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ABSTRACT
Aims To build and evaluate an automated method for
assessing tumour viability in histological tissue samples
using texture features and supervised learning.
Methods H&E-stained sections (n=56) of human non-
small cell lung adenocarcinoma xenografts were digitised
with a whole-slide scanner. A novel image analysis
method based on local binary patterns and a support
vector machine classifier was trained with a set of
sample regions (n=177) extracted from the whole-slide
images and tested with another set of images (n=494).
The extracted regions, or single-tissue entity images,
were chosen to represent as pure as possible examples
of three morphological tissue entities: viable tumour
tissue, non-viable tumour tissue and mouse host tissue.
Results An agreement of 94.5% (area under the
curve=0.995, kappa=0.90) was achieved to classify the
single-tissue entity images in the test set (n=494) into
the viable tumour and non-viable tumour tissue
categories. The algorithm assigned 250 of the 252 non-
viable and 219 of the 242 of viable sample regions to
the correct categories, respectively. This corresponds to a
sensitivity of 90.5% and specificity of 99.2%.
Conclusions The proposed image analysis-based
tumour viability assessment resulted in a high agreement
with expert annotations. By providing extraction of
detailed information of the tumour microenvironment,
the automated method can be used in preclinical
research settings. The method could also have
implications in cancer diagnostics, cancer outcome
prognostics and prediction.

INTRODUCTION
Tumour viability is an important endpoint in xeno-
graft models, tumour slice grafts, tissue cultures ex
vivo and for pre-analytical quality control of archived
tissue samples in biobanks.1 There is no specific bio-
marker for tissue viability, and the current predomin-
ant method for the assessment of tumour viability is
visual examination of H&E-stained tissue sections by
light microscopy. However, visual interpretation can
lack objectivity and the measurements are difficult to
reproduce. Hence, more precise and replicable
methods for assessing tumour viability in histopatho-
logical samples are needed.2 In addition, the methods
should have the capability to handle data from
whole-slide microscopy scanners and be applied to
large sample series.
Xenograft tumour models are widely used in pre-

clinical studies investigating neoplastic transform-
ation, metastatic invasion and in screening for
novel antitumour drugs.3 Antitumour activity of
the tested agents is often assessed by endpoints

such as tumour viability, tumour doubling time,
tumour growth delay and proliferation.4

In this study, we propose an image analysis-based
tissue segmentation method for assessment of
tumour viability in human lung cancer xenografts.
The segmentation includes separation of tumour
tissue from other tissue morphologies (eg, stroma,
muscle and adipose tissues). The method then
further identifies and quantifies viable tumour and
non-viable tumour tissue (eg, necrotic tumour
tissue). In the viability analysis, the non-tumourous
tissue regions are removed and the tumour viability
is measured as a percentage of viable tissue in the
tumour region only. The proposed method uses
texture features to discriminate among the different
tissue morphologies. Texture features have been
broadly applied in computer vision,5 and in digital
pathology, for example, to identify and separate
epithelium and stroma in histological images,6 7 to
map dysplastic fields in colorectal tissue8 and to
identify follicles in immunohistochemical samples.1

Few prior studies have been published regarding
image analysis of tissue viability or necrosis in
whole-slide images (WSIs). One study9 used a com-
bination of texture and colour features to detect
necrotic tissue in WSIs of non-cancerous rat liver.
In addition, another study10 noted an association
between morphological features and necrotic tissue
in ovarian serous carcinoma, but did not attempt to
discriminate between stroma and necrosis. In ref.,11

a method based on unsupervised feature learning
using a sparse autoencoder was applied for identi-
fying necrosis in WSIs of glioblastoma multiforme
and clear cell renal cell carcinoma.
We developed an image analysis method for the

segmentation of tissue into viable and non-viable
tumour tissue for the purpose of assessment of drug
response in xenograft tissue. The proposed assess-
ment was developed and validated on H&E-stained
sections of mouse xenografts of human non-small
cell lung cancer (NSCLC). To identify different
tissue morphologies, we used texture descriptors
derived from local binary patterns (LBPs) and a
local contrast measure (VAR) in combination with a
support vector machine (SVM) classifier. The devel-
oped method visualises the spatial distribution of
non-viable regions in a tumour as a heat map and
produces a numerical value for the overall viability
of a tumour.

METHODS
Cell culture and tumour assay
The human NSCLC adenocarcinoma cell line NCI-
H460-LNM3512 was maintained in RPMI-1640
medium supplemented with 2 mM glutamine,
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penicillin (100 U/mL), streptomycin (100 μg/mL) and 10% fetal
calf serum (Promocell, Heidelberg, Germany). Tumour cells
(5×106 cells per mouse) were implanted subcutaneously into nu/
nu BALB/c mice (Harlan Laboratories, Venray, The Netherlands)
anaesthetised with ketamine (Ketalar; Pfizer, New York,
New York, USA) and xylazine (Rompun vet; Bayer Healthcare,
Leverkusen, Germany). At 4 days after tumour implantation, the
mice were randomly assigned to receive an intraperitoneal injec-
tion of the antiangiogenic compounds, or control human immuno-
globulin G. Once the largest tumour diameter reached 19 mm in
length, the mice were sacrificed and the primary tumours were
excised, cut in halves and fixed with 4% paraformaldehyde. The
paraffin-embedded tumour tissues were cut into 5–7 μm sections,
and then stained with H&E.

Tissue scanning
The H&E-stained tumour samples were digitised with an automated
whole-slide scanner (Pannoramic 250 FLASH, 3DHISTECH,
Budapest, Hungary) using a Plan-Apochromat 20× objective
(numerical aperture 0.8) and a VCC-F52U25CL camera (CIS,
Tokyo, Japan) equipped with three 1224×1624 pixel charge
coupled device sensors. The pixel size of the sensors is 4.4×4.4 μm.
In combination with the 20× objective and a 1.0 adapter, the image
resolution is 0.22 μm/pixels. Images were compressed to a wavelet
file format (Enhanced Compressed Wavelet, ECW, ER Mapper,
Intergraph, Atlanta, Georgia, USA) with a compression ratio of 1:9.
The compressed virtual slides were uploaded to a WSI management
server (WebMicroscope, Fimmic, Helsinki, Finland). WSIs on the
server can be viewed via a browser and accessed with image analysis
tools (eg, ImageJ andMATLAB).

A total of 72 WSIs were scanned, and after an image quality
check, a subset of 56 WSIs with minimum out-of-focus areas
were chosen for further analysis. The average size of an analysed
image region in the WSIs was 7.6 gigapixels (range 1.4–10). As
an example, a tumour with a diameter of 19 mm corresponds to
an image width of 86 000 pixels.

Annotation of homogeneous image regions
Two sets of single-tissue entity images (STEI) (945×945 pixels
each) were selected and cropped from the WSIs to be used in the
training and testing of the algorithm, respectively. The STEIs are
selected from homogeneous tissue regions, that is, regions repre-
senting only one of the tissue morphologies of interest (figure 1).

For the training set (n=177), STEIs were extracted from
viable tumour tissue (n=57), non-viable tumour tissue (n=52)
and from of mouse host tissue (n=68), for example, stroma,
muscle and adipose tissue. The training set was extracted from
four WSIs that were not used when testing the method. For the
test set (n=494), STEIs were selected only from viable tumour
(n=242) and non-viable tumour regions (n=252). The test set
was extracted from 23 WSIs. All the STEIs were selected by one
of the researchers (NL).

Annotation of WSIs
In addition to the above-described image sets, two researchers
(NL and TH), both physicians with a strong background in
molecular biology, manually annotated regions of viable tumour
and non-viable tumour in the WSIs. These annotations were
used for evaluating the automated assessment on a sample level.
Two masks were drawn for each of the 52 samples, one mask
identifying the whole xenograft tumour and another mask for
labelling the non-viable tumour tissue but excluding mouse host
tissue (eg, stroma, adipose and muscle). A graphics-editing
program (Adobe Photoshop CS6, Adobe Systems, Mountain
View, California, USA) was used to draw the masks on the
downscaled (4.16 μm/pixel) versions of the original WSIs.
During the process of drawing the masks, the full-resolution
WSIs were available in parallel for viewing to better visualise
the tissue morphology.

Automated viability assessment
The proposed method for analysis of WSIs comprises three
levels of scales: (1) sample level—this level includes the whole
sample and the tumour viability is measured on this level. (2)
Tile level—the samples are divided into smaller images, that is,
tiles and STEIs, which are simpler to process and annotate com-
pared with an entire WSI. (3) Window level—the tiles are
further divided into overlapping regions, called windows, which
are processed individually. The size of a whole sample is mea-
sured in gigapixels, and the tiles and the windows are measured
as megapixels and kilopixels, respectively. The proposed seg-
mentation method was implemented with an image-processing
framework (MATLAB, MathWorks, Natick, Massachusetts,
USA). Figure 2 illustrates how different data sets are used in the
training and testing phase and what computational components
they include.

Figure 1 Set of example images of selected representative tissue regions. (A) Viable tumour tissue, (B) non-viable tumour tissue and (C) mouse
host tissue (eg, stroma, muscle and adipose).
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Prior to the tile division, the images were downscaled to pixel
size of 0.44 μm and converted into grey scale by weighting the
colour channels with a vector: [0.2989 0.5870 0.1140]T.

The tiles were not overlapping and the maximum size of a tile
was set to 3968×3968 pixels. The size of each extracted
window was set to 128×128 pixels, and read every 64th pixel,
thus creating an overlap of 50% for every subsequent window.

The LBP and VAR descriptors are parameterised based on the
size of the neighbourhood and by the LBP code mapping.13 Two
LBP/VAR joint distributions were obtained from the grey-scale con-
verted windows; the first with parameters LBPriu23;8 =VAR3;8 and the
second with parameters LBPriu24;16=VAR4;16. The subscripts [(3,8),
(4,16)] define the used perimeter (P) and radius (R) pairs: (P, R),
and the superscript riu2 defines the applied code mapping, that is,
rotation invariant 2-uniform.13 14 The parameter values were
selected based on our previous experience and preliminary tests.

A combination of a multiclass linear SVM and a sparse
feature mapping was used to classify the windows into the three
target categories according to the obtained LBP/VAR descrip-
tors. For the classification, an L2-regularised L2-loss SVM15

multiclass (one vs rest) classifier was used. In order to boost the
discrimination of the linear model, a sparse feature mapping16

was applied to the features. An open-source library for com-
puter vision algorithms17 was applied for a feature mapping
approximating the χ2 kernel. The combination of linear SVM
and sparse kernel approximation was selected to enable efficient
large-scale learning and complex non-linear modelling.

After the classification of all the windows of a WSI, the classifi-
cation results were merged together into a result image by aver-
aging the overlapping decision scores and applying a Gaussian
filtering for final refinement. In a result image, the tumour region
was first identified by majority voting (selecting the strongest
decision value), after which a heat map visualising viable and
non-viable tumour regions was drawn on top of the detected
tumour as a separate layer. The heat map is a probability map,
visually representing the classifier’s classification confidence; blue
for viable tumour tissue and red for non-viable tissue.

Model optimisation and training
The 177 training images were divided into windows using the
parameters described earlier (128×128 pixels, read every 64th
pixel), resulting in a total of 6372 individual training windows.

A threefold cross-validation was used to optimise the cost par-
ameter C of the SVM classifier. The folds were balanced regard-
ing the number of windows per class by randomly selecting as
many samples to each fold. Parameter values of [2−10, 2−9.5, …,
2−11.5, 212] were used in the validation, and the value that
resulted to the highest average accuracy was selected for training
the final SVM model. The selected parameter value was C=8
and the average cross-validation accuracy was 97.5%. Similarly
to validation, as many training windows were randomly selected
from each tissue category for training the final SVM model. In
total, 5616 windows were used to train the model.

Statistical analysis
The agreement of the method is evaluated by comparing the
obtained results with expert annotations and calculating percent
agreement, kappa-statistics and the area under the receiver oper-
ating characteristic curve (AUC) for the STEI test set. In add-
ition, the results were evaluated on the WSIs based on per cent
agreement on pixel level (agreement in segmentation) and by
Pearson’s product-moment correlation on a sample level (agree-
ment in tumour viability assessment).

RESULTS
The proposed method was evaluated on two separate image
sets, that is, the STEI test set and the WSI test set (figure 2).

Figure 2 Flow chart of the main principle of the tumour viability
assessment. The support vector machine (SVM) model is trained and
optimised with the training set of single-tissue entity images (STEI),
representing the different tissue categories of interest. The
discrimination of the model is evaluated in parallel in test set of STEIs
and in whole-slide images (WSIs). On the test STEI set, the agreement
to classify a test image into viable or non-viable tumour category is
evaluated by comparing result to manual labelling. Similarly on the
WSI test set, the agreement in tissue segmentation and finally tumour
viability assessment are evaluated by comparing obtained results with
expert annotations.
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The STEI test set contains single-entity regions, that is, images
representing homogeneous areas of viable and non-viable
tumour tissue, and the WSI test set is a collection of digitised
whole tumours. The WSIs are challenging to annotate with high
precision, whereas extraction of smaller single-entity images can
be done with higher accuracy. This makes the STEI test set more
precise as a reference for evaluation of how well the method
can discriminate between viable and non-viable tissue.
Additionally, the proposed approach was compared to a stand-
ard classification method: nearest neighbour (NN).18 On the
WSI test set, we evaluate both agreement in segmenting the dif-
ferent tumour tissue morphologies and the agreement in asses-
sing the tumour viability.

Discrimination between viable versus non-viable tumour
tissue in STEIs
The test STEI set images were divided into windows (128×128
pixels, read every 64th pixel) and classified according the dom-
inant tissue category. The proposed method resulted in an agree-
ment of 94.5% (AUC=0.995 and a kappa value of 0.90 (CI
95% 0.86 to 0.97)) to classify the 494 test STEIs (viable tumour
n=242 and non-viable tumour n=252) into the respective cat-
egories (figure 3). Only two test images belonging to the non-
viable tumour category were misclassified; one as viable tumour
and one as non-tumourous. Twenty-three images representing
viable tumour were incorrectly classified into the non-viable cat-
egory. This corresponds to a sensitivity of 90.5% and specificity
of 99.2% to distinguish viable from non-viable tissue. A com-
parison of the suggested approach to an NN classifier using the
same features is shown in table 1.

Assessment of tumour viability in WSIs
An average agreement of 83.3% was achieved in segmentation
of WSIs into viable and non-viable tumour regions on a pixel
level compared with the expert annotations. On average, 39.4%
of the tumour area was segmented as true viable tumour, 43.9%
as true non-viable tumour, 5.6% as false viable tumour and
11.0% as false non-viable tumour. The correlation between the
automated tumour viability assessment and expert readouts was
r=0.79 ( 95% CI 0.66 to 0.87, p<0.0001) on the sample level
in the set of 52 WSIs (figures 4 and 5). On average, 11.4% of
the manually drawn tumour masks were classified as non-
tumourous tissue and excluded (7.3% from viable tumour tissue

and 4.1% from non-viable). These regions mostly correspond to
sparse tissue regions, stroma and tissue folds.

DISCUSSION
In this study, we developed a texture-based tissue classifier for
assessing tumour viability in mouse xenografts of human
NSCLC. The high agreement (AUC=0.995) between the algo-
rithm and the human observer in discriminating between the
tumour tissue morphologies shows that computerised quantifica-
tion of tumour viability in xenograft samples is feasible.
Together with the introduction of whole-slide digital scanners
and the growth of computational power, computer-assisted tools
are good candidates for automated segmentation of tumours
within experimental cancer research.

Cancer drug research largely relies on the study of models
such as mouse xenografts of human tumours. Xenografts are
one of the most frequently used models in preclinical testing of
therapeutic targets for cancer treatment. Accurate characterisa-
tion of how the tissue morphology, for example, tumour viabil-
ity, in xenografts and ex vivo cultures of human cancer tissue is
modulated by, for example, cytotoxic drugs, targeted therapies
or ionising radiation, is important for assessment of drug
response. An automated and reliable readout of morphology
would allow more accurate intralaboratory and interlaboratory
comparisons of treatment outcomes. In addition, tissue viability
is an important endpoint for quality control of samples stored
in biobanks, and a method for analysing the viability of the
tissue in this setting would be useful.1 Computer vision applica-
tions routinely extracting and analysing image features from
histological samples are good candidates for totally automating
and offering a decision support for an expert in these processes.

The image features used in the current study are based on
LBPs, which are rotation and grey-scale invariant texture
descriptors. The LBP descriptor and its variants are used in a
broad range of pattern classification tasks such as biometric
applications for face recognition,19 iris recognition20 and finger-
print identification.21 The LBP descriptor has been proven to be
highly discriminative and computationally efficient.22

Previous studies on classification of morphological entities in
biological samples using LBP features have been reported. For
example, an approach using LBP descriptors to determine tissue
as either stroma-rich or stroma-poor in digitised WSIs of neuro-
blastoma reached an overall classification accuracy of 88%.23

Figure 3 Discrimination performance
between viable and non-viable regions
in single-tissue images. (A) Confusion
matrix illustrating the agreement
between the human observer
annotations and the tissue categories
assigned by the image analysis
method. (B) Discrimination of the
tissue samples by the classification
score. (C) Receiver operating
characteristics curve and corresponding
area under the curve (AUC).
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A method assessing for discriminating between epithelium and
stroma in digitised tissue microarrays of colorectal cancer using
LBP features reached an accuracy of 99% and AUC=0.995.6

Other texture features such as Haralick descriptors have also
been used for classification of tissue morphologies, stromal and
cancerous tissue in sections of prostate cancer, providing a classi-
fication accuracy of 79% of the subregions in digitised
samples.24

Only few previous studies on the use of texture analysis, or
other image analysis approaches, for assessment of tissue viabil-
ity in WSIs have been reported. A multiscale method to quantify
WSIs of non-cancerous rat liver into viable, necrotic or back-
ground evaluating different feature combinations and classifier
settings has been presented.9 In that study, pixel value statistics

and LBP descriptors were extracted from a set of colour chan-
nels and classified using a random forest classifier with an
average segmentation accuracy of 94.67% on four different WSI
sets. This study was, however, not focused on tumour samples.
In another study, biologically relevant image features were inves-
tigated and a high nuclear eccentricity was identified as a charac-
teristic feature for both stroma and necrosis in ovarian serous
carcinoma, but classification accuracy was not evaluated.10

Additionally, the applicability of sparse autoencoder for
unsupervised feature learning to identify necrotic regions in
WSIs was studied in ref.11 An accuracy of 84% was obtained in
the glioblastoma multiforme and 81% in the clear cell renal cell
carcinoma data set.

An obvious challenge for the development and testing of
automated quantification tools is sample annotation and produc-
tion of precise ground truth data on the sample level. Manual
annotation of a set of gigapixel-sized WSIs is a challenging task
to perform with a high precision. This was also recognised in
the current study, where a part of the lower performance in the
WSIs compared with the selected STEIs could be explained by
less stringent annotations. When further inspecting erroneously
classified areas in detail, it often turned out that the proposed
method result actually was correct and that small areas of necro-
sis or viable tissue had been missed during annotation of the
gigapixel images (figure 5). Precise manual annotations for the
WSIs are challenging to produce due to their large size and

Table 1 Performance of the support vector machine (SVM) and
nearest neighbour (NN) classifiers to discriminate between viable
versus non-viable tissue in the test single-tissue entity images set

SVM NN

Accuracy (%) 94.5 87.5
Sensitivity (%) 90.5 81.8
Specificity (%) 99.2 92.9
Diagnostic OR 1190 59

Figure 4 Tumour viability assessment in whole-slide images of human lung cancer xenografts stained with H&E. (A) Original sample (left),
manually annotated sample (middle) and a result image (right). The tumour regions were identified by manually marking the viable (blue) and
non-viable (red) tumour regions. In the result image, a heat map is visualised on top of the automatically identified tumour. The same colour coding
is used; blue for predicted viable tumour and red for predicted non-viable tumour tissue. *An example of a region where stromal tissue was not
identified by a human expert during the annotation but correctly excluded by the segmentation, and **an example of a region where viable tumour
was falsely excluded. (B) An example of manual annotation (white line) in finer detail in the original sample. (C) An example of manual annotation
(white line) in finer detail in the result image. (D) The correlation between visual examination and the automated assessment for measuring tumour
viability.
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complex morphology. The challenging nature of manual annota-
tion on the sample level also demonstrates the need for more
accurate and efficient methods for quantifying tissue morpholo-
gies. The STEI sets were created in order to have a more con-
trolled, or pure, subset of the data representing the tissue
categories. Additionally, training the method using the STEI
samples minimises the problem of having wrongly labelled

examples in the training set. A disadvantage of the STEI set is
the more limited sample areas covered compared with WSIs,
and thus there is a possibility of STEIs not being as representa-
tive of the entire samples.

The lack of publicly available validation data makes the cross-
comparison of published work uncertain. Some of the previ-
ously presented studies on tissue analysis validate the methods

Figure 5 Result images for all the 52 whole-slide images used in validation of the assessment of the image analysis algorithm with pie charts
showing the obtained tumour viability readout.

Turkki R, et al. J Clin Pathol 2015;68:614–621. doi:10.1136/jclinpath-2015-202888 619

Original article



by evaluating the algorithms on fixed-size-annotated areas.9 23

In the current study, we measured the agreement both on single-
entity images and on WSIs to study the agreement in assessing
tumour viability on a sample level.

The used LBP/VAR texture descriptors are known to be sensi-
tive to image blurring. One solution to overcome this would be
to train the classifier also with blurred images either by selecting
poorly focused regions as part of the training set or by simulat-
ing the blurring effect with a low-pass filter. Another approach
would be to use descriptors such as local phase quantisation,
which might offer robustness against blurring.25 In the current
study, we performed a quality check of the WSIs prior to image
analysis and decided not to include samples with out-of-focus
areas.

Mouse xenografts for human cancers are widely used in
models of tumour invasion and metastasis, malignant transform-
ation and response to therapy. The material used in this study
was composed of microscopy images of NSCLC xenograft
tumours from mice treated with a set of antiangiogenic com-
pounds. Since the mice used in the xenograft models are
immunocompromised, the microenvironment of the implanted
human tumours is not histologically representative of the human
tumour microenvironment. Hence, retraining of the classifier
before applying it to images from patient tumours, even when
studying the same tumour type, is likely needed. Similarly,
retraining would be required before applying the method to a dif-
ferent tissue or cancer type.

In addition to the segmentation of the tumour tissue described
in this study, a tumour viability classifier could be studied for
cancer outcome prediction.26 For example, the quantity of
tumour necrosis/non-viable tumour is often an indicator of an
aggressive tumour phenotype and associated with unfavourable
survival in several tumour types, including breast,27 colorectal28

and NSCLC,29 as well as renal cell carcinoma.30 Further studies
are needed to evaluate the use of the proposed algorithm for
quantification of necrosis in human tumour samples for prognos-
tic purposes and to study its applicability to the analysis of
tumour viability in other tissue types.

Take home messages

▸ Tumour viability is an important factor, but precise
assessment is subjective and laborious.

▸ Whole-slide imaging and computer vision methods (digital
pathology) can be used to automate and make the tumour
viability assessment reproducible.

▸ The proposed approach resulted in high agreement with
human opinion.
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