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Abstract: According to current guidelines, the current treatment for locally advanced rectal cancer
is neoadjuvant therapy, followed by a total mesorectal excision. However, radiosensitivity tends
to differ among patients due to tumor heterogeneity, making it difficult to predict the possible
outcomes of the neoadjuvant therapy. This review aims to investigate different types of tissue-based
biomarkers and their capability of predicting tumor response to neoadjuvant therapy in patients
with locally advanced rectal cancer. We identified 169 abstracts in NCBI PubMed, selected 48 reports
considered to meet inclusion criteria and performed this systematic review. Multiple classes of
molecular biomarkers, such as proteins, DNA, micro-RNA or tumor immune microenvironment,
were studied as potential predictors for rectal cancer response; nonetheless, no literature to date has
provided enough sufficient evidence for any of them to be introduced into clinical practice.

Keywords: rectal cancer; neoadjuvant chemoradiotherapy; radiosensitivity markers; micro-RNA;
tumor immune microenvironment

1. Introduction

Rectal cancer (RC) makes up about one-third of all colorectal cancer (CRC) cases
worldwide, with 0.7 million cases reported in 2020. By 2040, the number is likely to increase
to up to 1.16 million cases per year [1]. According to the current guidelines of the National
Comprehensive Cancer Network (NCCN) for Rectal Cancer, the current treatment for
locally advanced RC is neoadjuvant therapy (NT), followed by a total mesorectal excision
(TME) [2,3]. The American Society of Colon and Rectal Surgeons (ASCRS) recommends
using NT for patients diagnosed with clinical stage II or III RC [4]. As several studies have
shown, approximately 10–14% of RC patients achieve pathologic complete response (pCR)
following preoperative therapy, which has also been associated with better disease-free
survival (DFS) and tumor recurrence [5,6]. As an alternative to TME, a watch-and-wait
strategy is a possible approach for those patients who achieve pCR after NT [7]. However,
radiosensitivity tends to differ among patients due to tumor heterogeneity, making it
difficult to predict the possible outcomes of the NT [8,9]. Moreover, there is no reliable
method to date that can estimate how the tumor will respond on an individual patient basis.

Several previous publications have attempted to determine the possible correlation
between various pre-NT factors and pCR. During a digital rectal examination, tumors de-
fined as fixed rather than mobile, as well as tumors located low (<4 cm) or high (>8 cm) in
the rectum, are less likely to achieve pCR [10,11]. Likewise, tumors proctoscopically seen as
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stenotic or involving more than 90% of the circumference tend to respond poorly to NT [9].
In addition, lower clinical stages of T and N, as well as lower tumor grades, higher doses of
radiation and longer periods between NT and surgery were independent factors associated
with a higher likelihood of achieving pCR [12]. The potential of using imaging modali-
ties, such as magnetic resonance imaging and positron emission tomography–computed
tomography, is also explored in numerous studies as a possible predictor of pCR [13–16].
However, the sensitivity and specificity of these clinicopathological and imaging features
are seemingly low. Although there is no unanimity of independent predictive factors in
the achievement of pCR in RC patients so far, molecular biomarkers, either tissue-based or
blood-based, appear to have the potential to predict the possible outcomes of the NT with
adequate accuracy [17,18].

This review aims to investigate different types of tissue-based biomarkers and their
capability of predicting tumor response to NT in patients with locally advanced rectal
cancer (LARC).

2. Results
2.1. Biopolymers of Cancer Cells
2.1.1. Proteins

Numerous protein biomarkers have been studied in past years to better understand
their role in the possible RC response to radiotherapy. These include DNA-binding
protein SATB1 (Special AT-rich sequence binding protein, SATB1), X-ray repair cross-
complementing protein 2 (XRCC2), Human phosphatidylethanolamine-binding protein
4 (hPEBP4), Cytoplasmic phosphatidylinositol transfer protein 1 (PITPNC1), Forkhead
box proteins K1 and K2 (FOXK1, FOXK2), Apoptosis regulator Bcl-2 (B-cell lymphoma 2,
Bcl-2), Cyclooxygenase-2 (Cox-2), Vascular endothelial growth factor (VEGF), Apoptotic
protease activating factor-1 (APAF-1), Fibroblast growth factor 8 (FGF8), Fibroblast growth
factor receptor 4 (FGFR4), Survivin, Focal adhesion kinase (FAK), Golgi phosphoprotein
3 (GOLPH3), PCNA-associated factor (Proliferating cell nuclear antigen-associated factor
of 15 kDa, PAF15), Beclin-1, Class II Nuclear factor-kappaB (subunit p65) (N-κB/p65),
Polo-like kinase 1 (PLK1), Ataxia telangiectasia mutated (ATM), Double-strand break repair
protein MRE11 (Human homolog of Meiotic recombination 11, MRE11), Pantetheinase
(Vascular non-inflammatory molecule-1, VNN1), Serine/threonine-protein kinases VRK1
and VRK2 (Human vaccinia-related kinases 1 and 2, VRK1 and VRK2), human homologous
recombination proteins RAD51 and RAD52 (RAD51, RAD52), p53 binding protein 1 (53BP1)
and Tumor protein p53 (p53).

SATB1 is a nuclear matrix-associated protein that is located in the human chromosome
3p23 [19]. In several studies by Menge et al., the authors showed that levels of SATB1 were
significantly higher in tumor tissue compared to normal rectal tissue (p = 0.043). Moreover,
knocking down SATB1 in cell lines and then exposing them to 2Gy radiation statistically
significantly increased the sensitivity to radiotherapy when compared to the control cell
lines (p < 0.001) [20,21]. In relation to radiation-associated factors, SATB1 appeared to
have a positive correlation with Ki-67 and Survivin, and a negative correlation with ataxia
telangiectasia mutated (ATM) and pRb2/p130 (p < 0.05) [21]. Furthermore, in a study by
Lopes-Ramos et al., SATB1 expression seemed to increase when the expression of miR-21-5
was inhibited, decreasing the radiosensitivity in the cell lines [22].

The nuclear protein XRCC2, located on the 7q36.1 chromosome, and other somatic
RAD51 paralogs (RAD51B, RAD51C, RAD51D and XRCC3) are responsible for Deoxyri-
bonucleic Acid (DNA) repair and chromosome stability. When cells become deficient
in XRCC2, it leads to chromosome instability and increased cell sensitivity to ionizing
radiation [23,24]. The Qin et al. study of 67 patients with locally advanced rectal cancer
demonstrated that cancer cells with knockdown of XRCC2 (sh-XRCC2) became more sensi-
tive to ionizing radiation. To further investigate this increase in radiosensitivity, changes
in biochemical markers of apoptosis before and after ionizing radiation were identified,
with increased levels of poly adenosine diphosphate ribose polymerase (PARP), cleaved
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caspase-3 and cleaved caspase-9 in the sh-XRCC2 and a significant decrease in Bcl-2 when
compared with the control cells [25].

Several studies have shown that the inhibition of apoptosis induced by tumor necrosis
factor-α (TNF-α) and the upregulation of hPEBP4 plays a vital role in tumor progression
in various types of cancer [26–29]. Qiu et al. investigated hPEBP4 as an independent
biomarker for predicting rectal cancer response to radiotherapy treatment (p = 0.001).
Tumors with a higher expression of hPEBP4 appeared to be more resistant to radiotherapy,
and the patients had worse progression-free survival when compared to those with a low
expression of hPEBP4 [30]. When hPEB4 was inhibited with a chemical inhibitor of hPEBP4
IOI-42, it resulted in increased radiosensitivity in rectal cancer cells in vivo [30].

PITPNC1 has also been linked to the metastatic progression of several types of cancer,
including CRC [31,32]. Tan et al. discovered a significantly higher expression of PITPNC1
in radioresistant rectal cancer tissues than in radiosensitive tissues. Moreover, the overex-
pression of PITPNC1 seemed to lower the production of reactive oxygen species (ROS),
thus increasing the radioresistance in rectal cancer cells [33]. However, it is notable that the
study only included biopsies from 16 patients.

FOXK1 and FOXK2, members of the FOXK protein family, are known to regulate many
processes of the cell, including starvation-induced atrophy, proliferation and differentiation
of the cell, cellular metabolism, autophagy and DNA repair. Therefore, dysregulations
of FOXKs may contribute to decreased radiosensitivity [34]. In the study by Zhang et al.,
biopsies from 169 patients with LARC have shown that the expression of FOXK1 and
FOXK2 was comparably higher in patients with non-pCR compared to the pCR group.
Furthermore, the 3-year OS rate indicated that patients with overexpressed FOXKs in their
pre-neoadjuvant chemoradiotherapy (nCRT) tumor tissues had worse OS (56.9% in the
FOXK1 group and 64.2% in the FOXK2 group, p < 0.01) than patients with low levels of
FOXK1 and FOXK2 (93.1% and 87.0%, respectively, p < 0.01) in their pre-nCRT biopsies [35].

Fibroblast growth factors are polypeptides that are responsible for regulating prolif-
eration and differentiation of the cell, its survival and other biological functions [36]. In a
recent study, Harpain et al. discovered low levels of FGF8 expression in four out of five
complete responders [37]. A total of 89% of the patients with low levels of FGF8 in their
tumor tissue were responders, whereas in the group with high levels of FGF8, only 44% re-
sponded well to the nCRT (p = 0.003). A total of 87% of patients with low levels of Survivin
expression achieved good response to nCRT; at the same time, only 50% of the patients
with high levels of Survivin in their tumor tissue responded well to the treatment (p = 0.02).
Interestingly, out of the five complete responders, only two had low levels of Survivin [36].
Survivin belongs to the gene family responsible for the inhibition of apoptosis, and its
upregulation can be found in most types of cancer. High levels of Survivin also take part in
the proliferation and angiogenesis of cells, making it an important part in the formation of
cancer [38]. In a retrospective study of 116 patients with LARC conducted by Yu et al., the
expression levels of Survivin in the tumor tissue were analyzed. Positive immunostaining
for nuclear Survivin was observed in 30 of the patients (25.9%), and 33 patients (28.4%)
showed positive immunostaining for cytoplasmic Survivin. Positive nuclear (p = 0.001) or
cytoplasmic (p = 0.003) Survivin correlated with a worse 5-year DFS, suggesting a possible
correlation between the overexpression of Survivin in the tumor tissue and radioresistance
in RC patients [39].

FGFR4 is a transmembrane tyrosine kinase receptor. It has been discovered that
patients showing a strong response or complete response to nCRT have a significantly
lower expression of FGFR4 in their tumor tissue, whereas patients with high FGFR4
expression correlated with poor radiosensitivity (p = 0.04) [40].

The cytoplasmic protein FAK is responsible for the regulation of cell signaling and
survival of the cancer cell [41]. In a study done on 73 patients diagnosed with locally
advanced rectal adenocarcinoma, the expression levels of FAK were significantly lower in
non-responders when compared to responders (p = 0.007) [42].
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PAF15 is a small PCNA-associated protein mainly localized in the mitochondria and
nucleus of the cell. [NO_PRINTED_FORM]Although the molecular mechanism is not yet
clear, PAF15 appears to be involved in cell survival and DNA repair, possibly through the
p21 and p33 pathways [43]. PAF15 expression has shown a possible correlation with tumor
radiosensitivity in RC patients. Yan et al. conducted a study in which PAF15 expression in
105 biopsies of paired primary RC and normal rectal tissues was evaluated. PAF15 seemed
to inhibit DNA damage that was caused by gamma irradiation, as well as promote cell
proliferation in RC cells after radiation (p < 0.05), indicating that cellular radiosensitivity in
RC could be increased by the inhibition of PAF15 [44].

Peripheral membrane phosphoprotein GOLPH3 has been identified as an oncogenic
protein in several solid tumors, including colon cancer [45]. It has been previously demon-
strated that GOLPH3 was overexpressed in CRC tissue when compared to normal colorectal
mucosae (p < 0.01) and appeared to be a potential predictor of 5-FU chemosensitivity in
CRC patients [46,47]. Zhu et al. found that a low expression of GOLPH3 in RC tissue
correlated with a better response to nCRT. A total of 62% of patients (44 out of 71) with low
expression levels of GOLPH3 showed tumor down-staging after nCRT; in contrast, only
43% (33 out of 77) with GOLPH3 overexpression in tumor tissue showed down-staging
after nCRT (p = 0.020) [48].

Beclin-1, an essential Bcl-2-interacting autophagy protein, is a negative regulator
of tumor formation and mammalian cell growth [49]. Zaanan et al. discovered that
patients with LARC who had high Beclin-1 expression in their tumor tissue were less
likely to achieve pCR after nCRT when compared to patients with low levels of Beclin-1
(p = 0.02). These patients also appeared to be less likely to show down-staging after nCRT
(p = 0.02) [50].

The nuclear factor-kappaB (NF- κB) family is comprised of five transcription factors:
p50/p105 (NF-κB1), p52/p100 (NF-κB2), p65 (RelA, RelB and c-Rel) [51]. In a study
conducted by Voboril et al., the expression levels of Class II transcription factors (NF-
κB/p65) in RC tumor tissue before and after nCRT were evaluated. Although the expression
levels of NF-κB/p65 seemed to be higher in rectal adenocarcinoma compared to healthy
tissue, NF-κB/p65 expression levels did not correlate with tumor radiosensitivity [52].

The expression of mitotic regulator PLK1 has been previously described as an impor-
tant factor in the survival of cancer cells; furthermore, the overexpression of PLK1 has
been discovered in various types of cancers, including colon cancer [53]. A lower PLK1
expression appears to correlate with worse pathologic response in RC patients receiving
nCRT. In a study by Cebrian et al., pre-treatment tumor tissues from 75 rectal cancer pa-
tients were analyzed. Of patients who showed a high expression of PLK1, 54.2% achieved
pCR or partial response, whereas only 37% with a low PLK1 expression achieved pCR or
partial response after nCRT (p = 0.049). Low expression levels of PLK1 were also linked
with reduced DFS (p = 0.06) [54].

Ho et al. evaluated the correlation between the expression of MRE11/ATM two-
protein panel and tumor radiosensitivity in patients with RC. It was noted that patients
with MRE11/ATM overexpression had worse DFS (p = 0.028) and OS (p = 0.024) [55].
Furthermore, in a more recent study, Ho et al. also assessed the MRE11/RAD50/NBS1
(MRN) three-protein panel as a potential molecular biomarker to predict radiosensitivity
in RC patients. Patients with higher expression levels of the MRN complex proteins had
significantly worse DFS (p = 0.024) and OS (p = 0.028) [56].

VNN1 is an ectoenzyme that is highly expressed in tissues with a high turnover of
CoenzymeA (CoA), including liver, kidney and intestine, with intestinal VNN1 being
predominantly expressed by enterocytes [57]. Chai et al. observed an association between
a poor response to nCRT and VNN1 overexpression in 172 patients with primary rectal
adenocarcinoma. High VNN1 expression levels were significantly associated with worse
disease-specific survival (p = 0.0001), as well as with worse local recurrence-free survival
(p = 0.0001) and poor response to nCRT (p = 0.001) [58].
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In a study conducted by Peng et al., the predictive value of APAF-1 and COX-2
expression in tumor tissue taken from patients with LARC was evaluated. Patients with a
low expression of COX-2 and a high expression of APAF-1 had the highest pCR rate of 56%
when compared to low COX-2 expression/low APAF-1 expression (17.4%), high COX-2
expression/low APAF-1 expression (15.4%) and high COX-2 expression/high APAF-1
expression (14.3%) (p = 0.05) [59].

RAD51 recombinase is a DNA repair protein that plays an important role in homol-
ogous recombination, which is crucial for the maintenance of a normal cell cycle. Thus,
any dysregulation in the process of DNA repair may lead to carcinogenesis and cancer
progression [60]. In a study on RAD51 overexpression in colorectal adenocarcinomas,
Tennstedt et al. examined a subgroup of patients with rectal cancer and discovered that the
overexpression of RAD51 increased tumor resistance to radiotherapy [61]. Recombination
protein RAD52 also plays an important role in DNA repair by maintaining stabilization of
the fork and stopping excessive fork reversal [62]. In a study of 179 patients, 40 underwent
preoperative treatment and were examined for a possible connection between the preoper-
ative expression of RAD52 and patients’ response to the treatment. A lower expression of
RAD52 was associated with worse DFS and overall survival and increased resistance to
radiotherapy [63].

The cellular protein 53BP1 binds to the central domain of p53 [64]. As Huang et al.
discovered in a recent study, patients with a higher expression of 53BP1 in their pretreatment
biopsy tissue were more likely to achieve a better response to nCRT than patients with
lower levels of 53BP1 expression [65].

The p53 protein, as a potential biomarker, has been investigated both due to the
functions of this protein in the cell after DNA damage as well as the frequent mutations in
the gene (TP53) of this protein in different human cancers. The mutational status of TP53
adds additional complexity; therefore, we reviewed the attempts to assess the potential of
p53 as a biomarker in the following chapter of this review.

2.1.2. Genetic Markers—Mutations and Expression of Protein Coding Genes

Different gene mutations are being considered as potential markers to predict the
outcome of neoadjuvant therapy for rectal cancer patients. The most commonly mutated
genes in colorectal cancer are the Adenomatous polyposis coli (APC), Tumor protein p53
(TP53), and Kirsten rat sarcoma viral oncogene homolog (KRAS) genes, but there are many
other gene mutations that, alone or in combination, could be used to predict the rectal
cancer response to radiotherapy or chemoradiotherapy.

KRAS is a proto-oncogene located on chromosome 12p12.1. KRAS becomes oncogenic
due to point mutations at codons 12 and 13 and less frequent mutations, including those
in codon 61 [66]. Mutations of the KRAS gene are found in about 50% of colorectal
cancer cases. There are conflicting data with regards to the predictive significance of
KRAS mutations in RC. In 2011, Garcia-Aguilar et al. reported that rectal cancers with a
KRAS mutation are less likely to develop a pCR to neoadjuvant CRT compared to tumors
with wildtype KRAS [67]. After two years, they published another study showing that
mutations in different KRAS codons may have different effects on rectal cancer resistance
to CRT [68]. In 2015, Martellucci et al. also found that patients with a KRAS codon 13
mutation were more likely to be resistant to nCRT than other patients and were less likely
to achieve pCR, whereas mutations in codons 12, 6 and 61 did not significantly affect
pCR [69]. Peng et al. researched the correlation between different mutated oncogenes and
clinical outcomes in locally advanced RC and revealed that tumors with KRAS mutations
responded poorly to preoperative chemoradiotherapy (p = 0.044) [70]. Gaedcke et al.
isolated DNA from pre-therapeutic biopsies of 94 patients with rectal cancer treated with
preoperative chemoradiotherapy in order to establish the mutation status of KRAS exons
1–3. The treatment response levels were compared between patients without a KRAS
mutation and those with a mutation in either codons 12, 13, 61 or 146. In contrast to
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previous studies, none of these comparisons showed a significant difference between the
groups [71].

Another quite extensively studied gene is the p53 protein gene, also known as Tumor
protein p53 gene, TP53. This gene codes for a protein that regulates the cell cycle and, hence,
functions as a tumor suppressor. The loss or mutation of TP53 is linked to an increased risk
of cancer [72]. However, the results of various studies investigating TP53 and mutant or wt
p53 levels as a potential biomarker to predict rectal cancer response to nCRT differ, as the
results from various studies tend to contradict [73]. Lopez et al. found that, although 50% of
the patients had mutations in TP53, no correlation between changes of p53 in cancer tissue
and different responses to radiotherapy was found [74]. Another study on the Moroccan
population found a high expression of p53 in tumor tissue in 93% (39) of patients with an
incomplete response and in only 7% of complete responders, demonstrating that p53 may
be of prognostic value in the therapeutic response of LARC [75]. Similarly, Hur et al. found
that 46.9% of patients with low-expressed p53 in their tumor tissue achieved pCR, whereas
only 24.5% of patients with overexpressed p53 were able to achieve pCR [76]. Hence, it
should be noted that TP53 mutational status was not evaluated in either of these studies,
and this may have significant importance for evaluating the potential of p53 as a biomarker.
Another two studies found an association between mutant TP53 and tumor response to
radiation [77,78].

Interestingly, the previously mentioned study by Garcia-Aguilar et al. revealed that
mutant TP53 alone is not associated with tumor response to CRT, but a TP53 mutation
together with a KRAS gene mutation was identified as a possible predictor of a non-pCR to
CRT [67].

Few studies have focused on microarray analysis using rectal cancer tissues to identify
gene expression profiles associated with the response to radiotherapy or chemoradiother-
apy. Although the predictive potential of microarray data has looked promising, only an
overlap of the Filamin A (FLNA) and Matrixmetallopeptidase 14 (MMP14) genes was ob-
served between the gene lists announced in these studies [79–82]. This could be explained
by differences in the tumor contents, chemotherapy regimens, microarray platforms or
analytical tools.

In recent years, Douglas et al. published a study in which a genetic variation in rectal
cancer patients with complete response to chemoradiation versus poor response were
compared. They investigated potential mutations in the genetic profiles of rectal cancer pa-
tients before and after nCRT. Mutations in Lysine demethylase 6A (KDM6A), Non-receptor
tyrosine kinase ABL1 (ABL1), variations of the Death domain associated protein–Zinc
finger-BTB domain containing protein 22 complex (DAXX-ZBTB22) and KRAS genes were
only found in poor responder samples (not mutated in complete responders). Ten genes,
including AT-Rich Interaction Domain 1A (ARID1A), Mismatch Repair System Component
PMS1 Homolog 2 (PMS2), Janus kinase 1 (JAK1), CREB binding protein (CREBBP), Mam-
malian target of rapamycin protein kinase (MTOR), RB transcriptional corepressor 1 (RB1),
Protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A), F-box/WD
repeat-containing protein 7 (FBXW7), variations of ATM-Chromosome 11 open reading
frame 65 (ATM C11orf65) and Lysine methyltransferase 2D (KMT2D), were only mutated
in the patients who were complete responders to neoadjuvant chemoradiation. However,
because of the relatively small sample size of the study (n = 16 patients), it is not possible to
make reliable conclusions [83].

Zauber et al. assessed a series of rectal cancers for the molecular changes of loss
of heterozygosity in the APC and Netrin receptor DCC (DCC) genes, K-ras mutations,
and microsatellite instability. None of the molecular changes were useful as indicators of
regression [84].

In a study conducted by Gantt et al., biopsies from a total of 33 patients with rectal
cancer of the middle-third or lower-third were taken [85]. The difference in the expression
of 19228 genes was analyzed in responders (AJCC score 0–2) and non-responders (AJCC
score 3). The top 10 genes that were upregulated in non-responders were Apolipopro-
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teins A-I, A-II, B and CIII (APOA1, APOA2, APOB, APOC3), Alpha-2-HS-glycoprotein
(AHSG), Dopamine beta-hydroxylase (DBH), LIM homeobox transcription factor 1 alpha
(LMX1A), Sterol O-acyltransferase 2 (SOAT2), Transferrin (TF) and Solute Carrier Family
7 (SLC7A9). The downregulated genes in non-responders included LOC729399, Serine
incorporator 5 (SERINC5), Sodium channel non-voltage-gated 1 beta subunit (SCNN1B),
Zinc finger CCH-type containing 6 (ZC3H6), Solute carrier family 4 sodium bicarbonate
cotransporter member 4 (SLC4A4), DTW domain containing 2 (DTWD2), Membrane-
spanning 4-domains subfamily A member 1 (MS4A12), Brain expressed X-linked 5 (BEX5),
Multimerin 1 (MMRN1) and Chloride Channel Accessory 4 (CLCA4) [85].

In a study on various hub genes associated with RC response to CRT by Sun et al.,
the authors discovered that pCR was more likely to be achieved if the expression of hub
genes Decorin (DCN) and collagen type XV alpha 1 chain (COL15A1) was higher. However,
integrin beta 1 (ITGB1), Notch receptor 3 (NOTCH3) and Secreted protein acidic and
cysteine rich (SPARC) were more likely to be overexpressed in patients with non-pCR.
Furthermore, DCN, ITGB1, NOTCH3 and SPARC genes were discovered to be strongly
associated not only with tumor response to nCRT but also with disease-free survival; they
were further used to form a four-gene expression-based risk score [86].

The overexpression of two lipid biosynthesis-associated genes, 17β-hydroxysteroid de-
hydrogenase type 2 (17HSD2) and mitochondrial enzyme 3-hydroxy-3-methylglutaryl-CoA
synthase (HMGCS2), was associated with poor response to concurrent chemoradiother-
apy treatment in the biopsies of 46 rectal cancer patients. Moreover, the upregulation
of these genes was linked to worse tumor regression grade, disease-free survival and
metastasis-free survival [87]. The enzyme 17HSD2 is expressed in the epithelium of the
colon, as well as in the epithelial cells of the stomach, small intestine and urinary blad-
der. It is mainly responsible for the conversion of estradiol to estrone and testosterone to
androstenedione [88].

2.1.3. Micro-RNA

Micro-RNAs (miRNAs) are endogenous non-coding RNAs that negatively regulate
genes’ expression by pairing to their targeted messenger RNA (mRNA) [89]. By targeting
tumor suppressor genes (TSG), miRNAs can behave as oncogenic miRNAs or act as tumor-
suppressing miRNAs if the target is an oncogene [90].

Lopes-Ramos et al. analyzed the expression profile of miRNA in biopsies taken before
nCRT in 27 patients with rectal adenocarcinomas (cT2-4 N-0 M-0) and compared it in
patients with complete and incomplete responses to nCRT. The overexpression of miR-21-5,
miR-1246 and miR-1290 was seen in complete responders, while the overexpression of
miR-205-5p was noted in the group of incomplete responders. In addition, the following
analyses displayed 78.5% sensitivity and 86% specificity in miR-21-5p expression and the
ability to predict complete response to nCRT [22].

Carames et al., in the study of 92 LARC cases, also noted that, although there was
no association between the overexpression of miR-21 and tumor grade before pre-CRT,
miR-21 overexpression was significantly associated with pathological response to CRT
(p = 0.013) [91]. Another study by Carames et al. investigated 82 patients with LARC and
found that high levels of miR-31 correlated with poor outcomes in pathological response to
nCRT and with worse OS (p = 0.008) [92].

D’Angelo et al. found that miR-194 was significantly overexpressed in responders
compared to non-responders (p = 0.016) [93]. Hotchi et al. investigated the role of miRNAs
in response to CRT in three different parameters (histopathological examination, RECIST
and downstaging). Based on histopathological examination of the biopsy, miR-223 and
miR-142-3p appeared to be more expressed in the responder group than in non-responders
(p = 0.026). Based on RECIST, miR-223 was expressed at higher levels in responders than
in non-responders (p = 0.034); meanwhile, eight genes seemed to be under-expressed in
the responder group, including miR-20b (p = 0.048), miR-92a (p = 0.024), let-7a (p = 0.048),
miR-20a (p = 0.041), miR-17 (p = 0.012), miR-106a (p = 0.024), mir-17 (p = 0.024) and miR-
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20-a (p = 0.041). Based on downstaging, miR-223 (p = 0.006), miR-630 (p = 0.042) and
miR-126 (p = 0.049) were seen to be expressed more in responders’ cancer tissue than in
non-responders. As miR-223 appeared to have a higher expression in all three parameters,
it was further evaluated and chosen as a potential new tissue biomarker for predicting
tumor response to CRT [94].

In the study by Svoboda et al., the expression levels of eight miRNAs significantly
differed between non-responder and responder groups. MiR-215, miR-190b and miR-29b-2
were overexpressed in non-responders, and let-7e, miR-196b, miR-450a, miR-450b-5p and
miR-99a in responders. Using these eight miRNAs, nine of ten responders and nine of ten
non-responders (p < 0.05) were correctly classified [95].

A recent study by Baek et al. analyzed 65 tissue samples taken before CRT from
patients diagnosed with LARC. A good response to CRT significantly correlated with the
upregulation of three miRNAs: miR-199a/b-3p (p < 0.0001), miR-199b-5p (p < 0.0001) and
miR-199a-5p (p = 0.0011). A higher expression of miR199a/b-3p (p < 0.001), miR-199b-5p
(p < 0.001) and miR-199a-5p (p = 0.001) in the tumor tissue also appeared to correlate with
statistically better OS [96].

2.2. Immunological Markers—Blood-Based and Tissue-Based

Several publications have provided evidence of tumor microenvironment involvement
in modulating tumor response to chemoradiotherapy.

In addition to the already reviewed biomarker potential of 53BP1, Huang et al. discov-
ered that tumors with highly expressed 53BP1 also had more significant T cell infiltration
in comparison to tumors with a lower expression of 53BP1. Moreover, the immunoscore of
CD3/CD8 was also significantly higher in tumors with a high 53BP1 expression [66]. Ya-
suda et al. evaluated the density of T lymphocytes in 48 RC biopsies and tumor response to
CRT. A correlation between higher numbers of CD3(+) T cells, CD8(+) T cells and increased
tumor radiosensitivity was noted. Based on a barium enema study, a decrease in tumor
size was strongly correlated with the density of CD4(+) T cells (p = 0.0013), as well as the
density of CD8(+) T cells (p = 0.0020) [97].

Tumor-associated macrophages (TAMs) play an important role in tumor progression
by inhibiting immune responses and promoting angiogenesis [98]. It appears that TAMs
affect the tumor microenvironment by suppressing cytotoxic T lymphocyte responses [99].
In a study of 191 patients with LARC, macrophage-associated biomarkers CD163, CD68,
macrophage colony-stimulating factor (MCSF) and C-C chemokine ligand 2 (CCL2) in
pre-nCRT and post-surgery tumor tissue were found to be higher in patients who were
associated with a poorer response to nCRT and lower in patients with a complete patho-
logical response [100]. A study of 85 patients revealed that CD26 overexpression in rectal
cancer cells was correlated with a poor pathological response to CRT. Moreover, it was
noted that patients with high levels of CD26 were more likely to have serosal and vascular
invasion [101].

2.2.1. Blood-Based Immunological Markers

A study by Caputo investigating the neutrophil-to-lymphocyte (N/L) ratio before and
after neoadjuvant chemoradiotherapy treatment in patients with rectal cancer showed that
the N/L ratio prior to treatment was a predictor of poor tumor treatment response [102].
An elevated N/L ratio after the treatment was, however, associated with a worse outcome.
Another study looked at the N/L ratio of tumors after neoadjuvant treatment but prior
to surgery and found that poor responders had a significantly higher value of N/L after
neoadjuvant therapy compared to good responders [103].

Some studies indicate that cytokine levels (TNF-α, IL-6, CD40L, CCL-5, TGF-β1) in
patient serum could be useful, but analyses of multiple cytokines most likely need to be
combined for a more general clinical applicability, and any such indicator must be further
validated [104–106].
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2.2.2. Tissue-Based Immunological Markers

The type, quantity and location of tumor-infiltrating lymphocytes (TILs) have been
thoroughly investigated in pre- and post-treatment tissue biopsies of rectal cancer with the
aim to predict the response to treatment. Recently, lymph-node ratio (LNR) has emerged as
a prognostic tool and is known as a predictive marker for survival in rectal cancer.

2.2.3. Immunological Biomarkers within Tumors

In recent years, the B7 family has received increased attention. The B7 family contains
checkpoint molecules that regulate immune responses by providing positive signals for
T cell growth, differentiation and cytokine production. At least ten B7 family members
have been identified: CD80 (B7-1), CD86 (B7-2), PD-L1 (B7-H1), PD-L2 (B7-DC or CD273),
ICOSL (B7-H2), CD276 (B7-H3), B7S1 (B7-H4, B7x or Vtcn1), VISTA (B7-H5, GI24 or
PD-1H), B7-H6 and B7-H7 (HHLA2) [107]. In 2020, Wang and colleagues retrieved and
analyzed the TCGA database and reviewed three B7 family molecules, including B7-
H3, VISTA and HHLA2, as the most expressed in patients with colorectal cancer. They
introduced these checkpoint molecules as a potential immunotherapeutic target for patients
with colorectal cancer [108]. Some other studies found that B7-H3, B7-H4 and B7-H7
expression in colorectal cancer was significantly upregulated as compared with normal
tissues. The high expression of these molecules was correlated with a poor outcome in
patients with colorectal cancer [109–112]. In 2020, Yasui et al. published a study whose
aim was to investigate the effect of chemoradiotherapy on the immunological status of
rectal cancer patients who were treated with preoperative chemoradiotherapy. The results
demonstrated that the expression of immune checkpoint genes, such as B7-H3 and B7-H5,
was upregulated after chemoradiotherapy [113]. Therefore, it can be supposed that B7
family checkpoint molecules could be used as predictors of response to chemoradiotherapy
in colorectal cancer patients.

However, further larger studies are needed.

2.3. Other

Other reviewed factors included microbiota and cancer markers (CEA).
The gut microbiota have been identified as a potentially important factor in how cancer

responds to therapies, and there have been attempts to modulate it to yield more favorable
outcomes [114,115].

3. Discussion

There are specific molecular differences among patients with different responses to NT
(Table 1). However, it is worth mentioning that most of the studies reviewed in this article
include a single type of tissue-based molecular biomarker. Due to molecular heterogeneity
in RC patients, it is unlikely that a single molecular marker with sufficient sensitivity and
specificity in predicting NT response would be identified. Therefore, it is particularly
important not only to examine these types of biomarkers in comparison to each other but
also to integrate other clinicopathological and imaging modalities into the same sample
sets. This approach could potentially benefit the further development of a more reliable
biomarker model.

Some limitations in the currently available data on the predictive value of various
molecular biomarkers are worth mentioning. The small sample sizes included in a study
may impact the reliability of given results; therefore, larger cohort studies are necessary
to achieve more trustworthy results. In addition, factors such as variability in treatment
schedules and different NT regimens could influence findings in the currently available
studies. Future studies should also include a standardized evaluation system of tumor
response, allowing a better comparison and interpretation of the results.
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Table 1. Biomarkers suggested predicting neoadjuvant treatment response in rectal cancer.

Category Type Parameter

Biopolymers of
Cancer Cells

Proteins

SATB1 XRCC2, hPEBP4, PITPNC1, FOXK1, FOXK2, Bcl-2,
Cox-2, VEGF, APAF-1, FGF8, FGFR4, Survivin, FAK,

GOLPH3, PAF15, N-κB/p65, PLK1, ATM, MRE11, VNN1,
VRK1, VRK2, RAD51, 53BP1, PITPNC1

Tumour suppressors and oncogenes TP53, XIAP, TCF4, RAD51

Transcriptome/Epigenome Transcriptomic and epigenetic signatures, miR-21, miR-223,
miR-31, miR-106a, miR-20b

Immunological markers

Tissue-based
immunological markers TIL

Blood-based
immunological markers cytokines

Immunological biomarkers
within tumors

CD80 (B7-1), CD86 (B7-2), PD-L1 (B7-H1), PD-L2 (B7-DC or
CD273), ICOSL (B7-H2), CD276 (B7-H3), B7S1 (B7-H4, B7x or

Vtcn1), VISTA (B7-H5, GI24 or PD-1H), B7-H6 and
B7-H7 (HHLA2)

Other biomarkers Blood-based cancer markers,
gut microbiota -

Abbreviations: DNA-binding protein SATB1 (Special AT-rich sequence binding protein, SATB1), X-ray repair
cross-complementing protein 2 (XRCC2)XRCC2), Human phosphatidylethanolamine-binding protein 4 (hPEBP4),
Cytoplasmic phosphatidylinositol transfer protein1 (PITPNC1), Forkhead box proteins K1 and K2 (FOXK1,
FOXK2), Apoptosis regulator Bcl-2 (B-cell lymphoma 2, Bcl-2), Cyclooxygenase-2 (Cox-2), Vascular endothelial
growth factor (VEGF), Apoptotic protease activating factor-1 (APAF-1), Fibroblast growth factor 8 (FGF8), Fibrob-
last growth factor receptor 4 (FGFR4), Survivin, Focal adhesion kinase (FAK), Golgi phosphoprotein 3 (GOLPH3),
PCNA-associated factor ( Proliferating cell nuclear antigen associated factor of 15 kDa, PAF15), Beclin-1, Class II
Nuclear factorkappaB (subunit p65) (N-κB/p65), Polo-like kinase 1 (PLK1), Ataxia telangiectasia mutated (ATM),
Double-strand break repair protein MRE11 (Human homolog of Meiotic recombination 11, MRE11), Pantetheinase
(Vascular non-inflammatory molecule-1, VNN1), Serine/threonine-protein kinases VRK1 and VRK2 (Human
vaccinia-related kinases 1 and 2 VRK1 and VRK2), human homologous recombination proteins RAD51 and
RAD52 (RAD51, RAD52), p53 binding protein 1 (53BP1), Tumour protein p53 (p53).

Many molecular biomarkers are studied as potential predictors for RC response;
nonetheless, no literature to date has provided sufficient evidence for any of them to be
introduced into clinical practice. It is possible that incorporating different combinations
of molecular biomarkers into the same sample sets may offer additional specificity and
sensitivity, which is lacking when the marker is studied independently of others. The
integration of molecular biomarkers into clinical practice could be beneficial for predicting
tumor response and for further personalization in the care of rectal cancer patients.

4. Materials and Methods

We performed this systematic review according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement [116].

Literature Search and Inclusion Criteria

Two authors independently searched the electronic databases of the Cochrane Li-
brary, Embase, Web of Science, CENTRAL and PubMed until 30th, September 2021. The
search strings used in Medline and Embase were: “rectal”, “cancer”, “predictive”, “re-
sponse”, “prediction”, “predictor”, “biomarkers”, “tissue”, “neoadjuvant”, “radiotherapy”,
“chemoradiotherapy” and “neoadjuvant treatment”. Single words and different search
combinations were used.

This review focuses on studies published in the English language between January
1995 and September 2021.

The inclusion criteria were as follows: (1) original studies; (2) studies that analyzed
predictors for the response to treatment of rectal cancer with neoadjuvant radiotherapy;
and (3) patients who underwent treatment only for rectal cancer.
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Exclusion criteria were as follows: literature reviews, papers with limited information,
articles on molecular biomarkers of colorectal cancer and articles or abstracts written in
non-English.

Response to NT was evaluated based on pCR, partial response, tumor regression
grading (TRG), overall survival (OS), Response Evaluation Criteria in Solid Tumor (RECIST)
and American Joint Committee on Cancer (AJCC) score.

Any disagreement was solved by consensus or by a third reviewer. Data from included
studies were extracted into a datasheet and pretested to prove their suitability. In addition,
references and abstracts were searched. We identified 96 abstracts in NCBI PubMed and
selected 41 reports considered to meet the inclusion criteria (Figure 1).
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5. Conclusions

We have described potential biomarkers, including molecular genetic markers, im-
munological markers and other biomarkers, that have been analyzed from patient samples
to predict the response in rectal cancer patients undergoing neoadjuvant
chemoradiotherapy.
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