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ABSTRACT The formation of inosine at the wobble position of eukaryotic tRNAs is an
essential modification catalyzed by the ADAT2/ADAT3 complex. In humans, a valine-to-
methionine mutation (V144M) in ADAT3 that originated �1,600 years ago is the most
common cause of autosomal recessive intellectual disability (ID) in Arabia. While the mu-
tation is predicted to affect protein structure, the molecular and cellular effects of the
V144M mutation are unknown. Here, we show that cell lines derived from ID-affected in-
dividuals expressing only ADAT3-V144M exhibit decreased wobble inosine in certain
tRNAs. Moreover, extracts from the same cell lines of ID-affected individuals display a se-
vere reduction in tRNA deaminase activity. While ADAT3-V144M maintains interactions
with ADAT2, the purified ADAT2/3-V144M complexes exhibit defects in activity. Notably,
ADAT3-V144M exhibits an increased propensity to form aggregates associated with cyto-
plasmic chaperonins that can be suppressed by ADAT2 overexpression. These results
identify a key role for ADAT2-dependent folding of ADAT3 in wobble inosine modifica-
tion and indicate that proper formation of an active ADAT2/3 complex is crucial for
proper neurodevelopment.
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The hydrolytic deamination of adenosine (A) to inosine (I) at the wobble position of
tRNA is an essential posttranscriptional tRNA modification in bacteria and eu-

karyotes (1, 2). Since inosine can pair with U, C, or A, a single tRNA isoacceptor
containing the inosine modification at the wobble anticodon position can recognize up
to three different codons containing a different nucleotide base at the third position.
Thus, the degeneracy provided by the wobble inosine modification is necessary for the
translation of C- or A-ending codons in organisms that lack a cognate G34- or U34-
containing anticodon tRNA isoacceptor by expanding the reading capacity of tRNA
isoacceptors (3). Moreover, it has been shown that highly translated genes in eukaryotic
organisms, including humans, are correlated with an enrichment in wobble inosine
tRNA-dependent codons, suggesting a critical role for tRNA inosine modification in
maintaining proper levels of protein expression (4, 5).

In Escherichia coli, A-to-I conversion at the wobble position is present in a single
tRNA (tRNA-Arg-ACG) and is catalyzed by the homodimeric complex TadA adenosine
deaminase (1). In the yeast Saccharomyces cerevisiae, wobble inosine modification
occurs in seven different tRNAs and is catalyzed by a heterodimeric enzyme complex
consisting of the Tad2p and Tad3p subunits (2, 6). Tad2p is the catalytic subunit and
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contains a prototypical deaminase motif homologous to cytidine/deoxycytidine deami-
nases, including a conserved glutamic acid residue within the active site that is
necessary for proton shuttling in the hydrolytic deamination reaction (7, 8). Tad3p also
contains a canonical deaminase motif but lacks the conserved catalytic glutamate in
the active site. However, Tad2p is inactive without Tad3p, indicating that formation of
a heterodimeric Tad2p/Tad3p complex is required for adenosine deaminase activity (2).
Functional homologs of S. cerevisiae Tad2p and Tad3p have been identified in all
eukaryotes to date, including the human homologs ADAT2 and ADAT3 (9–12).

Exome sequencing and autozygosity mapping have identified a single c.382G�A
mutation in the human ADAT3 gene that is causative for autosomal recessive intellec-
tual disability (ID) in multiple families of Saudi Arabian descent (13–15). All reported
individuals homozygous for the V144M mutation exhibit cognitive deficits indicative of
a neurodevelopmental disorder, with the majority displaying strabismus and growth
delay. Additional clinical features of individuals homozygous for the ADAT3-V144M
mutation include microcephaly, epilepsy, and occasional brain abnormalities such as
white matter atrophy and arachnoid cysts. Subsequent large-scale sequencing has
identified this ancient founder mutation to be one of the most common causes of
autosomal recessive intellectual disability in patients from Saudi Arabia, with a carrier
frequency of �1% (16–18). However, the mechanistic cause of ADAT3-associated
pathogenesis remains unclear.

The human ADAT3 gene expresses two mRNA transcripts encoding ADAT3 proteins
that differ only by the addition of 16 amino acid residues to the amino terminus of the
longer ADAT3 isoform. Based upon the longer ADAT3 isoform, the ID-causing G�A
transition results in a valine-to-methionine missense mutation at residue 144 (V144M).
The mutated valine residue is conserved from yeast to humans and is predicted to
perturb the surface structure of the ADAT3 protein (13). However, it is unknown how
the V144M mutation affects ADAT3 function and whether this would affect tRNA
inosine modification levels in ID-affected individuals who are homozygous for the
autosomal recessive mutation. This would be important to test given the increasing
awareness of tRNA modification in the etiology of other forms of Mendelian ID (19–30).

Here, we demonstrate that cells isolated from ID-affected individuals homozygous
for the ADAT3-V144M mutation contain diminished levels of wobble inosine in several
tRNA isoacceptors. Moreover, we find that extracts from these cells exhibit a drastic
decrease in adenosine deaminase activity. While the ADAT3-V144M variant can form
complexes with its heterodimeric partner ADAT2, ADAT2/3-V144M complexes exhibit
greatly reduced enzymatic activity and an increased propensity to self-associate. Using
subcellular localization studies combined with proteomics, we find that overexpressed
ADAT3-V144M exhibits aberrant aggregation into cytoplasmic foci accompanied by
targeting by the heat shock protein 60 (HSP60) and TRiC/CCT chaperonin complexes.
Notably, the aggregation phenotype of ADAT3-V144M along with its association with
chaperonins can be suppressed by coexpression with ADAT2. Altogether, these results
uncover a potential molecular basis for ADAT3-associated neurodevelopmental disor-
ders in the form of diminished inosine modifications at the wobble position of tRNA
caused by ADAT3 misfolding and impaired enzymatic activity.

RESULTS
Individuals homozygous for the ADAT3-V144M mutation exhibit decreased

wobble inosine modification in tRNAs. To examine the molecular effects of the
V144M mutation in the human population, we generated lymphoblastoid cell lines
(LCLs) from two unrelated human patients harboring homozygous V144M missense
mutations in the ADAT3 gene (referred to as V144M-LCLs, generated from patient 1 [P1]
and P2) (Fig. 1A and B). P1 is a 6-year-old female with severe ID, short stature,
microcephaly, strabismus, deafness, and a history of global developmental delay (13,
16). She is part of a consanguineous family with three similarly affected siblings
(Fig. 1A). P2 is a 24-year-old male with features similar to those of P1, including severe
ID, microcephaly, and developmental deficits as a child. P2 is also part of a consan-
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guineous family with a similarly affected brother (Fig. 1B) (14). LCLs generated from
both ID-affected individuals with homozygous V144M mutations were compared to
control lymphoblasts from an ethnically matched, healthy, unrelated individual (WT1-
LCLs).

We first examined the levels of ADAT3 protein in LCLs to determine if the expression
or stability of ADAT3 was affected by the V144M mutation. Based upon immunoblot-
ting of whole-cell lysates, no major change in the endogenous levels of ADAT3 was
detected between wild-type LCLs (WT-LCLs) and V144M-LCLs (Fig. 1C). Moreover, the
levels of the ADAT3 heterodimeric binding subunit, ADAT2, were also similar between
WT- and V144M-LCLs (Fig. 1C). The comparable steady-state levels of wild-type ADAT3
and the V144M variant suggest that the V144M mutation could be impacting ADAT3
function without affecting protein accumulation.

We next monitored the levels of tRNA modifications in WT- versus V144M-LCLs using
liquid chromatography-mass spectrometry (LC-MS) of nucleosides from digested total
tRNA (31). For these analyses, we also performed a comparison against a completely
different LCL procured from a healthy individual of a similar age but a different ethnic
background (WT2-LCLs). Among 13 tRNA modifications tested, we found that the
inosine modification differed the greatest between WT- and V144M-LCLs, with V144M
LCLs exhibiting a substantial decrease in tRNA inosine levels (Fig. 2A). Using absolute
quantification by LC-MS with calibration standards, we found that the abundance of
inosine was reduced by �30% in the tRNAs of both V144M-LCLs compared to either
WT-LCL (Fig. 2B). While we detected a significant decrease in the levels of inosine in the
tRNA of V144M-LCLs (P � 0.05), no significant change was detected in the levels of any
other tested modification (P � 0.1). These results provide the first evidence that the
ADAT3-V144M mutation and its associated molecular defects have an impact on the
levels of tRNA wobble inosine modification in vivo.

Focusing on a specific tRNA, we next investigated the wobble inosine status of
tRNA-Val-AAC isolated from the V144M-LCLs of ID-affected individuals. Since inosine is
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FIG 1 Individuals homozygous for the ADAT3-V144M mutation exhibit similar levels of ADAT3 expres-
sion. (A and B) Pedigrees of patient 1 (P1) and P2 containing homozygous V144M missense mutations
in the ADAT3 gene. Male family members are denoted by squares, females are denoted by circles,
individuals of unknown sex are denoted by diamonds, deceased individuals are denoted by slashes,
ID-affected individuals with homozygous V144M mutations are denoted by shading, and consanguinity
is denoted by double solid or shaded lines. (C) Immunoblot for the indicated proteins of extracts from
LCLs donated from a wild-type (WT) individual and P1 and P2 harboring homozygous V144M mutations.
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read as G by reverse transcriptases (32–34), the formation of inosine at the wobble
position of tRNA-Val-AAC can be directly detected by sequencing of amplified cDNA
obtained by reverse transcription (RT) of cellular tRNA. In WT-LCLs, the majority of
wobble adenosines in tRNA-Val-AAC were converted to inosine, as evidenced by the
presence of a predominant “G” peak at position 34 (Fig. 3A). Notably, the level of
wobble inosine modification in tRNA-Val-AAC was greatly reduced in both V144M-LCLs,
with the majority of the peak signal at the wobble position being the unmodified “A”
(Fig. 3A).

Based upon the inosine modification defect in tRNA-Val-AAC, we also investigated
whether additional tRNAs containing inosine at the wobble position were affected by
the ADAT3-V144M mutation. Due to technical challenges in RT-PCR sequencing analysis
caused by the diverse number of tRNA isodecoder variants encoded by mammalian
genomes, we investigated the modification status of human tRNAs using poisoned
primer extension assays with a ddCTP terminator, to distinguish I34 (terminated with
ddCTP) from A34, terminated at the next guanosine (Fig. 3B to E). Using this assay, we
observed a reduced frequency of I34 modification in tRNA-Ile-AAU, from nearly 100% to
�70% for P1 and 75% for P2 (Fig. 3B and C). For tRNA-Val-AAC and tRNA-Leu-AAG, we
also observed a reduction in I34 in the tRNAs from both patients (Fig. 3D and E).
Although accurate quantification of deamination for tRNA-Val-AAC and tRNA-Leu-AAG
was not possible because of the high background signal in the primer extensions, the
reduced I34 signal and consequent increase in readthrough products up to G30 were
indicative of reduced inosine modification. These studies uncover a wobble inosine
hypomodification defect for particular tRNAs in the cells of individuals who are ho-
mozygous for the ADAT3-V144M mutation. Moreover, while the ADAT3-V144M muta-
tion reduces the deamination of multiple tRNAs, the effect is incomplete and not
necessarily to the same extent in all affected tRNAs.

Human patient cells with homozygous ADAT3-V144M mutations exhibit per-
turbations in cellular tRNA adenosine deaminase activity. We next investigated
whether the V144M mutation affects adenosine deaminase activity in the cells of
ID-affected individuals expressing only the ADAT3-V144M variant. We performed an in
vitro adenosine deaminase activity assay using whole-cell extracts prepared from the
human LCLs described above. This was made possible since previous studies have
shown that the activity of the ADAT2/3 enzyme complex is the only known cellular
activity that catalyzes wobble inosine formation in tRNA (6). To detect inosine forma-
tion, we used an adenosine deaminase assay based upon the separation of digested
RNA nucleoside products by thin-layer chromatography (TLC) (35, 36). For this assay, in
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vitro-transcribed tRNA substrates were internally radiolabeled at adenosine residues
using [�-32P]ATP and incubated with the whole-cell extract from either the wild-type or
V144M individuals, and the RNAs were digested to nucleoside monophosphates with
P1 nuclease followed by TLC separation to detect IMP formation. As the substrate, we
used human tRNA-Val-AAC, since it has been shown to be a target of ADAT2/3-
catalyzed deamination in vitro and in vivo (12).

While no detectable IMP was detected in tRNA preincubated with buffer alone (Fig.
4A, lane 1), we could readily detect the formation of IMP in tRNA-Val-AAC after
preincubation with whole-cell extracts prepared from WT-LCLs (Fig. 4A, lanes 2 to 4). In
addition to IMP, we also detected a faster-migrating adenosine modification that is
consistent with the formation of 1-methyladenosine (m1A) (Fig. 4A) (37). Since human
tRNA-Val-AAC has m1A at position 58 (38), the formation of m1A is likely due to
endogenous TRMT6/TRMT61 complexes present in cellular extracts (39). The formation
of m1A provides an internal control for cellular adenosine deaminase activity since it is
catalyzed by two different enzyme complexes. Using a time course to monitor product
formation, we detected similar levels of m1A formation between WT- and V144M-LCL
extracts (Fig. 4B). In contrast, we found that V144M-LCL extracts exhibited a substan-
tially lower rate of inosine formation in mature tRNA-Val (Fig. 4A and C). Thus, the
V144M mutation appears to impair adenosine deaminase activity of endogenous
ADAT2/3 complexes and uncovers a severe modification defect associated with the
ADAT3-V144M variant in human individuals. Importantly, these findings suggest that
individuals expressing only the ADAT3-V144M variant are likely to be compromised
but not completely abolished in adenosine deaminase activity on wobble inosine-
containing tRNA substrates in vivo.
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Purified ADAT2/3 complexes assembled with ADAT3-V144M exhibit defects in
adenosine deaminase activity. Eukaryotic ADAT3 interacts with the catalytic subunit
ADAT2 to form an active adenosine deaminase complex. We first attempted to char-
acterize the interaction of ADAT2 with ADAT3 using immunoprecipitation (IP) with the
same antibody used for detection of endogenous ADAT3. In both cellular extracts
prepared from wild-type individuals, we were able to enrich for ADAT3 on antibody-
coated beads (Fig. 5A, compare lanes 1 and 2 versus lanes 5 and 6). Unexpectedly,
ADAT3 was undetectable in the IPs from extracts prepared from either ADAT3-V144M
patient (Fig. 5A, lanes 7 and 8). The lack of IP for ADAT3-V144M was not due to
decreased levels of starting material since similar levels of ADAT3 were present in the
input extracts of either WT- or V144M-LCLs (Fig. 5A, lanes 1 to 4). The lack of ADAT3
recovery from V144M-LCL extracts was also observed using an independent prepara-
tion of cellular extract (J. Ramos and D. Fu, unpublished data). Since the polyclonal
antibody was generated against full-length human ADAT3, the altered IP characteristics
suggest that ADAT3-V144M adopts a different structure and/or interaction than ADAT3-
WT, which reduces its antigenicity under native conditions. Another possibility is that
the location of the V144M mutation represents the primary antigenic determinant for
this polyclonal antibody.

Since the endogenous ADAT3-V144M variant was resistant to immunoprecipitation,
we developed a purification system based upon the expression of tagged ADAT3
variants in HEK 293T human embryonic cells. To analyze the interaction between
ADAT3-V144M and ADAT2, we coexpressed green fluorescent protein (GFP)-tagged
ADAT3-WT or -V144M with ADAT2 tagged with the Twin-Strep-tag in HEK 293T human
embryonic kidney cells. The Strep-tag allows for one-step affinity purification of Strep-
tagged proteins on Strep-Tactin resin under native conditions followed by gentle
elution with biotin to preserve any protein-protein interactions (40). After purification
of Strep-ADAT2 on Strep-Tactin resin, we found that comparable levels of GFP-
ADAT3-WT and GFP-ADAT3-V144M interacted with ADAT2 (Fig. 5B). These results
indicate that ADAT3-V144M can still form a complex with ADAT2.

To validate the interaction between ADAT2 and ADAT3-V144M, we used a reciprocal
approach in which we purified ADAT3 and examined the amount of copurifying ADAT2.
For these assays, we transiently expressed either ADAT3-WT or -V144M fused to a
carboxy-terminal Strep-tag for purification and elution of ADAT2/3. Since ADAT2 levels
have been shown to be limiting for the formation of ADAT2/3 complexes in human cells
(15), we coexpressed His-tagged ADAT2 with either ADAT3-Strep-WT or ADAT3-Strep-
V144M to facilitate the detection of any associated ADAT2. After purification on
Strep-Tactin resin, bound ADAT3 complexes were eluted with biotin and analyzed by
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immunoblotting. Using this approach, we detected the copurification of His-ADAT2
with either ADAT3-WT or ADAT3-V144M, consistent with the assembly of an ADAT2/3
complex from the expressed proteins (Fig. 5C). We detected comparable levels of
His-ADAT2 that copurified with ADAT3-WT and -V144M, corroborating our finding that
the ADAT3-V144M mutant maintains a similar interaction with ADAT2.

We next employed the TLC-based IMP detection assay described above to investi-
gate whether the V144M mutation affects adenosine deaminase activity of purified
ADAT2/3 complexes on in vitro-transcribed tRNA (Fig. 6A). ADAT2/3 complexes were
purified using a strategy identical to the one described above, using Strep-tagged
versions of either ADAT3-WT or -V144M coexpressed in the presence of His-tagged
ADAT2. The purified complexes were analyzed by immunoblotting for ADAT2 and
ADAT3 to ensure that equivalent amounts of complexes were used for enzymatic assays
(Fig. 6B). Using a time course to monitor inosine formation, we found that purified
ADAT2/3 complexes assembled with ADAT3-WT exhibited robust adenosine deaminase
activity on mature tRNA-Val-AAC, as evidenced by the formation of inosine (Fig. 6C
lanes 2 to 4). Compared to ADAT2/3-WT complexes, purified ADAT2/3-V144M com-
plexes were significantly diminished in adenosine deaminase activity on mature tRNA-
Val-AAC (Fig. 6C and D). The activity defect detected with purified ADAT2/3 complexes
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ADAT2 signal relative to ADAT3-WT. (C) ADAT3-WT and ADAT3-V144M copurify with similar levels of
ADAT2. Shown are immunoblots for the indicated proteins from the input (5%) or biotin elutions from
Strep-Tactin affinity purifications (20%) from HEK 293T cells transfected to express ADAT3-Strep-WT or
ADAT3-Strep-V144M without or with His-ADAT2. “relative ADAT2 copurified” represents the ratio of the
His-ADAT2 signal present in the eluted fraction normalized to the ADAT3-Strep signal relative to
ADAT3-WT. Experiments for panels A through C were repeated three times, with comparable results.
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assembled with ADAT3-V144M is consistent with the diminished adenosine deaminase
activity of extracts prepared from V144M patient cells as described above. These
findings reveal that while ADAT3-V144M can still associate with ADAT2 in human cells,
the variant ADAT2/3-V144M complexes exhibit defects in adenosine deaminase activity.

ADAT3-V144M exhibits an increased propensity to self-associate. Using the
tagged-ADAT3 system, we next investigated the biochemical properties of ADAT3
complexes using blue native polyacrylamide gel electrophoresis (BN-PAGE), which has
been used previously to characterize protein complexes (41, 42). After fractionation of
human cell extracts by BN-PAGE and blot transfer, total protein staining revealed
approximately equal loading and transfer of proteins from 66 to 1,236 kDa (Fig. 7A). To
ensure that protein complexes were maintained during electrophoresis, we probed
against the TCP1 subunit of the TRiC/CCT chaperonin complex, which is known to
migrate as a high-molecular-weight complex on BN-PAGE gels (43). We detected the
TRiC/CCT chaperonin complex migrating at �800 kDa, which is the expected molecular
weight of the complex (Fig. 7A). Endogenous ADAT3 in HEK 293T cells was undetect-
able in human cell extracts by BN-PAGE immunoblotting, possibly due to masking of
the epitope when ADAT3 is in complex with ADAT2 (Fig. 7A, vector). However,
transiently expressed GFP-ADAT3-WT was detectable by BN-PAGE, with the majority of
the signal concentrated in two bands migrating between the 100- and 250-kDa size
markers (Fig. 7A, arrow and arrowhead). Based upon the molecular weight of ADAT3,
the migration pattern of ADAT3-WT is consistent with ADAT3 homodimers or het-
erodimers with ADAT2. There is also the possibility that the upper band is an ADAT3
tetramer (Fig. 7A, arrowhead), which is a common property of cytidine and adenosine
deaminases, including Escherichia coli TadA (44–46). ADAT3-V144M was also detectable
by BN-PAGE as two bands migrating at molecular weights similar to those of the
complexes detected in the ADAT3-WT sample although at lower levels than the WT
(Fig. 7A, arrow and arrowhead). Notably, the ADAT3-V144M lane also contained high-
molecular-weight complexes that exhibited an apparent molecular weight ranging
from 400 to 1,000 kDa (Fig. 7A, bracket).

The high-molecular-weight complexes observed with ADAT3-V144M but not
ADAT3-WT suggest that ADAT3-V144M has an increased propensity to self-associate or
interact with additional proteins besides ADAT2. To test for self-oligomerization, we
monitored the interaction of differentially tagged versions of wild-type ADAT3 with
wild-type ADAT3 or of mutant ADAT3-V144M with mutant ADAT3-V144M. For these
assays, we expressed either a WT version of GFP-ADAT3 with a WT form of
ADAT3-Strep or a V144M mutant version of GFP-ADAT3 with the V144M mutant
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form of ADAT3-Strep (Fig. 7B, lanes 2 to 5) (40). We detected a low level of
GFP-ADAT3-WT copurifying with ADAT3-Strep-WT, suggesting that ADAT3 could
already be susceptible to aggregation, even in the wild-type state (Fig. 7B, lane 7).
Notably, we found that purification of ADAT3-Strep-V144M led to an increase in the
amount of copurifying GFP-ADAT3-V144M compared to ADAT3-WT with itself (Fig.
7B, compare lanes 7 and 8). Moreover, we found that coexpression of His-ADAT2
could suppress the self-oligomerization of ADAT3-WT with another ADAT3-WT
while partially reducing the self-association of the ADAT3-V144M variant (Fig. 7B,
lanes 9 and 10). We also note that purification of either ADAT3-WT or -V144M led
to similar levels of copurifying ADAT2 (Fig. 7B, lanes 9 and 10), consistent with our
findings described above showing that ADAT3-V144M maintains interactions with
ADAT2. These results provide evidence that the V144M mutation causes a change
in the ADAT3 conformation that increases the propensity of ADAT3 to misfold and
self-associate if not properly assembled with ADAT2. Moreover, the ability of ADAT2
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to prevent self-association of either ADAT3-WT or -V144M suggests a role for
stoichiometric levels of ADAT2 and ADAT3 in promoting proper folding of ADAT3.

ADAT3-V144M is targeted by the cytoplasmic HSP60 and TRiC chaperonin
complexes. The altered biochemical properties of ADAT3-V144M suggest that the
V144M mutation causes an altered protein conformation with an increased proclivity to
self-associate or interact with additional proteins. We thus investigated whether
ADAT3-V144M exhibited differential protein interactions compared to ADAT3-WT. For
protein interaction analysis, we expressed either the WT or V144M versions of ADAT3
as fusion proteins with the FLAG epitope tag in HEK 293T human cells. While the
Strep-tag was used as described above to allow for native elution of ADAT2/3 com-
plexes using biotin, the FLAG tag was used for these studies since it allowed for more
efficient purification of protein complexes, as we have shown previously (47, 48).
Following immunoprecipitation, the purified samples were analyzed by SDS-PAGE and
silver staining to identify ADAT3-interacting proteins. While no observable bands were
found in a control purification of cells transfected with the vector alone, we could
detect the purification of FLAG-ADAT3-WT or -V144M (Fig. 8A, arrowhead) along with
an additional band at �60 kDa specifically enriched with the ADAT3-V144M purification
(Fig. 8A, arrow). Analysis of the entire eluted samples from control and ADAT3 purifi-
cations by LC-MS validated the successful recovery of ADAT3-WT or ADAT3-V144M from
cellular extracts (Fig. 8B; see also Table S1 in the supplemental material). Notably, LC-MS
analysis also revealed the copurification of heat shock protein 60 (HSP60) and all eight
subunits of the TCP1 ring complex (TRiC; also known CCT) with ADAT3-V144M but not
ADAT3-WT (Fig. 8B and Table S1). HSP60 and TRiC subunits were identified among the
top 20 best-scoring matches in the ADAT3-V144M purification. The HSP60 protein
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forms a homooligomeric chaperonin complex consisting of a double-heptameric ring
that associates with misfolded proteins in the cytoplasm and mitochondria to provide
an environment for protein refolding (37, 49–51). Similar to HSP60, TRiC is a major
eukaryotic cytoplasmic chaperonin that is responsible for the correct folding of endog-
enous client proteins that are prone to misfolding (38, 50). The interaction of chaper-
onin complexes with ADAT3-V144M is consistent with a change in protein conforma-
tion and misfolding induced by the V144M mutation. We also note that peptides
matching ADAT2 were not identified in the purifications of either ADAT3-WT or -V144M
when purified without coexpression of ADAT2. The lack of copurification of ADAT2 with
overexpressed ADAT3 agrees with previous findings that the levels of endogenous
ADAT2 are limiting for the formation of an ADAT2/3 complex (12).

To verify and characterize the interaction between HSP60 and ADAT3-V144M, we
performed co-IP experiments followed by immunoblotting. For a subset of these assays,
we coexpressed His-tagged ADAT2 with either WT or V144M versions of FLAG-ADAT3
to investigate whether ADAT2 influences HSP60 interactions as described above. While
a low level of HSP60 copurified with ADAT3-WT, we detected a significantly increased
amount of HSP60 associated with ADAT3-V144M (Fig. 8C, lanes 7 and 8). Interestingly,
the interaction between HSP60 and ADAT3-V144M could be greatly suppressed by
coexpression with ADAT2 (Fig. 8C, lanes 9 and 10). The reduction in HSP60 association
with ADAT3 by ADAT2 coexpression again demonstrates that assembly of ADAT2 with
ADAT3 is likely to prevent misfolding and subsequent targeting by chaperonin com-
plexes. Of note, similar levels of ADAT2 copurified with both ADAT3-WT and -V144M
(Fig. 8C, lanes 9 and 10), further corroborating the results described above showing that
the V144M mutation does not compromise the interaction between ADAT2 and ADAT3.

Using an analogous co-IP approach, we also found that the TRiC complex subunits
TCP1 and CCT7 exhibited a significantly increased association with ADAT3-V144M
compared to wild-type ADAT3 (Fig. 8D and E, compare lanes 7 and 8). Similar to the
ADAT3 interaction with HSP60, we also found that coexpression of ADAT2 could
suppress the association between the TRiC complex and ADAT3-WT while significantly
reducing the amount of TRiC associated with ADAT3-V144M (Fig. 8D and E, compare
lanes 7 and 8 to lanes 9 and 10). The targeting of either ADAT3-WT or -V144M by
cellular chaperonin complexes suggests that ADAT3-WT is prone to misfolding, with the
V144M mutation further exacerbating the misfolding phenotype. Furthermore, these
studies provide additional evidence that ADAT2 facilitates the proper folding of ADAT3.

ADAT3-V144M displays an aberrant subcellular localization that is suppressed
by ADAT2 coexpression. The studies described above suggest that the ADAT3-V144M
mutation perturbs the folding and/or activity of the ADAT2/3 complex on particular
tRNA substrates, thereby leading to reduced levels of wobble inosine modifications.
Since wobble inosine modification has been proposed to occur in the nucleus and
cytoplasm of eukaryotes (11, 12, 39), we next monitored whether the subcellular
localization of endogenous ADAT3 was altered by the V144M mutation. We first tested
patient LCLs via immunofluorescence microscopy. While we could detect a weak
fluorescence signal within WT- and V144M-LCLs, the diffuse signal combined with the
spherical morphology of LCLs precluded any definitive conclusion on the subcellular
localization of either ADAT3-WT or -V144M (Ramos and Fu, unpublished).

Due to the difficulty in visualizing ADAT3 in LCLs, the localization of ADAT3 was
determined by microscopy of HeLa human cervical carcinoma cells transiently express-
ing ADAT3 fusion proteins with green fluorescent protein at the amino terminus
(GFP-ADAT3). Whereas GFP alone displayed uniform accumulation in both the cyto-
plasm and nucleus of HeLa cells (Fig. 9A), the majority of cells expressing GFP-
ADAT3-WT exhibited a diffuse cytoplasmic localization outlining the nucleus, with only
a small percentage of transfected cells exhibiting a GFP-ADAT3 signal in the nucleus
(Fig. 9A and B). The absence of nuclear localization for GFP-ADAT3-WT is likely due to
the limiting amounts of the endogenous ADAT2 subunit that is required for the nuclear
import of ADAT3 (12). In contrast, the ADAT3-V144M variant exhibited a distinct
localization pattern with distribution in both the cytoplasm and nucleus rather than the
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primarily cytoplasmic localization of ADAT3-WT (Fig. 9A and B). In addition to aberrant
nuclear localization, we detected an increased population of GFP-positive cells that
exhibited discrete, cytoplasmic foci when transfected with the ADAT3-V144M variant
(Fig. 9A and C). The accumulation of ADAT3-V144M into distinct cytoplasmic foci is
consistent with the increased propensity of ADAT3-V144M to self-associate into large
multimeric complexes as described above. Moreover, the steady-state levels of the
GFP-ADAT3-V144M variant were lower than those of ADAT3-WT, suggesting that the
aberrant subcellular localization pattern of ADAT3-V144M was not simply due to
greater expression (Fig. 9D).

In contrast to the cytoplasmic localization of transiently expressed GFP-ADAT3-WT
alone, the coexpression of ADAT2 with ADAT3-WT led to GFP-ADAT3-WT being local-
ized to the nucleus, with only a minor proportion of the signal remaining in the
cytoplasm (Fig. 9A and B), consistent with the observation that ADAT2 dimerization
with ADAT3 is required for nuclear import of the ADAT2/3 complex (12). Similarly, we
found that coexpression of ADAT2 with ADAT3-V144M could also induce the translo-
cation of GFP-ADAT3-V144M into the nucleus (Fig. 9A and B). The ability of ADAT2
coexpression to induce the translocation of GFP-ADAT3-V144M into the nucleus indi-
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cates that ADAT3-V144M can still interact with ADAT2. However, while a slight, diffuse
signal of GFP-ADAT3-WT remained in the cytoplasm even with ADAT2 coexpression,
the ADAT3-V144M variant displayed much greater nuclear accumulation in the majority
of cells. Remarkably, coexpression of ADAT2 with the ADAT3-V144M variant also
reduced the percentage of cells with cytoplasmic GFP-ADAT3 foci to nearly wild-type
levels (Fig. 9C).

We also found that carboxy-terminally GFP-tagged ADAT3-V144M exhibited the
same aberrant nucleocytoplasmic localization pattern and increased formation of
cytoplasmic foci observed with N-terminal GFP-ADAT3-V144M (Fig. 10A to C). Similar to
the results observed with N-terminally GFP-tagged ADAT3-V144M, ADAT2 coexpression
could also suppress the increased levels of foci associated with carboxy-terminally
GFP-tagged ADAT3-V144M (Fig. 10C and D). Altogether, these results uncover an
aberrant subcellular localization pattern for ADAT3-V144M characterized by a per-
turbed nucleocytoplasmic distribution and increased formation of cytoplasmic foci that
can be ameliorated by coexpression with ADAT2. The increased propensity to self-
oligomerize, interaction with cytoplasmic chaperones, and formation of aberrant cyto-
plasmic foci exhibited by ADAT3-V144M provide evidence for a protein folding defect
induced by the V144M mutation that reduces enzymatic activity and wobble inosine
levels in the tRNAs of ID-affected human individuals.
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DISCUSSION

The molecular consequences of the ID-causing ADAT3-V144M mutation have pre-
viously been unknown. Here, we show that the ADAT3-V144M mutant accumulates to
similar steady-state levels as ADAT3-WT and maintains an interaction with the ADAT2
subunit. However, the V144M mutation compromises the adenosine deaminase activity
of ADAT2/3 complexes, increases the propensity of ADAT3 to oligomerize, and alters
the subcellular localization properties of ADAT3. While the V144M mutation is a
relatively minor change since valine and methionine represent amino acid residues
with hydrophobic side chains, our studies uncover severe molecular defects associated
with ADAT3-V144M that are likely to underlie the reduced wobble inosine levels
detected in the tRNAs of ID-affected individuals with ADAT3-V144M mutations.

The changes in protein structure caused by the ADAT3-V144M mutation may alter
the substrate recognition site of the ADAT2/3 complex, thereby affecting the binding
or catalysis step of certain tRNA substrates. Intriguingly, studies with Trypanosoma
brucei homologs of Tad2p/Tad3p have revealed a role for ADAT3 in substrate tRNA
binding and coordination of a single zinc ion (36, 52). Moreover, we find that the
ADAT3-V144M mutation has differential effects on wobble inosine levels, with certain
tRNAs exhibiting a substantial decrease in tRNA modification and others displaying only
a minor change. This differential effect could be due to the recognition mechanism of
human ADAT2/3, which targets tRNA anticodon loops for inosine modification based
upon their structural context rather than simply their sequence alone (53). Thus,
ADAT2/3 complexes could have different specific activities on distinct tRNAs due to the
additional structural features that affect protein-RNA binding and positioning in the
active site. Further refinement using RNA binding assays and kinetics will provide
insight into the specific effect of the V144M mutation on ADAT2/3 enzymatic activity
that influences inosine modification levels in vivo.

The association of ADAT3-WT with cytoplasmic chaperonins suggests that endog-
enous ADAT3 could be prone to misfolding during translation or after release from the
ribosome if not assembled with ADAT2. Consistent with our results, others have found
that expression of soluble eukaryotic ADAT3 in E. coli requires coexpression of ADAT2
(10, 54). The increased tendency of ADAT3-V144M to form cytoplasmic foci suggests
that the V144M mutation could further aggravate misfolding. Of note, structural studies
have shown that methionine differs from other hydrophobic residues in that it can form
noncovalent interactions with aromatic-containing residues such as tryptophan, ty-
rosine, or phenylalanine (55, 56). In addition, molecular modeling simulation experi-
ments have identified that approximately one-third of solved protein structures contain
a methionine-aromatic residue interaction (57). Thus, the replacement of a valine with
methionine in the N-terminal extension of ADAT3 could lead to a nonspecific interac-
tion with aromatic residues of another ADAT3 protein, leading to aggregation. Intrigu-
ingly, the perturbed nuclear localization and aggregation into discrete cytoplasmic foci
exhibited by the ADAT3-V144M variant are reminiscent of other RNA binding proteins
known to misfold and homooligomerize in neurological disorders, such as TDP-43 and
TLS/FUS (58–62).

To gain insight into the potential structural effects of the V144M mutation that could
account for our results, we used in silico comparison of ADAT3 against the known
structures of tRNA adenosine deaminases (46, 63–65). Based upon template-based
tertiary structure prediction (66), ADAT3 is predicted to fold into two distinct domains
coinciding with the N-terminal extension and the C-terminal deaminase motif, as
previously predicted (2, 63) (Fig. 11A and B). Valine 144 lies within the N-terminal
extension at the end of a three-stranded beta sheet immediately before a tight turn
caused by the adjacent proline at position 145. Notably, we find that replacing the
valine with methionine leads to a clash in van der Waals radii with a threonine residue
(T151) of the neighboring helix after the turn (Fig. 11C and D). Thus, the valine-to-
methionine mutation could alter the proper folding of ADAT3.

Due to the intricate dynamics of tRNA processing (67–69), alterations in ADAT3
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nucleocytoplasmic localization by the V144M mutation provide another possible con-
tributor to the decreased levels of wobble inosine tRNA modification in ID-affected
individuals. The increased propensity of overexpressed ADAT3-V144M to localize to the
nucleus suggests that there could be a relative decrease in the amount of cytoplasmic
ADAT3 in ID-affected individuals with homozygous ADAT3-V144M mutations. The
cytoplasmic population of ADAT3 assembled with ADAT2 could play a role in modifying
tRNAs that have been exported without prior wobble inosine modification by nuclear
ADAT2/3. Thus, the disruption of the nucleocytoplasmic ratio by the V144M mutation
combined with the activity defect of ADAT2/3-V144M complexes could lead to the
reduction in wobble inosine modification levels observed in the tRNAs of individuals
homozygous for the ADAT3-V144M mutation. In addition, newly exported tRNAs
lacking inosine could undergo retrograde transport back into the nucleus to be
modified by nuclear ADAT2/3 (70, 71). Retrograde transport could play a critical role in
providing at least enough tRNA wobble inosine modification for sufficient translation to
sustain cell viability.

Based upon these findings, we hypothesize that a certain level of wobble inosine
modification in particular tRNAs is necessary for the expression of cellular mRNAs that
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FIG 11 Predicted structure of ADAT3 and potential effects of the V144M mutation. (A) Schematic of ADAT3
with the location of the V144M mutation. (B) Based upon template-based tertiary structure prediction,
ADAT3 is predicted to fold into two domains consisting of the amino-terminal extension and the
deaminase domain. Valine 144 is highlighted in green in ball-and-stick form. The structure of the
homodimeric E. coli TadA (PDB code 1Z3A) is aligned with the predicted C-terminal domain of ADAT3. Each
monomer of TadA is shown in light blue and gray, respectively. (C) Amino-terminal extension of ADAT3,
with the side chain of valine 144 shown in green in space-filling form. The side chain of threonine 151 is
also shown in space-filling form in the same color as in the ribbon sequence. (D) Amino-terminal extension
of ADAT3, with the V144M mutation shown in green. Atoms in the side chain of threonine 151 that clash
with the methionine 144 side chain are shown in red.
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are critical for proper cellular physiology and human development. Consistent with this
prediction, studies in the yeast Schizosaccharomyces pombe and the plant Arabidopsis
thaliana have shown that a decrease in tRNA wobble inosine modifications leads to
temperature sensitivity, cell cycle arrest, and growth retardation (9, 11). Moreover,
genome-wide studies predict numerous highly expressed genes that are dependent
upon ADAT2/3-catalyzed wobble inosine modification for translation (72). Thus, the
V144M mutation could alter the cellular proteome in multiple tissues, with particularly
acute effects in the brain on neural growth and differentiation.

MATERIALS AND METHODS
Human subjects. Evaluation of affected members by a board-certified clinical geneticist included

obtaining medical and family histories, clinical examination, neuroimaging, and clinical laboratory
investigations. After obtaining written informed consent for enrollment in an institutional review board
(IRB)-approved project (KFSHRC RAC number 2070023), venous blood was collected into EDTA and
sodium heparin tubes for DNA extraction and establishment of lymphoblastoid cell lines (patients
11DG1699 and 09DG0640 and control subject 15DG0421), respectively. All studies abide by the principles
of the Declaration of Helsinki.

Plasmids. The open reading frame for ADAT2 was PCR amplified from cDNA clone RC212395
(Origene) and cloned into pcDNA3.1 (Thermo Fisher) for expression as an untagged protein or as an
N-terminal fusion protein with either the 6�His tag or Twin-Strep-tag (40). The open reading frame for
human ADAT3 was PCR amplified from cDNA plasmid HsCD00326376 (PlasmID Repository, Harvard
Medical School) and cloned into either pcDNA3.1-Strep-C, pcDNA3.1-3�FLAG-SBP, pcDNA3.1-N-EGFP, or
pcDNA3.1-EGFP-C (73). The ADAT3-V144M variant was generated by Gibson mutagenesis and verified by
Sanger sequencing.

Cell culture. HeLa S3 human cervical carcinoma and HEK 293T human embryonic kidney cell lines
were cultured in Dulbecco’s minimal essential medium (DMEM) containing 10% fetal bovine serum (FBS),
2 mM L-alanyl-L-glutamine (GlutaMAX; Gibco), and 1% penicillin-streptomycin. Human lymphoblastoid
cell lines were cultured in RPMI 1640 medium containing 15% fetal bovine serum, 2 mM L-alanyl-L-
glutamine (GlutaMAX; Gibco), and 1% penicillin-streptomycin.

Microscopy. HeLa cells were plated at 2.5 � 105 cells on a 6-well plate. Cells were transfected 1 day
after plating with a total of 2.5 �g of DNA using Lipofectamine 3000. Cells were imaged at 48 h
posttransfection on an Evos fluorescence microscopy imaging system (Thermo Fisher) for quantification
of foci. For DNA staining, cells were washed twice with phosphate-buffered saline (PBS), incubated for 30
min at 37°C with PBS containing 10% FBS and 1 �M Hoechst stain, and then imaged. For quantification
of cytoplasmic foci, 5 images of each well were taken, and the GFP-positive cells along with the cells
containing more than 3 foci were counted in each of the 5 frames. The experiment was performed three
times on N-terminally GFP-tagged ADAT3 with a minimum of 580 cells counted per experiment and
independently verified by analysis in a blind manner. For C-terminally GFP-tagged ADAT3, the experi-
ment was performed twice with independent verification. For quantification of nuclear ADAT3, data from
each of the three experiments with N-terminally GFP-tagged ADAT3 were quantified using a minimum
of 580 cells counted per experiment.

For visualization of ADAT3 in lymphoblastoid cells, 5 � 106 cells were DNA stained with Hoechst stain
for 30 min at 37°C. Cells were washed twice with PBS, fixed with 4% formaldehyde (15 min), permeab-
ilized with 0.3% Triton X-100 (10 min), and blocked in 5% bovine serum albumin (BSA)–PBS, followed by
probing with primary anti-ADAT3 antibody (catalog number H00113179-B01P; Abnova). Primary anti-
body was used at a dilution of 1:500 and left overnight, with shaking at 4°C. After washing with PBS
containing 0.15% Tween 20, the secondary antibody (Alexa Fluor 633-conjugated goat anti-mouse IgG
at 1:200; Invitrogen) was incubated for 1 h at 25°C. After washing with PBS with 0.15% Tween 20,
coverslips were mounted onto glass microscope slides with Aqua-Poly/Mount (catalog number 18606-20;
Polysciences, Inc.) and left to dry overnight. All cells for visualization of ADAT3 using the commercial
mouse ADAT3 antibody were imaged on a Leica SP5 confocal microscope.

Protein purification and analysis. Transient transfection and cellular extract production were
performed as previously described (47). In brief, 2.5 � 106 HEK 293T cells were transiently transfected by
calcium phosphate DNA precipitation with 10 to 20 �g of plasmid DNA, followed by preparation of the
lysate by hypotonic freeze-thaw lysis at 48 h posttransfection. For anti-FLAG purification, the whole-cell
extract from transiently transfected cell lines (1 mg of total protein) was rotated with 20 �l of anti-DYK
DDDDK magnetic beads (TaKaRa BioUSA, Clontech, or Syd Labs) for 2 h at 4°C in lysis buffer (20 mM
HEPES [pH 7.9], 2 mM MgCl2, 0.2 mM EGTA, 10% glycerol, 1 mM dithiothreitol [DTT], 0.1 mM phenyl-
methylsulfonyl fluoride [PMSF], 0.1% NP-40) with 200 mM NaCl. Resin was washed three times using the
same buffer, followed by RNA extraction or protein analysis. Strep-tagged proteins were purified using
MagSTREP “type 3” XT beads (5% suspension; IBA Lifesciences) under conditions similar to those for
anti-FLAG purifications and eluted with desthiobiotin.

Protein identification was performed by the URMC Mass Spectrometry Resource Laboratory. Briefly,
protein samples were reduced, alkylated, and digested in solution with trypsin, followed by purification
and desalting on an analytical C18 column tip. Peptide samples were analyzed by high-performance
liquid chromatography (HPLC) coupled with electrospray ionization on a Q Exactive Plus hybrid
quadrupole-orbitrap mass spectrometer (Thermo Fisher). Protein identification through tandem mass
spectral correlation was performed using SEQUEST and Mascot.

Ramos et al. Molecular and Cellular Biology

October 2019 Volume 39 Issue 19 e00203-19 mcb.asm.org 16

https://mcb.asm.org


Cellular extracts and purified protein samples were fractionated on NuPAGE Bis-Tris polyacrylamide
gels (Thermo Scientific), followed by transfer to an Immobilon FL polyvinylidene difluoride (PVDF)
membrane (Millipore) for immunoblotting. For analysis of LCL extracts, 5 � 106 lymphoblast cells were
harvested, and proteins were extracted using radioisotope immunoprecipitation assay (RIPA) buffer
(50 mM Tris HCl [pH 7.5], 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 2 mM EDTA).
Antibodies against the following proteins were used: the FLAG epitope tag (catalog number A2220;
Sigma), the 6�His tag (catalog number MA1-21315; Thermo Fisher), GFP (catalog number sc-9996; Santa
Cruz Biotechnology), Strep-tag II (catalog number NC9261069; Thermo Fisher), ADAT3 (catalog number
ab192987; Abcam), ADAT3 (catalog number H00113179-B01P; Abnova), ADAT2 (catalog number
ab135429; Abcam), HSP60 (catalog number A302-845A; Bethyl Labs), CCT1 (catalog number sc-53454;
Santa Cruz Biotechnologies), CCT7 (catalog number A304-730A-M; Bethyl Labs), and actin (catalog
number MAB1501; EMD Millipore). Primary antibodies were detected using IRDye 800CW goat anti-
mouse IgG (catalog number SA5-35521; Thermo Fisher), anti-rabbit IgG (catalog number SA5-35571;
Thermo Fisher), or anti-rat IgG (catalog number 925-32219; Li-Cor Biosciences) or using IRDye 680RD goat
anti-mouse IgG (catalog number 926-68070; Li-Cor Biosciences) or anti-rabbit IgG (catalog number
925-68071; Li-Cor Biosciences). Immunoblots were scanned using direct infrared fluorescence via the
Odyssey system (Li-Cor Biosciences).

Adenosine deaminase assays. Internally radiolabeled tRNA substrates were prepared by T7 in
vitro transcription of DNA templates generated by PCR amplification. Oligonucleotides containing
the T7 promoter upstream of tRNA sequences were PCR amplified using Herculase II DNA polymer-
ase or Taq DNA polymerase (New England Biolabs), followed by agarose gel purification of PCR
amplification products. In vitro transcription was performed using Optizyme T7 RNA polymerase
(Fisher Scientific) with 10 mM (each) UTP, CTP, and GTP; 1 mM ATP; and 250 �Ci of [�-32P]ATP
(800 Ci/mmol; 10 mCi/ml). In vitro transcription reaction mixtures were incubated at 37°C for 2 h,
followed by DNase treatment and purification using RNA Clean and Concentrator columns (Zymo
Research). Full-length tRNA transcripts were verified on a 15% polyacrylamide-urea gel stained with
SYBR gold nucleic acid stain (Thermo Fisher). Before conducting enzymatic assays, all tRNA sub-
strates were refolded by thermal denaturation at 95°C for 2 min in buffer containing final concen-
trations of 5 mM Tris (pH 7.5) and 0.16 mM EDTA, quick chilling on ice for 2 min, and refolding at
37°C in the presence of HEPES (pH 7.5), MgCl2, and NaCl.

For adenosine deaminase assays, �12 ng of the refolded tRNA substrate was incubated with either
the lymphoblastoid extract or Strep-tag-purified ADAT3. Reaction mixtures were incubated at 37°C for 5,
15, and 45 min, and RNA was purified using RNA Clean and Concentrator columns. The tRNA was eluted
in 10 �l of water and subjected to nuclease P1 digestion overnight in a total volume of 13 �l with 0.125
U of P1 in 250 mM ammonium acetate (pH 5.35). Half of the P1 nuclease-treated samples were spotted
onto Polygram polyester cellulose MN 300 plates (Macherey-Nagel) run in solvent B (0.1 M sodium
phosphate buffer [pH 6.8]–NH4 sulfate–n-propanol [100:60:2, vol/wt/vol]). Phosphorimaging was con-
ducted on a Bio-Rad personal molecular imager, followed by analysis using NIH ImageJ software.

RNA analysis. RNA extraction was performed on 10 � 106 human lymphoblastoid cells using TRIzol
LS reagent (Thermo Fisher). For RT-PCR, total RNA (�1.25 �g) was reverse transcribed for tRNA-Val-AAC
using the Superscript IV enzyme followed by the QIAquick PCR purification kit. cDNA was then PCR
amplified using Herculase II DNA polymerase (Agilent Genomics). The PCR product was gel extracted and
analyzed by Sanger sequencing (ACGT, Inc.). The following primers were used: Val RT primer (TGTTTCC
GCCTGGTTTTG), Val PCR primer F (GAACTAAGCTTGTTCAGAGTTCTACAGTCCGGACTACAAAGACCATGAC
GGTGATTATAAAGATCATGACATGTTTCCGTAGTGTAGTGGTTATCAC), and Val PCR primer R (CACTTGTTTC
CGCCTGGTTTTGATCCAGGGACC).

For primer extension assays to monitor inosine modification status, oligonucleotides were 5=-end
labeled and purified as previously described (74). In a 5-�l annealing reaction mixture, 0.25 to 1 pmol of
labeled primers was annealed to 0.6 �g of bulk RNA by incubation for 3 min at 95°C, followed by slow
cooling and incubation for 30 min at 50°C to 55°C. The annealing product was then extended using 64 U
Superscript III (Invitrogen) in a 10-�l reaction mixture containing 1� first-strand buffer, 2 mM ddCTP, 0.5
mM each of the other deoxynucleoside triphosphates (dNTPs), and 10 mM MgCl2 at 50°C to 55°C for 1 h.
Reactions were stopped by the addition of 2� RNA loading dye containing 98% formamide, 10 mM
EDTA, 1 mg/ml bromophenol blue, and 1 mg/ml xylene cyanol and resolved on a 7 M urea–15%
polyacrylamide gel, and the dried gel was imaged on a Typhoon phosphorimager and quantified as
described previously (75). The primers for human tRNAs are as follows (lowercase letters refer to positions
in the oligonucleotide probe that are not conserved among all tRNA sequences of a certain isoacceptor):
Val(AAC)[50-36] (GGGaCCTTTCGCGTG), Ile(AAT)[50-36] (GCGaCCTTGGCGTTA), and Leu(AAG)[50-36] (GAA
GAGACTGGAGCC).

Phosphorimager analysis. Phosphorimager scans were quantified using the Image Quant Fiji
ImageJ processing package (76). For quantification of data from adenosine deaminase assays, the ratio
of IMP/AMP pixel intensities was calculated using the peak signals from histogram plots of TLC images.
Image quantification was performed using low-exposure scans that had peak signal intensities within the
linear response range of the phosphorimager (data not shown).

For primer extension analysis of tRNA-Ile-AAU, peak signals from histogram plots of individual gel
lanes were quantified based upon the area under the curve after adjustment to the background signal
in an empty lane (data not shown). The percent signal intensity of each peak corresponding to an RT
pause or stop was expressed relative to the total signal intensity of all quantifiable peaks between inosine
and the guanosine stop.
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Blue native PAGE. Protein extracts was prepared by resuspending transfected HEK 293T cells with
lysis buffer (20 mM HEPES [pH 7.9], 2 mM MgCl2, 0.2 mM EGTA, 10% glycerol, 1 mM DTT, 0.1 mM PMSF)
supplemented with 0.05% digitonin. Cells were incubated on ice for 5 min, followed by a 30-min
centrifugation at 20,000 � g at 4°C. The supernatants representing soluble protein extracts were ana-
lyzed by blue native PAGE (BN-PAGE) according to the manufacturer’s protocol (Thermo Fisher). Briefly,
samples were mixed with G-250 sample loading buffer and loaded onto 3 to 12% or 4 to 16% Novex
Bis-Tris gels. Electrophoresis was performed at 150 V at 25°C until the dye front reached the bottom of
the gel. Proteins were transferred and immunoblotted as described above, with the transfer time
increased to 3 h.

LC-MS analysis. Total RNA was fractionated on an AdvanceBio column (300-Å pore size, 2.7-�m
particle size, 7.8 by 300 mm; Agilent, Waldbronn, Germany) at 40°C using isocratic elution with 100 mM
ammonium acetate at pH 7 as the mobile phase. The tRNA was collected in 1 ml 0.1 M NH4 acetate
(NH4OAc) and vaporized by a SpeedVac until less than 50 �l remained in the vial. The tRNA fraction was
ethanol precipitated, and tRNA pellets were resolved in 50 �l MilliQ water. Total tRNA (�200 ng) was
processed and analyzed by LC-MS as previously described (47, 77). The signal from each modified
nucleoside was normalized to the levels of canonical nucleosides (1,000 nucleotides [nt]) for quantifica-
tion. LC-MS measurements of modified nucleosides were carried out on three biological replicates,
followed by statistical analysis based upon unpaired Student’s t test.

For absolute quantification of inosine, calibration solutions of inosine and the canonical nucleosides
cytidine, uridine, guanosine, and adenosine were prepared with their respective synthetic standards
(Sigma-Aldrich) and mixed to starting concentrations of 1 pmol/�l for the modified nucleoside and
100 pmol/�l for the canonical nucleosides. The resulting solution was diluted 1:1, and both dilutions
were serially diluted 1:10 to a final concentration of 50 amol/�l for the modified nucleoside and 5 fmol/�l
for the canonical nucleosides. A 1/10 volume of 10� yeast stable isotope-labeled internal standards
(SILIS) was added to each calibration solution. Ten microliters of each calibration solution was subjected
to LC-MS analysis before sample analysis using the same method as the one used for the samples.

The limit of detection (defined as a SILIS/nucleoside (S/N) ratio of �3) and limit of quantification
(defined as an S/N ratio of �10) of inosine were 5 fmol. The MS peak areas of the modified nucleoside
and canonicals were divided by the MS peak area of the corresponding SILIS and plotted over the

TABLE 1 Mass spectrometry parameters of all analyzed nucleosides

Compounda Precursor ion (m/z) Product ion (m/z) Retb time (min) � ret time (min)
Fragmentor
voltage (V)

Collision
energy (eV)

Cell accelerator
voltage (V) Polarity

A 268 136 5.1 1 110 21 5 Positive
A SILIS 278 141 5.1 1 110 21 5 Positive
C 244 112 2 1 175 13 5 Positive
C SILIS 253 116 2 1 175 13 5 Positive
Cm 258 112 3.7 1 180 9 5 Positive
Cm SILIS 270 116 3.7 1 180 9 5 Positive
G 284 152 4 1 95 17 5 Positive
G SILIS 294 157 4 1 95 17 5 Positive
Gm 298 152 4.8 1 100 9 5 Positive
Gm SILIS 311 157 4.8 1 100 9 5 Positive
I 269 137 3.8 1 100 9 5 Positive
I SILIS 279 142 3.8 1 100 9 5 Positive
m1A 282 150 3.5 1 110 21 5 Positive
m1A SILIS 295 158 3.5 1 110 21 5 Positive
m1G 298 166 4.7 1 105 13 5 Positive
m1G SILIS 311 174 4.7 1 105 13 5 Positive
m22G 312 180 5.5 1 105 13 5 Positive
m22G SILIS 328 191 5.5 1 105 13 5 Positive
m2G 298 166 4.9 1 95 17 5 Positive
m2G SILIS 311 174 4.9 1 95 17 5 Positive
m5C 258 126 3.5 1 185 13 5 Positive
m5C SILIS 270 133 3.5 1 185 13 5 Positive
m5U 259 127 4 1 95 9 5 Positive
m5U SILIS 271 134 4 1 95 9 5 Positive
m6A 282 150 6.4 1 125 17 5 Positive
m6A SILIS 295 158 6.4 1 125 17 5 Positive
m7G 299 167 3.6 1 105 14 5 Positive
m7G SILIS 311 174 3.6 1 105 14 5 Positive
U 245 113 2.7 1 95 5 5 Positive
U SILIS 254 117 2.7 1 95 5 5 Positive
Y 245 209 1.6 1 90 5 5 Positive
Y SILIS 254 218 1.6 1 90 5 5 Positive
aSILIS, stable isotope-labeled internal standards; Cm, 2=-O-methylcytidine; Gm, 2=-O-methylguanosine; I, inosine; m1A, 1-methyladenosine; m1G, 1-methylguanosine;
m22G, N2,N2-dimethylguanosine; m5C, 5-methylcytosine; m5U, 5-methyluridine; m6A, N6-methyladenosine; m7G, N7-methyladenosine.

bRet, retention.
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amount of injected material. The slope of the linear regression resulted in the relative response factors
and was used to determine the amount of inosine in the analyzed samples. In a last step, the amounts
of modified nucleoside (in picomoles) were divided by the sum of canonicals to receive the modification
percentage per 1,000 canonical nucleosides. Mass spectrometry parameters are shown in Table 1.
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