increase 22%), with rare SNPs contributing on 

average 33% (standard deviation 5) of  (Figure 6a).

Discussion

With estimates of  so widely reported, it is easy to forget that calculating the variance 

explained by large numbers of SNPs is a challenging problem. To avoid over-fitting, it is 

necessary to make strong prior assumptions about SNP effect sizes, but different 

assumptions can lead to substantially different estimates of  Previous attempts to assess 

the validity of assumptions have used simulation studies,14, 15 but this approach will tend to 

favor assumptions similar to those used to generate the phenotypes. Instead, we have 

compared different heritability models empirically, by examining how well they fit real 

datasets.

We begun by investigating the relationship between heritability and MAF. Across 42 traits, 

we found that best fit was achieved by setting α = −0.25 in (1), which implies that average 

heritability varies with [MAF(1−MAF)]0.75. As explained in Online Methods, the value of α 
corresponds to the scaling of genotypes. Therefore, our result indicates that the performance 

(i.e., detection power and/or prediction accuracy) of many penalized and Bayesian 

regression methods, for example, the Lasso, ridge regression and Bayes A,31–33 could be 

improved simply by changing how genotypes are scaled. Although we recommend α = 

−0.25 as the default value, with sufficient data available, it should be possible to estimate α 
on a trait-by-trait basis, or to investigate more complex relationships between heritability 

and MAF. In particular, with a better understanding of the relationship between heritability 

and MAF for low frequencies, it may no longer be necessary to partition by MAF when rare 

SNPs are included.

We also examined the relationship between heritability and LD. To date, most estimates of 

 have been based on the GCTA Model; this model can be motivated by a belief that each 

SNP is expected to have the same effect on the phenotype, from which it follows that the 

expected heritability of a region should depend on the number of SNPs it contains. By 

contrast, the LDAK Model views highly-correlated SNPs as tagging the same underlying 

variant, and therefore believes that the expected heritability of a region should vary 

according to the total amount of distinct genetic variation it contains. Across our traits, we 

found that the relationship between heritability and LD specified by the LDAK Model 

consistently provides a better description of reality.

This finding has important consequences for complex trait genetics. Firstly, it implies that 

for many traits, common SNPs explain considerably more phenotypic variance than 

previously reported, which represents a significant advance in the search for missing 

heritability.2 It also impacts on a large number of closely-related methods. For example, 

LDSC,10 like GCTA, assumes that heritability contributions are independent of LD and 

therefore it also tends to under-estimate  Similarly, we have shown that estimates of the 

relative importance of SNP classes via SNP partitioning can be misleading when the GCTA 

Model is assumed.7,30 Further afield, most software for mixed model association analyses 
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(e.g., FAST-LMM, GEMMA and MLM-LOCO) use an extension of the GCTA Model,34–

36 and likewise most bivariate analyses, including those performed by LDSC.8,37,38 It 

remains to be seen how much these methods would be affected if they employed more 

realistic heritability models.

Attempts have been made to improve the accuracy of heritability models via SNP 

partitioning.14, 15, 39 We find that partitioning by MAF can be advantageous, as it guards 

against misspecification of the relationship between heritability and MAF when rare variants 

are included. Figure 3a and Supplementary Figure 7 indicate that the realism of the GCTA 

Model can be improved by partitioning based on LD; for example, across the GWAS traits, 

estimates from GCTA-LDMS are on average 16% (standard deviation 2) higher than those 

from GCTA, and now only 23% (standard deviation 2) lower than those from LDAK. The 

improvement arises because model misspecification is reduced by allowing SNPs in lower-

LD tranches to have higher average heritability. However, Supplementary Table 9 illustrates 

why we consider such an approach sub-optimal; in particular, SNP partitioning can be 

computationally expensive, and even with LD-partitioning, model fit tends to be worse than 

that from LDAK.

While we have investigated the role of MAF, LD and genotype certainty, there remain other 

factors on which heritability could depend, in particular the available functional annotations 

of genomes.40 For example, our comparison of genic and inter-genic SNPs indicates that the 

effect-size prior distribution could be improved by taking into account proximity to coding 

regions. By way of demonstration, Supplementary Table 10 shows that model fit is improved 

by assuming  where Dj is the 

distance (in kb) between SNP j and the nearest exon (under this model, genic SNPs are 

expected to have about twice the heritability of inter-genic SNPs). In general, we believe that 

modifications of this type will have a relatively small impact; we note that across the 19 

GWAS traits, scaling by  increases model log likelihood by on average only 

1.5, much less than the average increase obtained by using α = −0.25 instead of α = −1 

(8.9), or by choosing the LD-model specified by LDAK instead of GCTA (17.7), and does 

not significantly change estimates of  However, with sufficient data, it may be possible 

to obtain more substantial improvement by tailoring model assumptions to individual traits.

When estimating  care should be taken to avoid possible sources of confounding. 

Previously, we advocated a test for inflation of  due to population structure and familial 

relatedness.3 The conclusions of a recent paper claiming that  estimates are unreliable,

41 would have changed substantially had this test been applied (Supplementary Fig. 19). We 

also recommend testing for inflation due to genotyping errors, particularly before including 

lower-quality and/or rare SNPs. For the 23 UCLEB traits, we showed that including poorly-

imputed SNPs resulted in significantly higher estimates of  and made it possible to 

capture the majority of genome-wide heritability despite the very sparse genotyping 

provided by the Metabochip. We found that including rare SNPs also led to significantly 
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higher  Although sample size prevented us from obtaining precise estimates of  for 

individual traits, our analyses indicated that for larger datasets, including rare SNPs will be 

both practical and fruitful in the search for the remaining missing heritability.2

URLs

Online Methods

The Supplementary Note summarizes the different analyses we performed, and the 

conclusions we drew from each. In general, we assume there are n individuals, recorded for 

p covariates and genotyped (either directly or via imputation) for m SNPs: the length-n 
vector Y contains phenotypic values, the n × p matrix Z contains covariates, while the n × m 
matrix S contains (expected) allele counts.

Information score rj

Let the vector Sj = (S1,j, …, Sn,j)T ∈ [0, 2]n, denote the allele counts for SNP j (i.e., Sj is 

Column j of S). Our information score rj estimates the squared correlation between Sj and Gj 

= (G1,j, …, Gn,j)T ∈ {0, 1, 2}n, the true genotypes for SNP j. When using imputed data, Gj is 

typically not known; instead for each individual we have a triplet of state probabilities (pi,j,0, 

pi,j,1, pi,j,2), where pi,j,g = ℙ(Gi,j = g) and pi,j,0 + pi,j,1 + pi,j,2 = 1. Therefore, we define rj by 

taking expectations over the 3n possible realizations of Gj.

Sj is known, so computing  is straightforward. The two expectations can also 

be calculated explicitly:

where  For our analyses, we use expected allele counts 

(dosages), so Si,j = pi,j,1 + 2pi,j,2. In this case 

 and so the score reduces to 

 For a directly genotyped SNP, each triplet of state 

probabilities will be (1,0,0), (0,1,0) or (0,0,1), which will result in Si,j = Gi,j for all i and rj = 
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1; so for these, in place of rj, we use the metric r2_type0 reported by IMPUTE2.43 

Additional details on our information score are provided in Supplementary Figure 20.

Estimating 

We first construct the n × m genotype matrix X, by centering and scaling the allele counts 

for each SNP according to Xi,j = (Si,j−2fj) × [2fj (1−fj)]α/2, where fj = Σi Si,j/2n. If wj and rj 

denote the LD weight9 and information score for SNP j, then the LDAK Model for 

estimating SNP heritability  is:

(2)

θk denotes the fixed-effect coefficient for the kth covariate, βj and ei are random-effects 

indicating the effect size of SNP j and the noise component for Individual i, while  and 

are interpreted as genetic and environmental variances, respectively. Note that the 

introduction of rj is an addition to the model we proposed in 2012.9 Model (2) is equivalent 

to assuming:44, 45

(3)

where I is an n × n identity matrix and Ω denotes a diagonal matrix with diagonal entries 

(r1w1, …, rmwm). The kinship matrix K, also referred to as a genetic relationship matrix 

(GRM)1 or genomic similarity matrix (GSM),46 consists of average allelic correlations 

across the SNPs (adjusted for LD and genotype certainty). Model (3) is typically solved 

using REstricted Maximum Likelihood (REML), which returns estimates of θ1, …, θp, 

and 12

The heritability of SNP j can be estimated by  which under Model 

(2), and assuming Hardy-Weinberg Equilibrium,47, 48 has expectation

(4)

If P1 and P2 index two sets of SNPs of size |P1| and |P2|, then under the LDAK Model, they 

are expected to contribute heritability in the ratio W1 : W2, where Wl = Σj∈Pl rjwj [2fj 

(1−fj)]1+α. The GCTA Model corresponds to setting wj = rj = 1, in which case Wl = Σj∈Pl 
[2fj (1−fj)]1+α. Most applications of GCTA have further assumed α = −1, so that Wl = |Pl|, 
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which corresponds to the assumption that SNP sets are expected to contribute heritability 

proportional to the number of SNPs they contain.

Model (2) assumes that all effect-sizes can be described by a single prior distribution. This 

assumption is relaxed by SNP partitioning. Suppose that the SNPs are divided into tranches 

P1, …, PL of sizes |P1|, …, |PL|; typically these will partition the genome, so that each SNP 

appears in exactly one tranche and Σl |Pl| = m, but this is not required. This correspond to 

generalizing Model (2), so that SNPs in Tranche l have effect-size prior distribution 

 Letting  then  while 

represents the contribution to  of SNPs in Tranche l. This model can equivalently be 

expressed as  where Kl represents allele correlations 

across the SNPs in Tranche l.

For analyses under the LDAK Model, we used LDAK v.5; for analyses under the GCTA 

Model, we used GCTA v.1.26. For about a third of GCTA-LDMS analyses, the GCTA 

REML solver failed with the error “information matrix is not invertible,” in which case we 

rerun using LDAK (while the GCTA and LDAK solvers are both based on Average 

Information REML,28, 49 subtle differences mean that when using a large number of 

tranches, one might complete while the other fails). For the few occasions when both solvers 

failed, we instead used “GCTA-LD” (i.e., SNPs divided only by LD, rather than by LD and 

MAF), which we found gave very similar results to GCTA-LDMS for traits where both 

completed (Supplementary Fig. 7). For diseases, we converted estimates of  to the 

liability scale based on the observed case-control ratio and assumed prevalence.26, 27 In 

general, we copied the prevalences used by previous studies; however for tuberculosis, 

where no previous estimate of  is available, we derived an estimate of prevalence from 

World Health Organization data50 (see Supplementary Note).

LDSC

Originally designed as a way to quantify confounding in a GWAS, LDSC10 also provides a 

method for estimating  which requires only summary statistics from single-SNP 

analysis (rather than raw genotype and phenotype data). LDSC is based on the principal that 

in a single-SNP analysis, the χ2(1) test statistic for SNP j has expected value 

 where  denotes the squared correlation between 

SNPs j and k, while aj represents bias due to confounding factors (e.g., population structure 

and familial relatedness).10 Under a polygenic model where every SNP is expected to 

contribute equally  and the (widely-used) assumption that the bias is 

constant across SNPs (aj = a), we have  where  is 

referred to as the LD Score of SNP j (as it is not feasible to compute pairwise correlations 

across all SNPs, in practice these are approximated using a sliding window of, say, 1 

centiMorgan). Therefore, LDSC estimates  and a by regressing test statistics on LD 

Scores. In the absence of confounding (a = 0), LDSC can be viewed as estimating 
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under the GCTA Model with α = −1 (as this satisfies the assumption that every SNP is 

expected to contribute equal heritability). As the authors of LDSC point out,10 it is 

straightforward to accommodate alternative relationships between  and MAF (i.e., α ≠ 
−1) by changing how genotypes are scaled when computing LD Scores, and potentially 

genotype certainty could be accommodated. However, the similarity with the GCTA Model 

appears intrinsic to LDSC; while the assumption that heritability is independent of LD can 

be relaxed via SNP partitioning,39 we can not envisage how the method could be modified 

to accommodate the LDAK SNP weights. For LDSC analyses, we used LDSC v.1.0.0 both 

for calculating LD Scores and estimating 

Accommodating very large effect loci

Equation (2) assumes that all SNP effect sizes can be modeled by a single Gaussian 

distribution. Estimates are generally robust to violations of this assumption,9 but problems 

can occur when individual SNPs have very large effect sizes, because a single Gaussian 

distribution cannot accommodate both these SNPs and the very many with small effect sizes. 

This is a common concern when analyzing autoimmune traits for which the major 

histocompatibility complex (MHC) can contribute substantial heritability. In response to this 

problem, some authors exclude MHC SNPs from analyses.7, 28, 51, 52 Another approach is 

to model effect sizes as a mixture of Gaussians,33, 53 but this is not computationally 

feasible for millions of SNPs and many thousands of individuals. Therefore, our proposed 

strategy is to first identify SNPs with P < 10−20 from single-SNP analysis, to prune these 

using a correlation squared threshold of 0.5, then to include those which remain as fixed-

effect covariates. Thus in place of Equation (3), we assume 

where columns of the matrix T contain allele counts of the highly-associated SNPs (i.e., T is 

a submatrix of S), and the vector ϕ represents their effect sizes. In contrast to standard (non-

SNP) covariates, the variance explained by T counts towards SNP heritability: 

 where  Supplementary Figures 21 & 22 

provides further details. In particular, we appreciate that our definition of highly-associated 

is somewhat arbitrary, so we confirm that estimates of  are almost unchanged if instead 

we use P < 5 × 10−8.

Datasets and phenotypes

When searching for GWAS datasets, we preferred those with sample size at least 4 000 to 

ensure reasonable precision of 54 In total, our datasets were constructed from 40 

independent cohorts, all of which have been previously described (see Supplementary Tables 

11 & 12 for references and details of how cohorts were merged to form datasets). For the 

UCLEB data, there were in total 28 quantitative traits with measurements recorded for at 7 

000 individuals. For each of these, we quantile normalized, then applied a test for inflation 

due to genotyping errors (Supplementary Fig. 13). Specifically, our test, inspired by Bhatia 

et al.55 and valid for quantitative phenotypes where individuals are recruited from multiple 

cohorts, first estimates  using only pairs of individuals in different cohorts, then using 

only pairs of individuals in the same cohort; a significant difference between the two 
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estimates indicates possible inflation due to genotyping errors. We excluded five traits that 

showed evidence of inflation (P < 0.05/28), leaving us with 23: height, weight, body mass 

index, waist circumference, forced vital capacity, one second forced vital capacity, systolic 

blood pressure (adjusted), diastolic blood pressure (adjusted), PR Interval, QT Interval, 

Corrected QT Interval, QRS Voltage Product, Sokolow Lyon, glucose, insulin, total 

cholesterol (adjusted), LDL cholesterol (adjusted), triglyceride (adjusted), viscosity, 

fibrinogen, Interleukin 6, C-reactive Protein and haemoglobin. Approximately 40% of 

individuals were receiving medication to reduce blood pressure, 25% to reduce lipid levels, 

so where indicated, phenotypes had been adjusted for this: for individuals on medication, 

their raw measurements had been increased either by adding on (blood pressure) or scaling 

by (lipid levels) a constant.56, 57 We note that some pairs of traits are highly correlated. 

However, as the overall correlation is not that extreme (we estimate the effective number of 

independent traits to be about 15), and most of our UCLEB analyses serve to support 

conclusions drawn from the GWAS traits, we decide to retain all 23 traits (rather than, say, 

consider only a subset). See the Supplementary Note for further details on phenotyping.

Quality control

We processed each of the 40 cohorts in identical fashion; see the Supplementary Note for 

full details. In summary, after excluding apparent population outliers, samples with extreme 

missingness or heterozygosity, and SNPs with MAF < 0.01, call-rate < 0.95 or P < 10−6 

from a test for Hardy-Weinberg Equilibrium, we phased using SHAPEIT58 then imputed 

using IMPUTE243 and the 1000 Genome Phase 3 (2014) Reference Panel.59 When merging 

cohorts to construct the GWAS datasets, we retained only autosomal SNPs which in all 

cohorts have MAF > 0.01 and rj > 0.99 (using IMPUTE2 r2_type2 in place of rj for 

directly genotyped SNPs). For the 8 UCLEB cohorts, we applied these filters only after 

merging. We only relax quality control for the analyses of the UCLEB data where we 

explicitly examine the consequences of including lower-quality and rare SNPs. When 

possible, the matrix S contains expected allele counts (dosages); i.e., Si,j = pi,j,1 + 2 × pi,j,2, 

where pi,j,1 and pi,j,2 denote the probabilities of allele counts 1 and 2, respectively. If hard 

genotypes are required, for example when using LDSC to compute LD Scores,10 we round 

Si,j to the nearest integer. As this was only necessary when considering high-quality SNPs (rj 

> 0.99), we expect this rounding to have negligible impact on results. For each trait, Table 1 

reports m, the total number of SNPs after imputation, and  the sum of SNP 

weights; the aim of these weights is to remove duplication of signal due to LD and their sum 

can loosely be interpreted as an effective number of independent SNPs. For the GWAS 

datasets, Σwj ranges from 79 K to 125 K. By contrast, when restricted to only high-quality 

SNPs, the UCLEB data has Σwj = 39 K, reflecting that the Metabochip directly captures a 

much smaller amount of genetic variation than standard genome-wide SNP arrays.

When analyzing quantitative traits, genotyping errors will tend only to be a concern when 

there are systematic differences between phenotypes across cohorts, and this is something 

we are able to explicitly test (Supplementary Fig. 13). However, for disease traits, when 

cases and controls have been genotyped separately (as is the design of most of our GWAS 

datasets), any errors will almost certainly correlate with phenotype and therefore cause 
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inflation of 9,27 To test the effectiveness of our quality control for the GWAS traits, we 

construct a pseudo case-control study using two control cohorts; we confirm that the 

resulting estimate of  is not significantly greater than zero, suggesting that the quality 

control steps we use for the GWAS datasets are sufficiently strict (Supplementary Note).

Accurate estimation of  requires samples of unrelated individuals with similar ancestry. 

Prior to imputation, we removed ethnic outliers identified through principal component 

analyses (Supplementary Fig. 23). Post imputation, we computed (unweighted) allelic 

correlations using a pruned set of SNPs, then filtered individuals so that no pair remained 

with correlation greater than c, where −c is the smallest observed pairwise correlation (c 
ranges from 0.029 to 0.038, depending on dataset). For our datasets, this filtering excluded 

relatively few individuals (on average 3.8%, with maximum 11.6%). For all analyses, we 

include a minimum of 30 covariates: the top 20 eigenvectors from the allelic correlation 

matrix just described, and projections onto the top 10 principal components computed from 

1000 Genomes samples.59 For the 19 GWAS traits, we also include sex as a covariate, while 

for intraocular pressure and wide range achievement test scores, we additionally include age. 

Supplementary Figure 24 reports the proportion of phenotypic variance explained by each 

covariate. To check our filtering and covariate choices, we estimate the inflation of  due 

to population structure and residual relatedness3 (Supplementary Fig. 19). For the GWAS 

traits, we estimate that on average  estimates are inflated by at most 3.1%, with the 

highest observed for ischaemic stroke (7.1%). For the 23 UCLEB traits, the average inflation 

is 0.3% (highest 2.3%).

Single-SNP analysis

Supplementary Figure 25 provides Manhattan Plots from logistic (case-control traits) and 

linear regression (quantitative traits), performed using PLINK v.1.9. These analyses provide 

the summary statistics required by LDSC. For the GWAS traits, we identified highly-

associated SNPs (P < 10−20) within the MHC for 6 of the GWAS traits (rheumatoid arthritis, 

type 1 diabetes, psoriasis, ulcerative colitis, celiac disease and multiple sclerosis), while 

rs2476601, a SNP within PTPN22, is highly associated with both rheumatoid arthritis and 

type 1 diabetes.60, 61 For the UCLEB traits, we find highly associated SNPs within 

SCN10A (PR Interval), APOE (total cholesterol, LDL cholesterol and C-reactive protein) 

and ZPR1 (triglyceride levels). For heritability analysis, these SNPs were pruned, then 

included as additional fixed-effect covariates as described above.

Computational requirements

The most time-consuming aspect of analysis was genotype imputation; for a typically-sized 

cohort (~3 000 individuals) this took approximately one CPU-year (i.e., a few days on a 

100-node cluster). Next is computation of SNP weights, which for the GWAS traits (~4 M 

SNPs) took approximately one CPU-month (again, this can be near-perfectly parallelized). 

Finally, solving the mixed-model via REML would take between a few minutes for the 

smaller traits ~5 000 individuals) and a few hours for the largest (~14 000 individuals). 

Memory-wise, the most onerous task is solving the mixed-model, for which memory 
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demands scale with n2; however, even for the largest dataset, this was less than 5 Gb (when 

using multiple kinship matrices, LDAK allows for these to be read on-the-fly, so that the 

memory demands are no higher than when using only one).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Access to Wellcome Trust Case Control Consortium data was authorized as work related to the project “Genome 
wide association study of susceptibility and clinical phenotypes in epilepsy,” while access to Children’s Hospital of 
Philadelphia (CHOP) data was granted under Project 49228-1, “Assumptions underlying estimates of SNP 
Heritability.” We thank Anne Molloy, James Mills and Lawrence Brody for permission to use genotype data from 
the Trinity College Dublin Student Study.42 and Sarah Langley for help accessing the CHOP data. This work is 
funded by the UK Medical Research Council under grant MR/L012561/1 (awarded to DS), by the British Heart 
Foundation under grant RG/10/12/28456 (the UCLEB Consortium), and supported by researchers at the National 
Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. NC is an 
ESPOD Fellow from the European Molecular Biology Laboratory, European Bioinformatics Institute, and 
Wellcome Trust Sanger Institute. SN is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science and 
is also supported by the NIHR Cambridge Biomedical Research Centre. Analyses were performed with the use of 
the UCL Computer Science Cluster and the help of the CS Technical Support Group, as well as the use of the UCL 
Legion High Performance Computing Facility (Legion@UCL) and associated support services.

References

1. Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat 
Genet. 2010; 42:565–569. [PubMed: 20562875] 

2. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008; 456:18–21. 
[PubMed: 18987709] 

3. Speed D, et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain. 
2014; 137:26802689.

4. Henderson C, Kempthorne O, Searle S, von Krosigk C. The estimation of environmental and genetic 
trends from records subject to culling. Biometrics. 1959; 15:192–218.

5. Falconer, D., Mackay, T. Introduction to Quantitative Genetics. 4th Edition. Longman; 1996. 

6. Yang J, et al. Genomic partitioning of genetic variation for complex traits using common SNPs. Nat 
Genet. 2011; 43:519–525. [PubMed: 21552263] 

7. Gusev A, et al. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 
Common Diseases. Am J Hum Genet. 2014; 95:535–552. [PubMed: 25439723] 

8. Lee S, Yang J, Goddard M, Visscher P, Wray N. Estimation of pleiotropy between complex diseases 
using SNP-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 2012; 
28:2540–2542. [PubMed: 22843982] 

9. Speed D, Hemani G, Johnson M, Balding D. Improved heritability estimation from genome-wide 
SNP data. Am J Hum Genet. 2012; 91:1011–1021. [PubMed: 23217325] 

10. Bulik-Sullivan B, et al. LD score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat Genet. 2014; 47:291–295.

11. Bulik-Sullivan B. Relationship between LD Score and Haseman-Elston Regression. 2015 Preprint 
available on BioRχiv. 

12. Corbeil R, Searle S. Restricted maximum likelihood (REML) estimation of variance components in 
the mixed model. Technometrics. 1976; 18:31–38.

13. Golan D, Lander E, Rosset S. Measuring missing heritability: Inferring the contribution of 
common variants. PNAS. 2014; 111:E5272E5281. [PubMed: 25422463] 

14. Lee S, et al. Estimation of SNP-heritability from dense genotype data. Am J Hum Genet. 2013; 
93:1151–1155. [PubMed: 24314550] 

Speed et al. Page 16

Nat Genet. Author manuscript; available in PMC 2017 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



15. Yang J, et al. Genetic variance estimation with imputed variants finds negligible missing 
heritability for human height and body mass index. Nat Genet. 2015; 47:1114–1120. [PubMed: 
26323059] 

16. Chen G, et al. Estimation and partitioning of (co)heritability of inflammatory bowel disease from 
GWAS and immunochip data. Hum Mol Genet. 2014; 23:4710–4720. [PubMed: 24728037] 

17. Ek W, et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barretts 
Esophagus, and gastroesophageal reflux. J Nal Cancer Inst. 2013; 105:1711–1718.

18. Bevan S, et al. Genetic heritability of ischemic stroke and the contribution of previously reported 
candidate gene and genomewide associations. Stroke. 2012; 43:3161–3167. [PubMed: 23042660] 

19. Keller M, et al. Using genome-wide complex trait analysis to quantify ’missing heritability’ in 
parkinson’s disease. Hum Mol Genet. 2012; 21:4996–5009. [PubMed: 22892372] 

20. Yin X, et al. Common variants explain a large fraction of the variability in the liability to psoriasis 
in a han chinese population. BMC Genomics. 2014; 15

21. Lee S, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by 
common SNPs. Nat Genet. 2012; 44:247–250. [PubMed: 22344220] 

22. Stahl E, et al. Bayesian inference of the polygenic architecture of rheumatoid arthritis. Nat Genet. 
2012; 44:483–489. [PubMed: 22446960] 

23. Robinson E, et al. The genetic architecture of pediatric cognitive abilities in the Philadelphia 
Neurodevelopmental Cohort. Mol Psychiatry. 2015; 20:454–458. [PubMed: 25023143] 

24. Shah T, et al. Population genomics of cardiometabolic traits: Design of the University College 
London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) 
Consortium. PLoS One. 2013; 8:e71345. [PubMed: 23977022] 

25. Voight B, et al. The Metabochip, a custom genotyping array for genetic studies of metabolic, 
cardiovascular, and anthropometric traits. PLoS Genet. 2012; 8:e1002793. [PubMed: 22876189] 

26. Dempster E, Lerner I. Heritability of threshold characters. Genetics. 1950; 35:212–236. [PubMed: 
17247344] 

27. Lee S, Wray N, Goddard M, Visscher P. Estimating missing heritability for disease from genome-
wide association studies. Am J Hum Genet. 2011; 88:294–305. [PubMed: 21376301] 

28. Yang J, Lee S, Goddard M, Visscher P. GCTA: a tool for genome-wide complex trait analysis. Am 
J Hum Genet. 2011; 88:76–82. [PubMed: 21167468] 

29. N. C. f. B. I. The ncbi handbook. Bethesda (MD): National Library of Medicine (US); 2002. 
[internet]

30. Finucane H, et al. Partitioning heritability by functional annotation using genome-wide association 
summary statistics. Nat Genet. 2015; 47:1228–1235. [PubMed: 26414678] 

31. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning. Springer; 2001. 

32. Habier D, Fernando R, Kizilkaya K, Garrick D. Extension of the Bayesian alphabet for genomic 
selection. BMC Bioinformatics. 2011; 186:186–197.

33. Moser G, et al. Simultaneous discovery, estimation and prediction analysis of complex traits using 
a bayesian mixture model. PLoS Genet. 2015; 11:e1004969. [PubMed: 25849665] 

34. Lippert C, et al. FaST linear mixed models for genome-wide association studies. Nat Methods. 
2011; 8:833–835. [PubMed: 21892150] 

35. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat 
Genet. 2012; 44:821–824. [PubMed: 22706312] 

36. Yang J, Zaitlen N, Goddard M, Visscher P, Price A. Advantages and pitfalls in the application of 
mixed-model association methods. Nat Genet. 2014; 46:100–106. [PubMed: 24473328] 

37. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five 
psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013; 45:984–994. [PubMed: 
23933821] 

38. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nat 
Genet. 2015; 47:1236–1241. [PubMed: 26414676] 

39. Gazal S, et al. Linkage disequilibrium dependent architecture of human complex traits reveals 
action of negative selection. BioRχiv. 2016 Preprint available on. 

Speed et al. Page 17

Nat Genet. Author manuscript; available in PMC 2017 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



40. The ENCODE Project Consortium. An integrated encyclopedia of dna elements in the human 
genome. Nature. 2012; 489:57–74. [PubMed: 22955616] 

41. Kumar S, Feldman M, Rehkopf D, Tuljapurkar S. Limitations of GCTA as a solution to the missing 
heritability problem. PNAS. 2015; 113:E61E70. [PubMed: 26699465] 

42. Molloy A, et al. A common polymorphism in HIBCH influences methylmalonic acid 
concentrations in blood independently of cobalamin. Am J Hum Genet. 2016; 5:869–882.

43. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3. 2011; 
1:457–470. [PubMed: 22384356] 

44. Hayes B, Visscher P, Goddard M. Increased accuracy of artificial selection by using the realized 
relationship matrix. Genet Res. 2009; 91:47–60.

45. Habier D, Fernando R, Dekkers J. The impact of genetic relationship information on genome-
assisted breeding values. Genetics. 2007; 177:2389–2397. [PubMed: 18073436] 

46. Speed D, Balding D. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2014; 
16:33–44. [PubMed: 25404112] 

47. Hardy G. Mendelian proportions in a mixed population. Science. 1908; 28:49–50. [PubMed: 
17779291] 

48. Weinberg W. Über den Nachweis der Vererbung beim Menschen. Jahreshefte des Vereins fur 
Vaterländische Naturkunde in Württemberg. 1908; 64:368–382.

49. Lee S, van der Werf J. An efficient variance component approach implementing an average 
information REML suitable for combined LD and linkage mapping with a general complex 
pedigree. Genet Sel Evol. 2006; 38:25–43. [PubMed: 16451790] 

50. World Health Organization. Global tuberculosis report. 2014

51. Gusev A, et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 2013; 
9:e1003993. [PubMed: 24385918] 

52. Speed D, Balding D. MultiBLUP: improved SNP-based prediction for complex traits. Gen Res. 
2014; 24:1550–1557.

53. Zhou X, Carbonetto P, Stephens M. Polygeneic modeling with Bayesian sparse linear mixed 
models. PLoS Genet. 2013; 9:e1003264. [PubMed: 23408905] 

54. Visscher P, et al. Statistical power to detect genetic (co)variance of complex traits using snp data in 
unrelated samples. PLoS Genet. 2014; 10:e1004269. [PubMed: 24721987] 

55. Bhatia G, et al. Haplotypes of common SNPs can explain missing heritability of complex diseases. 
BioRχiv. 2016 Preprint available on. 

56. Tobin M, Sheehan N, Scurrah K, Burton P. Adjusting for treatment effects in studies of quantitative 
traits: antihypertensive therapy and systolic blood pressure. Stat Med. 2005; 24:2911–2935. 
[PubMed: 16152135] 

57. Asselbergs F, et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple 
lipid loci. Am J Hum Genet. 2012; 91:8230838.

58. Delaneau O, Zagury J, Marchini J. Improved whole-chromosome phasing for disease and 
population genetic studies. Nat Methods. 2013; 10:5–6. [PubMed: 23269371] 

59. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–1073. [PubMed: 20981092] 

60. Todd J, et al. Robust associations of four new chromosome regions from genome-wide analyses of 
type 1 diabetes. Nat Genet. 2007; 39:857–864. [PubMed: 17554260] 

61. Plenge R, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis–a genomewide study. N Engl J 
Med. 2007; 20:1199–1209.

Speed et al. Page 18

Nat Genet. Author manuscript; available in PMC 2017 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Comparison of the GCTA and LDAK Models.
Region 1 contains five SNPs in low LD (lighter colors indicate weaker pairwise 

correlations). Each SNP contributes unique genetic variation, reflected by SNP weights close 

to one. Region 2 contains five SNPs in high LD (strong correlations). The total genetic 

variation tagged by the region is effectively captured by two of the SNPs, and so the others 

receive zero weight. Under the GCTA Model, the regions are expected to contribute 

heritability proportional to their numbers of SNPs, here equal. Under the LDAK Model, they 

are expected to contribute proportional to their sums of SNP weights, here in the ratio 

4.6:1.9. Note that the expected heritability can also depend on the allele frequencies and 

genotype certainty of the SNPs, but for simplicity, these factors are ignored here.
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Figure 2. 
(a) Relationship between heritability and MAF. The parameter α specifies the assumed 

relationship between heritability and MAF: in human genetics, α = –1 is typically used 

(solid blue line), while in animal and plant genetics, α = 0 is more common (green); we 

instead found α = –0.25 (red) provides a better fit to real data. The gray bars report (relative) 

estimates of the per-SNP heritability for MAF<0.1 and MAF>0.1 SNPs, averaged across the 

19 GWAS traits (vertical lines provide 95% confidence intervals); the dashed lines indicate 

the per-SNP heritability predicted by each α. (b) Determining best-fitting α for the GWAS 
traits. We compare α based on likelihood; higher likelihood indicates better-fitting α. Lines 

report log likelihoods from LDAK for seven values of α, relative to the highest observed. 

Line colors indicate the seven trait categories, while the black line reports averages.
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Figure 3. 

(a) Relative estimates of  for the GWAS traits.  estimates from LDSC, GCTA-MS 

(SNPs partitioned by MAF), GCTA-LDMS (SNPs partitioned by LD and MAF) and LDAK 

are reported relative to those from GCTA. For versions of GCTA and LDAK, we use α = –

0.25 (see main text for explanation of α). Line colors indicate the seven trait categories; the 

black line reports the (inverse variance weighted) averages, with gray boxes providing 95% 

confidence intervals for these averages. Numerical values are provided in Supplementary 

Table 3. (b) Simulation studies can be misleading. Phenotypes are simulated with 1000 

causal SNPs and  = 0.8 (black horizontal line), then analyzed using GCTA, GCTA-MS, 

GCTA-LDMS, LDAK and LDAK-MS (LDAK with SNPs partitioned by MAF). Bars report 

average  across 200 simulated phenotypes (vertical lines provide 95% confidence 

intervals). Left: copying the study of Yang et al.,1 causal SNP effect sizes are sampled from 

ℕ(0, 1), similar to the GCTA Model. Right: causal SNP effect sizes are sampled from ℕ(0, 

wj), similar to the LDAK Model.
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Figure 4. Comparing the GCTA and LDAK Models for the GWAS traits:
We partition SNPs into low- or high-LD, with the low-LD tranche containing either 50% 

(left) or 25% (right) of SNPs. For each partition, the horizontal red and black lines indicate 

the predicted contribution of the low-LD tranche to  under the GCTA and LDAK 

Models, respectively. Vertical lines provide point estimates and 95% confidence intervals for 

the contribution of the low-LD tranche to , estimated assuming the GCTA Model. Line 

colors indicate the seven trait categories, while the black lines provide the (inverse variance 

weighted) averages.
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Figure 5. Enrichment of SNP Classes.

Block 1 reports the contributions to  of DNaseI hypersensitivity sites (DHS), estimated 

under the GCTA Model with α = –1 (see main text for explanation of α). The vertical lines 

provide point estimates and 95% confidence intervals for each trait, and for the (inverse 

variance weighted) average; for 3 of the traits, the point estimate is above 100%, as was also 

the case for Gusev et al.7 Block 2 repeats this analysis, but now assuming the LDAK Model 

with α = –0.25. Blocks 3 & 4 estimate the contribution of “genic SNPs” (those inside or 

within 2 kb of an exon) and “inter-genic SNPs” (further than 125 kb from an exon), again 

assuming the LDAK Model with α = –0.25. To assess enrichment, estimated contributions 

are compared to those expected under the GCTA or LDAK Model, as appropriate (horizontal 

lines).
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Figure 6. Varying quality control for the UCLEB traits.
We consider three SNP filterings: 353 K high-quality common SNPs (information score > 

0.99, MAF > 0.01), 8.8 M common SNPs (MAF > 0.01) and all 17.3 M SNPs (MAF > 

0.0005). (a) Blocks indicate SNP filtering; bars report (inverse variance weighted) average 

estimates of  using LDAK (vertical lines provide 95% confidence intervals). Bar color 

indicates the value of α used. For Blocks 1, 2 & 3,  is estimated using the non-

partitioned model. For Block 4, SNPs are partitioned by MAF; we find this is necessary 

when rare SNPs are included, and also allows estimation of the contribution of MAF < 0.01 

SNPs (hatched areas). (b) bars report our final estimates of  for height, body mass index 

and QT interval, the three traits for which common SNP heritability has been previously 

estimated with reasonable precision6 (orange lines mark the 95% confidence intervals from 

these previous studies). Bar colors now indicate SNP filtering; all estimates are based on α = 

–0.25, using either a non-partitioned model (red and blue bars) or with SNPs partitioned by 

MAF (purple bars).
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Table 1
Properties of datasets and estimates of .

n = sample size (cases + controls), m = number of SNPs,  = sum of SNP weights which can be 

interpreted as an effective number of independent SNPs. All values are post quality control; values for m and 

Σwj are rounded to the nearest K (thousand). For UCLEB, m and Σwj refer to our main analysis, which 

considers only high-quality, common SNPs. The final column provides our best estimates of  from 

common SNPs, computed using LDAK with α = –0.25 (see main text for explanation of α). For comparison, 

we include previously published estimates of  (note that the previous analyses for rheumatoid arthritis, 

type 1 diabetes and multiple sclerosis excluded major histocompatibility SNPs, which we estimate contribute 

0.07, 0.20 and 0.05, respectively), as well as , the proportion of phenotypic variance explained by SNPs 

reported as GWAS significant (P < 5 × 10–8). For disease traits, estimates of  and  have been 

converted to the liability scale assuming the stated prevalence.

Collection Trait (Disease Prevalence, %) n m Σ j = 1
m w j hGWAS

2 Estimates of hSNP
2  (SD)

Previous LDAK

Welcome Trust Case 
Control Consortium 1 
(WTCCC 1)

Bipolar Disorder (0.5) 1 840 + 2 
913

3 729 K 79 K 0.02 0.24 (0.04)7 0.35 (0.03)

Coronary Artery Disease (6) 1 907 + 2 
918

3 738 K 80 K 0.03 0.25 (0.06)7 0.40 (0.06)

Crohn’s Disease (0.5) 1 691 + 2 
905

3 723 K 79 K 0.21 0.26 (0.01)16 0.32 (0.03)

Hypertension (5) 1 918 + 2 
916

3 739 K 80 K <0.01 0.33 (0.06)7 0.46 (0.06)

Rheumatoid Arthritis (0.5) 1 846 + 2 
918

3 735 K 80 K 0.19 0.09 (0.03)7 0.21 (0.03)

Type 1 Diabetes (0.5) 1 941 + 2 
907

3 731 K 80 K 0.27 0.13 (0.03)7 0.31 (0.02)

Type 2 Diabetes (8) 1 896 + 2 
917

3 735 K 80 K 0.08 0.42 (0.07)7 0.54 (0.07)

Welcome Trust Case 
Control Consortium 2 
(WTCCC 2)

Barrett’s Oesophagus (1.6) 1 861 + 5 
138

4 830 K 116 K <0.01 0.25 (0.05)17 0.32 (0.04)

Ischaemic Stroke (2) 3 769 + 5 
139

4 797 K 115 K <0.01 0.25 (0.03)18 0.34 (0.03)

Parkinson’s Disease (0.2) 1 687 + 5 
136

4 819 K 116 K 0.03 0.27 (0.05)19 0.20 (0.03)

Psoriasis (0.5) 2 267 + 5 
143

4 814 K 116 K 0.21 0.35 (0.06)20 0.34 (0.02)

Schizophrenia (1) 2 068 + 2 
615

3 481 K 111 K 0.07 0.23 (0.01)21 0.30 (0.04)

Ulcerative Colitis (0.2) 2 614 + 5 
327

4 061 K 115 K 0.12 0.19 (0.01)16 0.28 (0.02)

WTCCC 2 + Celiac Disease (1) 2 492 + 7 
376

3 681 K 88 K 0.29 0.33 (0.04)22 0.35 (0.02)

Multiple Sclerosis (0.1) 8 553 + 5 
667

4 702 K 113 K 0.17 0.17 (0.01)7 0.24 (0.01)

Partial Epilepsy (0.3) 1 217 + 5 
152

3 399 K 108 K <0.01 0.33 (0.05)3 0.27 (0.04)
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Collection Trait (Disease Prevalence, %) n m Σ j = 1
m w j hGWAS

2 Estimates of hSNP
2  (SD)

Previous LDAK

RPTB Pulmonary Tuberculosis (4) 5 142 + 5 
283

3 987 K 102 K <0.01 None Found 0.26 (0.03)

Blue Mountain Intraocular Pressure 2 235 4 149 K 125 K 0.02 None Found 0.38 (0.17)

CHOP Wide-Range Achievement Test 3 747 3 593 K 88 K <0.01 0.43 (0.10)23 0.21 (0.09)

UCLEB 23 Quantitative Traits 6 458 to 11 
005

353 K 39 K --- Supplementary Table 1
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