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Abstract: The popular model of composite fermions, proposed in order to rationalize FQHE, were
insufficient in view of recent experimental observations in graphene monolayer and bilayer, in higher
Landau levels in GaAs and in so-called enigmatic FQHE states in the lowest Landau level of GaAs.
The specific FQHE hierarchy in double Hall systems of GaAs 2DES and graphene also cannot be
explained in the framework of composite fermions. We identify the limits of the usability of the
composite fermion model by means of topological methods, which elucidate the phenomenological
assumptions in composite fermion structure and admit further development of FQHE understanding.
We demonstrate how to generalize these ideas in order to explain experimentally observed FQHE
phenomena, going beyond the explanation ability of the conventional composite fermion model.
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1. Introduction

The fractional quantum Hall effect (FQHE) was discovered experimentally in 1982 by
Tsui, Stormer and Gossard in GaAs 2DES [1], shortly after the experimental discovery of
the integer quantum Hall effect (IQHE) in 1980 by von Klitzing in a 2D electron system in a
perpendicular magnetic field [2]. There was great interest in both of these effects caused
because they revealed an unexpected quantum behavior that goes beyond the conventional
quantum mechanics theory. The experimental achievements have been distinguished
with the Nobel prizes (for IQHE in 1985 and for FQHE in 1998) and have opened a wide
discipline of condensed matter related to Hall physics in 2D systems, including graphene
(especially after the Nobel prize for graphene discovery and its description in 2010) and
topological insulators [3], study of which rapidly flourished in the past few years.

Nevertheless, despite intensive development of the relevant theory, the understanding
of FQHE is still not complete and apparently cannot be achieved in the framework of
local quantum mechanics. Various routes towards explanation of queer discrete structure
of FQHE hierarchy have been proposed, like the multiparticle wave functions for the
corresponding correlated states suggested by Laughlin in 1983 [4] (also honored by the
Nobel prize in 1998), the hierarchy of daughter generations of anyons by Halperin and
Haldane [5–7], multi-component systems by Halperin [8] or composite fermions (CFs) by
Jain and Wilczek [9,10]. The Laughlin function, although proposed without a derivation in
a phenomenological manner [4,11], was the most illuminating theoretical discovery and
gave rise to various phenomenological models intended to decipher the physics behind
correlations of electrons at FQHE. This multiparticle wave function proposed by Laughlin
for N interacting electrons on the plane exposed to a strong quantizing perpendicular
magnetic field was the simple generalization of the Slater function for N noninteracting 2D
electrons at the field B = B0, at which the degeneracy of Landau levels (LLs) N0(B0) = N,
where N0(B) = BSe

h is LL degeneracy, S is the 2D sample surface, h is the Planck constant
and e electron charge. This Slater function must be built of N various single-electron states
in the lowest LL (LLL) and the rotation symmetrical gauge of the magnetic field attains the
form of the Vandermonde determinant ∏N

i>j(zi − zj) (zi is the coordinate of i-th electron
on the plane represented as the complex number) multiplied by the envelope function
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e−∑N
i |zi |2/4l2

B , where lB =
√

h̄
eB is so-called magnetic length [12,13]. Laughlin exchanged

only the Vandermonde polynomial for the Jastrow polynomial ∏N
i>j(zi − zj)

q, q—odd
integer, and demonstrated numerically that the resulted function pretty well approximates
the exact ground states of N interacting electrons on the plane S at the magnetic field
B = qB0, i.e., at fractional filling of the LLL, ν = N

N0(B) =
1
q [4,11,14].

The Laughlin function has been postulated and not derived. It has been proved that
it is impossible to derive this function within local quantum mechanics, and topological
methods are required [15]. This is connected with the fact that the FQHE collective state
is not a conventional phase. It is not characterized by any local order parameter and not
associated with any symmetry breaking. Instead, FQHE phases are topologically correlated
multielectron states with long-range quantum entanglement of all electrons simultane-
ously [16] protected by homotopy invariants [15]. The reason for FQHE correlations is the
Coulomb interaction of 2D electrons at magnetic field presence but not due to a binary
scattering of electrons in any coherent channel. The Coulomb interaction induces in 2D Hall
systems the topological invariants which protect particular homotopy phases of FQHE [15]
in a universal manner, independently of microscopic differences in various experimental
systems, no matter in GaAs, in graphene and even in topological Chern insulators with
magnetic field substituted by the Berry field [3].

In the present paper we will derive with mathematical rigor in the framework of
topological approach the model of CF, which was usable for the main part of the FQHE
hierarchy in the LLL of GaAs 2DES. We will demonstrate explicitly why the CF model
failed in explanation of the whole hierarchy of FQHE, in particular of so-called enigmatic
states in the LLL of GaAs, of fractional Hall hierarchy in higher LLs in GaAs [17,18] and in
graphene [19,20] (especially in bilayer graphene [21–23] or bilayer GaAs [24,25]). We also
will show how to generalize the CF model.

2. Laughlin Function and CF Model

The proposition by Laughlin [4] of his famous multiparticle wave function for FQHE
resolved itself to the substitution of the Vandermonde polynomial in the Slater determinant
by the Jastrow polynomial, i.e., instead of the Slater function for completely filled LLL of
gaseous system of N electrons on the surface S at field B = B0,

Ψ(z1, . . . , zN) = const.

∣∣∣∣∣∣∣∣
1 z1 . . . zN−1

1
1 z2 . . . zN−1

2
. . . . . . . . . . . .
1 zN . . . zN−1

N

∣∣∣∣∣∣∣∣e
−∑N

i=1 |zi |2/4l2
B

= const. ∏N
i>j(zi − zj)e−∑N

i=1 |zi |2/4l2
B ,

(1)

Laughlin suggested the function for interacting N electrons at fractional filling
ν = N

N0(B) =
1
q (where q = 2k + 1, k = 1, 2, 3, . . . , N0(B) = BSe

h is the degeneracy of LLs),
i.e., at field B = qB0,

Φ(z1, . . . , zN) = const.
N

∏
i>j

(zi − zj)
qe−∑N

i=1 |zi |2/4l2
B , (2)

where lB =
√

h̄
eB . The function (2) is not in Slater determinant form anymore, but still

is an antisymmetric function as q is an odd integer. However, the phase shift caused
by the exchange of the i-th particle with the j-th one is qπ and not π as in the case of
function (1)—this is the difference known as a Laughlin correlation. Both functions (1) and
(2) are completely quantumly entangled (they reveal the long-range entanglement of all
electrons in the system simultaneously), i.e., they cannot be separated to a product form in
tensor Hilbert spaceH = H1 ⊗ · · · ⊗ HN whereHi is the single-electron Hilbert space for
i-th electron.
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Even though the modification in the Laughlin function is quite simple, the physics
behind the Laughlin correlations (the phase shift qπ when particles interchange) is not
fully understood as of yet. The most popular trial to elucidate this problem was the CF
model [9,26]. It is a phenomenological model using an artificial construction of the hypo-
thetical composite particle consisting of an electron and attached to an even number of flux
quanta h

e of some fictitious magnetic field. The origin of this field is not specified as the man-
ner of attaching its flux quanta to individual electrons. Such a construction allows, however,
for an additional phase gain when two composite electrons mutually interchange their
positions by virtue of the Aharonov-Bohm-type effect [10,27]—cf. Figure 1. Indeed, if two
e-charged fermions (electrons) with pinned fluxes φ mutually exchange their positions on
the plane, the multiparticle wave function of both gains the phase shift π + φe/2h̄ [10],
and for φ = 2k h

e one gets the phase shift π + 2kπ = qπ in agreement with Laughlin corre-
lations (cf. Figure 1 central panel). Authors of the CF model supposed that the dressing
of electrons with magnetic field flux quanta is originated in the Coulomb interaction of
electrons analogously to Landau quasiparticles in metals [26]. This is, however, impossible,
as the mass operator for Coulomb interacting electrons cannot produce a magnetic field in
any channel of electron scattering [28], which precludes the concept of composite fermions
as Landau type quasiparticles. Apparently CFs are a phenomenological illustration of
another physical mechanism out of the framework of local quantum mechanics and Dyson
equation type perturbative treatment of the Coulomb interaction of electrons [28,29].

A B A’

3B
0

3B
0

B
0

Figure 1. Two electrons A and B mutually interchange their positions on the plane at a magnetic
field and a cyclotron orbit fits to the separation of nearest electrons in the Wigner lattice. The relative
trajectory in magnetic field is shown—electron A traverses a relative cyclotron trajectory around
electron B. Half of this trajectory, when the electron A takes the position A’, corresponds to a braid
and the interchange of A and B electrons is completed—the phase shift of the wave function is
π. In the upper panel the interchange of A and B electrons can be made along ordinary cyclotron
orbit for field B0, like in the case of IQHE. In the central panel, this interchange is proposed for
CFs for FQHE at ν = 1

3 (for field 3B0), i.e., for electrons with two flux quanta of some fictitious
field attached. The fictitious field reduces the external field 3B0 to B0 and electrons A and B can
interchange. The phase shift for the half of this trajectory is 3π, due to the Aharonov-Bohm-type
effect. In the bottom panel the real structure of the cyclotron orbit and the braid (the half-piece of the
cyclotron orbit) is shown for the external field 3B0—two additional loops are effectively modeled by
two flux quanta added to CFs (as in the central panel). The phase shift for the transition described by
the braid here is 3π according to the unitary representation of the braid. Three-loop cyclotron orbit
is larger than singleloop which is too short at 3B0 and the three-loop orbit fits to the separation of
nearest electrons in Wigner lattice (cf. Appendix B).

The most important further assumption in the CF model was the mapping of FQHE
states in the LLL of GaAs at field B onto IQHE at complete fillings of the auxiliary spinless
gaseous Hall system at magnetic fields reduced by the mean value of the auxiliary fictitious
magnetic field, which fluxes were pinned to electrons to create CFs. This assumption also
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has no formal justification but correctly reproduces the main line for FQHE in the LLL in
GaAs both in its spin-up and spin-down sublevels [9], in the following form,

νCF =
y

(q− 1)y± 1
, (3)

where q − 1 is the number of fictitious magnetic field flux quanta pinned to electrons
(q = 2k + 1 is an odd integer) and y = 1, 2, 3, . . . is the number of completely filled LLs
in the auxiliary spinless gaseous 2D Hall system, and ± corresponds to the compatible or
opposite direction of the resultant field (the external field B reduced by the mean field
of fluxes attached to electrons in construction of CFs) with respect to the external field B.
Equation (3) defines the main part of the FQHE hierarchy in the spin-up (with respect to
the field B) subband of the LLL and, if shifted by one, in the spin-down subband.

However, not all fractions for FQHE observed experimentally in the LLL of GaAs [30]
belong to the hierarchy (3). The series of these additional fractions like ν = 4

11 , 5
13 , 3

8 , 3
10 , . . .

(cf. fractions marked in color in Figure 2) correspond to FQHE states frequently referred to
as enigmatic. They are out of reach for the conventional CF model, and, moreover, they
are assisted with typical for FQHE states plateaus in Rxy = h

e2ν
, but local minima in Rxx

at these states are nonzero in contrary to zero longitudinal resistivity at states from the
hierarchy (3)—cf. Figure 2. Neither the CF model, nor other conventional theories of FQHE,
are able to elucidate this latter behavior.

Figure 2. Longitudinal resistivity Rxx at FQHE hierarchy in the fragment of the LLL of GaAs 2DES
(after the experiment by Pan et al. [30]). Filling rates are indicated in colors for FQHE corresponding
to so-called enigmatic states beyond the CF hierarchy (3). States marked with the same color are
states at which the similar level of Rxx local minima is achieved. The nonzero values of Rxx evidence
that not all electrons are involved in the correlated state, i.e., for filling rates given by (5) with xi > 1,
which corresponds to correlations only of next-nearest neighbors in the Wigner lattice. Not correlated
nearest neighbors contribute to the resistivity. Various portions of non-correlated electrons at different
homotopy patterns (5) result in different residual Rxx.
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In the model of CFs the next assumption concerns a trial wave function for FQHE
state from hierarchy (3) in the form of the gaseous wave function in y-th spinless LLs fully
filled in resultant magnetic field for CFs and ’projected’ onto the LLL. The latter procedure
is required to avoid singularities in wave functions in higher LLs, which cannot be present
in the multielectron wave function at the arbitrary fractional filling rate of the LLL, where
even in the interacting system the trial wave function must be holomorphic without any
poles (analytical in the whole domain). The procedure of ‘projection’ onto LLL is, however,
not unambiguously defined. It plays the role of the variational procedure to minimize the
averaged energy over trial wave function [26].

All above listed assumptions in the CF model are not supported by any formal
derivation and, moreover, the so-called multicomponent wave functions by Halperin [8]
for the FQHE states approximate the activation energy of these states equally well as
compared to energies assessed by exact diagonalization of interaction in small models
and determined from experimental measurements. In the following paragraph we will
present a topological approach to FQHE correlations in which it is possible to rationalize
the CF model and to explain how CF model is relatively effective at fillings rates from the
hierarchy (3). The nonlocal topological approach allows us to also develop the theory for
cases out of reach of conventional CF formulation. We will demonstrate that the role of
the interaction of electrons in FQHE is not perturbative and therefore none local order
parameters related to some mass operator and spontaneously broken symmetry can be
defined for quantum phases at FQHE.

3. Topological Invariants in 2D Systems of Interacting Electrons in Magnetic Field

Topological approach to FQHE [15,31,32] is a nonlocal theory which identifies topo-
logical homotopy-type invariants protecting specific to 2D collective quantum phases
of interacting electrons exposed to the perpendicular strong magnetic field. The central
notions are here cyclotron braid subgroups, which define various patterns of correlation of
Coulomb repulsing electrons deposited on 2D uniform positive jellium in the presence of
quantizing magnetic field (or Berry field in the case of Chern topological insulators [3]).
The cyclotron braids can be defined only in the case of perfect spatial commensurability
of cyclotron orbit size and related cyclotron braids with nearest or next-nearest electrons
distributed according to Wigner crystal of electrons at T = 0 K (cf. Appendix A). As the
Wigner crystal can be defined only for repulsing electrons thus the homotopy invariants
related to this commensurability condition can exist exclusively in the interacting systems
and not in a gaseous one. The specific structure of finite sized 2D cyclotron braids multi-
loop their form in agreement with the algebraic group properties and the size of braids
with additional loops is greater than loopless ones in the case when the loopless ones are
too short to match the closest electrons in the Wigner crystal [15,31]. The proof of this
surprising fact is done by application of the Bohr-Sommerfeld rule to multiply connected
configuration space [32] (cf. Appendix B).

Taking into account the possibility of realization multiloop cyclotron orbits and the
accommodation of their loops to nearest or next-nearest neighbors of various rank in
electron classical Wigner crystal at T = 0 K, one obtains the most general hierarchy of
FQHE states in the LLL protected by the following homotopy invariants [15,33],

BS
N

=
h

x1e
± h

x2e
± · · · ± h

xqe
, (4)

where h
e is the fundamental quantum of magnetic field flux, BS

N is the flux of external mag-
netic field B per one particle in 2D system with N particles and surface S, q = 2k + 1 is odd
number of loops in multiloop cyclotron orbit (cyclotron braids are half-pieces of cyclotron
orbits and have k loops; in the simplest case such a k-loop cyclotron braid σ2k+1

i is the
exchange of particles i-th and (i + 1)-th ones, similarly as σi generator—cf. Figures 3 and 4).
Plus/minus before components in the sum (4) correspond to compatible or contrary cir-
culations of consecutive loops corresponding to the components in sum (4). We see that
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(4) is the decomposition of the external magnetic field B flux per one electron into the
contributions of all loops of multiloop cyclotron orbit (q = 2k + 1-loop in this case—it must
be odd integer because half of it is a braid with additional k loops and it has to describe
exchanges of i-th electron with (i + 1)-th one similar to loopless simplest braid σi [15,31],
cf. illustration in Figure 4). Each loop in this decomposition must perfectly fit to nearest
or next-nearest neighbors in the Wigner crystal of electrons. The integer factors xi define
fractions of electrons N

xi
corresponding to fractions of next-nearest neighbors of various rank

in the Wigner crystal, cf. Figure 5 and Appendix A. Thus, xi = 1 refers to nearest neighbors,
xi = 2, 3, . . . —to next-nearest neighbors sublattices in Wigner crystal of consecutive rank.
The decomposition (4) is possible only in 2D where all loops of the multiloop cyclotron
orbit share the same surface. The amount of the flux contribution of a single loop is h

e (the
fundamental flux quantum, cf. Appendix B) and for N/x electrons in some sublattice of
next-nearest neighbors in the Wigner crystal a single loop commensurability condition
is BS

N/x = h
e , which explains the form of components in (4) with xi in denominators. The

filling rates corresponding to the homotopy invariants (4) equal to,

ν =
N
N0

=

(
1
x1
± 1

x2
± · · · ± 1

xq

)−1
, (5)

because the degeneracy of LLs is N0 = BSe
h .

a) b) c)

Figure 3. (a) Conventional geometric presentation for the generator σi of the full braid group [34,35]—
this generator describes the transposition of a particle i-th with (i + 1)-th one on the plane R2 when
other particles remain on their positions. (b) Inverse braid σ−1

i . (c) Square of generator σ2
i , which for

M = R2 is not a neutral element of the group (though for M = R3, σ2
i = e and this is a reason for the

simplicity of the braid group in 3D in comparison to 2D case).

If x1 = · · · = xq−1 = 1 and xq = y then the filling rate hierarchy (5) gives the
CF hierarchy (3) (maintaining plus/minus before only last term in (5)). In the case of
additionally xq = y = 1, (5) reproduces the hierarchy of FQHE defined by the Laughlin
functions at ν = 1

q . We see thus that the general homotopy invariants admit the CF
illustration of all loops of the multiloop cyclotron orbit fit to nearest neighboring electrons
in the Wigner crystal except for one loop, which fits with next-nearest neighbor sublattice
containing N

y electrons. The q− 1 components with xi = 1 defining the commensurability
of q − 1 loops with the closest neighbors are artificially illustrated in the CF model in
addition to electrons q− 1 flux quanta of a fictitious magnetic field (Figure 1). In fact such
field does not exist and fluxes h

xie
= h

e for xi = 1 are contributions of particular loops

to the external magnetic field flux per one electron BS
N in accordance with formula (4).

The single parameter of freedom y = xq in such a special case of the general invariant (4)
was erroneously associated with y-th spinless auxiliary LL in the model of CFs. At complete
filling of this y-th spinless LL it contains only N

y electrons, i.e., this fraction of electrons
coincides with the amount of appropriate rank next-nearest neighbors in the Wigner
lattice (cf. Figure 5). This accidental coincidence of two integers—fraction of next-nearest
neighbors in Wigner lattice and the number of consecutive spinless LLs— is a chance to
approximate the true wave function by the wave function of auxiliary spinless y-th LL
adjusted in a variational manner to the LLL by projection onto LLL in the CF model [26].
Such a construction of the wave function in the CF model is conceptually false (it is not
only an interpretation) and can be treated at most as the heuristic variational procedure for
searching a trial wave function for a particular state of FQHE in the LLL. The true eigen
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function for this state must be a multiparticle function, which transforms in agreement
with scalar unitary representation of the cyclotron braid unitary subgroup and must be of
homogeneous polynomial shape multiplied by envelope function (in GaAs) e−∑N

i=1 |zi |2/4l2
B .

The generators of particular unitary cyclotron subgroups define the elementary exchanges
of electron positions for various types of homotopy phases defined by invariants (4)—cf.
Figure 6—and the multiparticle wave function of the corresponding FQHE ground state (at
filling rate ν given by (5)) Ψν(z1, . . . , zN) must transform along the unitary representation
of the braid describing the exchange of arguments of this function prescribed in accordance
with the form of corresponding cyclotron group generators [36–38]. This defines the form
of Ψν(z1, . . . , zN) in GaAs in an unambiguous manner [15]. Some examples of cyclotron
braid subgroup generators are identified in Ref. [32] and will be discussed in the next
paragraph in detail. The general form of the generators of cyclotron braid subgroups and
the corresponding wave functions are given by Equations (8) and (11) (cf. next paragraph).

generator relative coordinates individual coordinates

single exachange - braid

double exachange - cyclotron orbit

single exachange - braid

double exachange - cyclotron orbit

orbit size = h/(eB0)

orbit size = 3h/(e3B0)

single-loop orbit

three-loop orbit

Figure 4. Schematic illustration that the elementary braids in the full group on the plane (the Artin
group [34,35]), σi, and in its cyclotron subgroups, σ

q
i (in the figure for q = 3), must be half-pieces of

cyclotron orbits. The illustration is shown in individual coordinates of particle pairs on the plane and
in relative coordinates, both for the generators—braids and for the cyclotron orbits—square of braids
(cyclotron braids are half-pieces of cyclotron orbits).
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a) b) c)

Figure 5. Triangle Wigner 2D lattice of repulsing electrons on a positive jellium at T = 0 K with
hexagonal Bravais elementary cell and indicated nearest neighbors (a) and two types of next-nearest
ones (b,c). The hexagonal structure of sublattices of next-nearest neighbors is conserved.

v=1

q=1

x1=1

v=1/3

q=3

x1=1

x2=1

x3=1

v=12/19

q=3

x1=1

x2=3

x3=4

S/N

h/(eB)=S/N

Figure 6. Illustration of some selected homotopy patterns protected by invariants (4).

The construction of the trial wave function in the CF model is thus inaccurate because
the projection onto LLL violates in an uncontrolled manner the symmetry of the multi-
particle wave function, which must comply with the structure of the cyclotron subgroup
generators corresponding to the particular homotopy invariant (4) and to scalar unitary
representation of these generators (the violation of the symmetry in CF wave functions has
been demonstrated in [39]). The unitary representation of the cyclotron braid subgroup
must be a projective representation of the full covering braid group adjusted to original
electrons, σi → eiπ .

A simple example is the case of (4) with all xi = 1 for which (5) gives ν = 1
q and the

corresponding generators for the cyclotron subgroup [15] have the form σ
q
i , i = 1, . . . , N− 1

and σi (i = 1, . . . , N − 1) and are generators of the full covering braid group describing
exchanges of particles i-th and (i + 1)-th ones. The scalar unitary representation of full
braid group is of the form, σi → eiα, α ∈ [0, 2π), and for electrons must be taken as σi → eiπ ,
i.e., α = π. In accordance with the form of the generators of cyclotron braid subgroup, σ

q
i

for this particular homotopy pattern (4), the projective scalar unitary representation must
be, σ

q
i → eiqπ . As proved in papers [36–38] the multiparticle wave function Ψ(r1, . . . , rN)

must transform along a scalar unitary representation of the braid if arguments of this
function exchange their positions in the way prescribed by this braid. The representation
σ

q
i → eiqπ together with the requirement that the multiparticle wave function in the LLL of

interacting electrons on the plane must be holomorphic function, i.e., of polynomial form
multiplied by the envelope e−∑N

i=1 |zi |2/4l2
B (the latter invariant to any action of braids), then

one can rederive the Laughlin function (2) in an unequivocal manner.
The same holds for the simplest homotopy pattern (4) with q = 1 and x1 = 1, for which

the scalar representation of related generators, σi → eiπ , also unequivocally define the
Laughlin function for q = 1, which coincides in this case with the function (1). The Laughlin
function for q = 1 is the multiparticle function for interacting electrons on the plane and
exposed to the magnetic field and in this exceptional case this function coincides with the
Slater function of noninteracting 2D particles (1). The difference is, however, significant—
the Laughlin function with q = 1 describes the strongly correlated state of IQHE, whereas
the Slater function (1) defines only the state of the gaseous system of N electrons at
complete filling of the LLL, which is, however, not the same as IQHE. The homotopy
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phase corresponding to IQHE is the multiparticle quantum state of strongly correlated 2D
electrons due to interaction, such a correlation is impossible in the gas without interaction.
The Pauli correlations in the gas (which induce the form of Slater determinant (1)) are not
induced by any interaction but only by the indistinguishability of identical particles.

More complicated invariants (4) and corresponding to them cyclotron braid group
generators and multiparticle wave functions will be discussed in the following paragraph.

4. Cyclotron Braid Group Generators and Wave-Functions for Homotopy Phases

One can notice that frequently various commensurability patterns (4) can result in
the same filling ratio (5). For instance ν = 1

3 = (1 + 1 + 1)−1 = ( 1
3 + 1

3 + 1
3 + 1 + 1)−1 and

so on. Such redundant homotopy patterns at the same filling rate compete in energy and
the ground state correspond to the pattern with minimal energy. This energy competition
depends, however, on microscopic structure of material, though the homotopy patterns (4)
are materially independent. The homotopy invariants unequivocally define the polynomial
part of the multiparticle wave function in the LLL, the same in all Hall systems (and even
in fractional Chern insulators when the magnetic field is substituted by the Berry field).
The envelope functions (resistant to action of braid group elements) are in general different
in various materials as defined by the microscopic structure of a particular material. This
envelope function is interaction independent but its shape depends on the single-electron
Hamiltonian including a crystal field, i.e., on all factors defining single-particle wave
functions in a particular material. In GaAs it is conventionally assumed that single particle
LLs are close to free electron states in magnetic field. Thus in GaAs the envelope of
multiparticle wave function in the interacting system of N ≤ N0 electrons in the LLL is of

the invariant form e−∑N
i=1 |zi |2/4l2

B (where lB =
√

h̄
eB is the magnetic length and N0 = BSe

h is
the degeneracy of LLs, both quantities are interaction independent). This envelope function
is the same in gaseous system, without any crystal field. Therefore this envelope does not
favor any rank of neighbors in the Wigner crystal of electrons (the nearest neighbors or
next-nearest ones).

Graphene is different; the single-particle LL states are distinct in comparison to
free electrons, both in monolayer graphene [40] and in bilayer graphene [41]. Hence, in
the graphene monolayer with identical homotopy invariants in the LLL (4), as in GaAs,
the experimentally observed FQHE hierarchy is different. The difference is caused by
distinct LLL single-particle wave functions in graphene, or more precisely, distinct envelope
function depending in a different manner than in GaAs on magnetic field and on subband
in the LLL in graphene. Four-fold quasi-degeneracy of LLs in the graphene monolayer [40]
is caused by spin-valley structure and corresponds to ordinary spin-splitting (as in GaAs)
and pseudo-spin splitting corresponding to two C atoms in elementary Bravais cells
mixed with two nonequivalent Dirac points in corners of the hexagonal first Brillouin
zone in graphene [40]. As was demonstrated experimentally [20] in graphene monolayer
within a window of magnetic field in Landau fan diagram it has been noticed FQHE
at ν = ± 1

2 , ± 1
4 , ± 3

4 instead of the Hall metal state at these filling rates in GaAs and
in the monolayer graphene outside this window (the magnetic field window depends
on a sample and occurs at ca. 20 T and is of several T wide). Analogical FQHE states
do not occur, however, in other subbands of the LLL in the graphene monolayer (i.e.,
at ν = ± 3

2 , ± 5
2 , ± 7

4 ). This behavior has been explained [42] in the topological model.
Note, that Hall metal can be accounted for by the limit y→ ∞ in (3), but the corresponding
fractions with even denominators may also correspond to elements of the hierarchy (5) for
the commensurability with next-nearest neighbors, e.g., ν = 1

2 = (1 + 1
2 + 1

2 )
−1.

In GaAs no neighbors in the Wigner lattice are favored by the envelope function,
and thus the correlations of closer electrons reduce the Coulomb repulsion energy. This
corresponds to lower values of xi. As loops are not distinguished, thus they can be ordered
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in the increasing way and for GaAs one can expect that more stable are phases with
x1 = x2 = · · · = xq−1 = x and xq = y, for which (5) attains the shape,

ν =
yx

(q− 1)y± x
, (6)

which still is the generalization of (3) (CFs are reduced to the case x = 1 only). One can
verify that the formula (6) reproduces all observable in experiments fractions for FQHE in
the LLL of GaAs [15,31,32].

4.1. Multiparticle Wave Functions for FQHE States in the LLL of GaAs

For identical indistinguishable particles their numeration is arbitrary in principle.
Without any loss of generality one can consider that (i + 1)-th particle is a nearest neighbor
(in the sense of the Wigner crystal) of i-th one. It is sufficient to note that it would hold for
any selected i and thus for all N particles as for each particle in the Wigner lattice exists its
nearest neighbor. Due to the indistinguishability the problem of conventional numeration
of electrons on the plane loses significance. The enumeration of indistinguishable electrons
is not intuitive. The problems with enumeration of conventional distinguishable particles
disappear here. Similar to next-nearest neighbors, for indistinguishable electrons only the
integer rate xα = Nα

N of next-nearest neighbors is important, where Nα is the fraction of
next-nearest neighbors, which create the Wigner sublattice of type α. In 2D there exist
only two types of Wigner lattice—the hexagonal (of regular triangles) and regular (of
squares), the latter energetically unstable. Thus, sublattices must also belong to these
classes. For hexagonal structure xα = 3, 4, 7, 9, . . . . Though the regular lattice is of higher
energy than hexagonal one, its sublattice of next-nearest neighbor of first rank offers xα = 2,
not attainable in the hexagonal lattice case. This requires some rearrangement of hexagonal
lattice but it is convenient energetically as the first rank next-nearest neighbors in hexagonal
stronger reduces the electron subset to xα = 3. Finally, xα = 2, 3, 4, 7, 9, . . . , cf. Appendix A.

The general homotopy invariant for cyclotron electron correlations of 2D electrons
has the form given by Equation (4), where q is the number of loop of cyclotron orbit and
xi indicates the fraction of next-nearest neighbors in Wigner lattice commensurate with
i-th loop. The form of the invariant (4) results from the commensurability condition of
singleloop cyclotron orbit with next-nearest neighbors of rank α, BS

N/xα
= h

e , and from the
form of the commensurability condition for q-loop cyclotron orbit with nearest neighbors
only, which can be written as,

BS
N

=
qh
e

=
h
e
+ · · ·+ h

e
, (7)

where the latter sum has q components. The signs ± in (4) indicate a possible inverted (−)
or congruent (+) circulation of a loop with respect to the preceding one.

To the invariant (4) it corresponds the filling rate given by Equation (5). These filling
rates are defined only by vectors x1, . . . , xq, i.e., by homotopy patterns (4). The filling rate
hierarchy of CFs (3) is the specific case of (4) and is related to (5) for x1 = · · · = xq−1 = 1,
xq = y and ± before only the last term.

To the invariant (4) there correspond generators of a particular cyclotron subgroup in
the following form,

bj = (σjσj+1 . . . σj+x1−2σj+x1−1σ−1
j+x1−2 . . . σ−1

j )

(σjσj+1 . . . σj+x2−2σj+x2−1σ−1
j+x2−2 . . . σ−1

j )±1

. . .
(σjσj+1 . . . σj+xq−2σj+xq−1σ−1

j+xq−2 . . . σ−1
j )±1,

j = 1, . . . , N′ N′ = N −max(xi),

(8)
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where the segment,
(σjσj+1 . . . σj+xi−2σj+xi−1σ−1

j+xi−2 . . . σ−1
j ) (9)

corresponds to exchange of the electron j-th with j + xi-th one along the i-th loop of q-loop
cyclotron orbit and xi ≥ 1 denotes here the fraction of nearest or next-nearest neighbors
nested with this loop. For xi = 1 (the nearest neighbors) this whole segment (9) is σj.

The generators (8) define elementary exchanges of particles. Not all transpositions
are possible—only those defined by the generators. Scalar unitary representations of gen-
erators (8) are ei(1±1±···±1)π as for original electrons σj → eiπ and σ−1

j → e−iπ . Therefore,
the segment (9) must induce the factor to the multiparticle wave function,

N′ ,N/xi

∏
j=1,k=1;j<mod(j,xi ,1)+(k−1)xi

(zj − zmod(j,xi ,1)+(k−1)xi
), (10)

(N′ is the collection of admissible values of j at which the generator (8) can be defined, it
is equal to N −max(xi) for xi entering (8)) as the projective scalar unitary representation
of this segment is eiπ (or e−iπ if it enters as inverted operator). In the above formula
mod(j, xi, 1) is the rest of the division of j by xi with offset 1. Thus, the total multiparticle
wave function corresponding to generators (8) acquires the form,

Ψ(z1, . . . , zN) = A∏N′ ,N/x1
j=1,k=1;j<mod(j,x1,1)+(k−1)x1

(zj − zmod(j,x1,1)+(k−1)x1
)

×∏N′ ,N/x2
j=1,k=1;j<mod(j,x2,1)+(k−1)x2

(zj − zmod(j,x2,1)+(k−1)x2
)

× . . .

×∏
N′ ,N/xq
j=1,k=1;j<mod(j,xq ,1)+(k−1)xq

(zj − zmod(j,xq ,1)+(k−1)xq)

×e−i ∑N
i=1 |zi |2/4l2

B ,

(11)

for both two possibilities of scalar unitary representations related to ± in (4), causing only
unimportant changes of sign.

One can notice that in the case of x1 = x2 = · · · = xq = 1 and only + instead of ±,

the Laughlin function (2) is reproduced. The envelope part of function (11), e−i ∑N
i=1 |zi |2/4l2

B ,
is correct only in GaAs (where the gaseous envelope is assumed) and this envelope changes
in graphene according to the explicit form of single electron LL functions in graphene.

4.2. Simple Examples

It is instructive to write out explicitly some elementary examples of the function (11).
For q = 3, x1 = x2 = 1 and x3 = 2 the filling rate (5) is, ν = (1 + 1 + 1/2)−1 = 2/5,
the generators are given by Equation (8) and the wave function by Equation (11). For N = 4
this wave function has the explicit form,

Ψ(z1, z2, z3, z4) = A(z1 − z2)
2(z1 − z3)

3(z1 − z4)
2(z2 − z3)

2(z2 − z4)
3(z3 − z4)

2

×e−∑4
i=1 |zi |2/4l2

B ,
(12)

which is apparently antisymmetric for admissible particle exchanges according to the
generators (8), which in this case have the form,

bj = σ2
j σjσj+1σ−1

j = σ3
j σj+1σ−1

j , (13)

for j = 1, 2. These generators are illustrated in Figure 7. No other electron transpositions
are admitted in this case, i.e., for homotopy invariant with q = 3, x1 = x2 = 1 and x3 = 2
(at N = 4).
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For another example let us take ν = 6
11 = (1 + 1/2 + 1/3)−1, i.e., q = 3, x1 = 1,

x2 = 2, x3 = 3. From Equations (11) and (8) we get for N = 6,

Ψ(z1, z2, z3, z4, z5, z6) = A
×(z1 − z2)(z1 − z3)

2(z1 − z4)
2(z1 − z5)

2(z1 − z6)
×(z2 − z3)(z2 − z4)

2(z2 − z5)
2(z2 − z6)

2

×(z3 − z4)(z3 − z5)
2(z3 − z6)

2(z4 − z5)(z4 − z6)
2(z5 − z6)

e−∑6
i=1 |zi |2/4l2

B

(14)

and related generators,

bj = σjσjσj+1σ−1
j σjσj+1σj+2σ−1

j+1σ−1
j = σ2

j σ2
j+1σj+2σ−1

j+1σ−1
j , (15)

for j = 1, 2, 3. Function (14) is apparently antisymmetric for admissible transpositions of
electrons defined by generators (15). No other exchanges are possible at the filling rate
ν = 6

11 for the homotopy invariant (4) with q = 3, x1 = 1, x2 = 2 and x3 = 3 at N = 6 (cf.
Figure 7). Note that polynomials in (12) and (14) are homogeneous as required.

For multiparticle wave functions (11) one can assess the energy. In order to assess the
energy corresponding to multiparticle trial wave function the contribution to energy of
mutual electron interaction as well as of interaction with positive jellium must be accounted

for. For the disc geometry with the radius r = R
lB

=
√

2N
ν in units of lB =

√
h̄

eB (where

ν = N
N0

, N0 = BSe
h and ρ = ν

2π —the density of electrons N
S when S is expressed in l2

B units),
the energy per single electron will contribute [43],

Ejj =
ρ2

N
∫

S d2r
∫

S d2r′ e2

4πε0ε|r−r′ | =
8

3π

√
νN
2

e2

4πε0εlB
,

Eje = − 1
N < Ψ(r1, . . . , rN)|ρ

∫
S d2r ∑N

i=1
e2

4πε0ε|r−ri |
|Ψ(r1, . . . , rN) >

= −
√

2νN < Ψ(r1, . . . , rN)| 1
N ∑N

i=1 F(ri/r)|Ψ(r1, . . . , rN) >
e2

4πε0εlB
,

Eee =
1
N < Ψ(r1, . . . , rN)|∑N

i<j
e2

4πε0ε|ri−rj |
|Ψ(r1, . . . , rN) >,

(16)

where F(u) =

{
2E(u2)

π , f or u < 1,
2F1(

1
2 , 1

2 ; 2; 1
u2 ), f or u ≥ 1,

here E(x) is the complete elliptic integral,

and 2F1(a, b; c; x) is the hypergeometric function (ε0 is the dielectric constant, ε is the
dielectric permittivity). Ejj, Eje, Eee are the energies of jellium-jellium, jellium-electron and
electron-electron interaction, respectively (all calculated per single electron in the correlated
state Ψ(r1, . . . , rN)). Ejj is taken analytically (is independent of electron distribution),
whereas Eje and Eee can be estimated by the Metropolis Monte Carlo method of calculation
of integrals with multi-argument wave functions. The activation energy in the state
Ψ(r1, . . . , rN) (per single particle and in units e2

4πε0εlB
) equals E = Ejj + Eje + Eee. For the

exemplary homotopy phases these energies are listed in Tables 1 and 2.

Table 1. Activation energy for exemplary homotopy pattern {xi} = (1, 1, 2) for ν = 2
5 of FQHE

correlations of CF type (with q = 3 and x1 = x2 = 1 and x3 = 2).

Energy[
e2

4πε0εlB

] N = 15 N = 20 N = 30 N = 40 N = 50

Ejj 1.47021 1.69765 2.07919 2.40084 2.68422

Eje −2.97161 −3.41054 −4.17117 −4.81280 −5.37656

Eee 1.07728 1.28757 1.66461 1.98433 2.26340

E −0.424113 −0.425314 −0.427369 −0.427628 −0.428932
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Table 2. Activation energy for exemplary homotopy pattern {xi} = (1, 2, 3) for ν = 6
11 of FQHE

correlations of not-CF type (with q = 3 and x1, x2 = 2 and x3 = 3).

Energy[
e2

4πε0εlB

] N = 15 N = 20 N = 30 N = 40 N = 50

Ejj 1.71684 1.98243 2.42797 2.80358 3.13450

Eje −3.48480 −4.01557 −4.87400 −5.63216 −6.30237

Eee 1.30383 1.56674 1.97696 2.35739 2.69621

E −0.464135 −0.466401 −0.469062 −0.471188 −0.471661

a) b)

c) d) e)

Figure 7. The generators for the homotopy patterns (1, 1, 2) at ν = 2
5 and N = 4 (a,b) and (1, 2, 3) at

ν = 6
11 and N = 6 (c–e).

From Tables 1 and 2 we can notice that the activation energy grows with the increase
of N in a similar manner as has been demonstrated for Laughlin functions [43]. Some other
examples of various homotopy phases, their generators, wave functions and activation
energies are presented in Ref. [32] (cf. also Table 3).

Table 3. Comparison of energy values (per particle in units, e2

4πε0εlB
) obtained by exact diagonalization

(Ex. diag.) and by quantum Monte Carlo simulation (MMC sim.) for few exemplary filling fractions
in GaAs with FQHE corresponding to patterns q, x, y (cf. Equation (6)) (Metropolis Monte Carlo
simulation for the proposed topology-based wave functions for 200 particles [32]).

ν = N/N0 3/7 4/9 5/11 2/9 3/13 4/17

q, x, y 3, 1, 3 3, 1, 4 3, 1, 5 5, 1, 2 5, 1, 3 5, 1, 4

MMC sim. −0.441974 −0.446474 −0.451056 −0.342379 −0.348134 −0.351857

Ex. diag. −0.442281 −0.447442 −0.450797 −0.342742 −0.348349 −0.351189

Some phenomenological modifications of Laughlin functions were studied [18,44]
in order to account for possible anisotropic quantum Hall states. When the anisotropy
is caused by striping [18], i.e., is of geometrical microscopic origin, then it can be han-
dled easy within homotopy approach to electron correlations, but the molecular induced
anisotropy [44] will need a more thorough topological discussion, which is out of the scope
of the present paper.

5. Homotopy Invariants in Higher LLs and in Bilayer Hall Systems

Much more severe limits for the usability of the CF model than in the LLL occur in
higher LLs. In all materials (GaAs, graphene monolayer and bilayer) the hierarchy of
FQHE experimentally observed in higher LLs does not replicate the hierarchy form the
LLL. This fact is not explained in the CF model. The distinction in FQHE hierarchy in
higher LLs is linked with higher energy of LLs, which grows with the Landau index n as
En = h̄ωB(n + 1

2 ) where ωB = eB
m . Thus, for n = 1 this energy is three-times larger than
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for n = 0, or in general (2n + 1)-times greater for arbitrary n than for n = 0. This means
that the smallest possible surface of the cyclotron orbit of electrons in n-th LL is equal to
(2n + 1) h

e , as the surface of cyclotron orbit is proportional to the energy of an electron.
Including a possible multiloop shape of cyclotron orbits (cf. Appendix B) their size is

equal to (2k + 1)(2n + 1) h
e in n-th LL and k is number of loops in an elementary braid. It is

thus evident that in higher LLs (with n ≥ 1) the size of the ordinary singleloop (with k = 0)
cyclotron orbits are large enough to match the closest electrons in the Wigner crystal of
electrons from these LLs, contrary to the case n = 0 when singleloop orbits were always too
short. Hence, in the higher LLs we deal with a quite different type of FQHE in comparison
to the LLL. Most prominent FQHE fractions in the first LL in GaAs, ν = 2(3) + 1

3 and
ν = 2(3) + 2

3 ; in its two spin subbands are singleloop FQHE states, i.e., they correspond to
topological invariants with nesting of cyclotron singleloop orbit to nearest and next-nearest
neighbors in the Wigner lattice of electrons from these subbands (multiloop orbits and
related CFs are not needed here). In the next LL with n = 2 there occur more singleloop
FQHE states, in GaAs at 4(5)+ i

5 , where i = 1, 2, 3, 4. The same structure of FQHE hierarchy
is repeated in graphene monolayer in all four spin-valley subbands for each LL (instead of
only two spin subbands in GaAs). The relevant analysis in terms of topological invariants
is presented in more detail in [45] in consistence with experimental observations in GaAs
up to second LL [17] and similarly in graphene monolayer [19]. These states cannot be
modeled with the help of CFs, because CFs always need multiloop structure of the cyclotron
orbit with 2k + 1 loops and 2k loops are represented as 2k quanta of fictitious magnetic
field flux pinned to electrons. In higher LLs such a construction is meaningless as orbits
are singleloop, but still the hallmark features of FQHE are present, i.e., Rxy has plateaus at
fractional ν, h

e2ν
, assisted with minima of Rxx at these fractions.

In bilayer Hall systems, like in bilayer graphene or in double GaAs 2DES, the model of
CFs is also useless both in the LLL and in higher LLs. The reason for such a situation consists
in the non-exact 2D topology of bilayer systems. If tunneling of electrons is admitted
between layers, as in bilayer graphene or in two GaAs planes sufficiently closely located,
then the braids and cyclotron orbits can be shared between two layers, which strongly
affects the topological homotopy invariants. Two layers have independent surfaces and
each of them contributes to the total flux of external magnetic field separately. Therefore,
the topological invariants (like (4)) must refer to this new homotopy situation. For example,
the three-loop cyclotron orbit can be distributed 2− 1 or 1− 2 between two layers, and in
the cyclotron commensurability condition will take a part two loops instead of three. In this
case, instead of FQHE at the fractional filling ν = 1

3 , it should occur thus in the bilayer
system FQHE at ν = 1

2 , and actually such an unusual state is visible in the experiment in
graphene bilayer [21] and in double GaAs 2D systems [24,25]. It is impossible to explain
such a phenomenon in terms of CFs, but the homotopy theory is consistent with the
experimental observations in all details [46–48]. A leakage of the magnetic field flux from
one layer to the opposite one also strongly changes the FQHE hierarchy in higher LLs in
bilayer graphene, which have been measured with record precision in whole Hall physics,
up to the eighth LL subband and referred to as unconventional FQHE [22]. All the observed
new features of FQHE from this experiment (ca. 30 various fractions out of CF model) can
be derived within the homotopy invariant approach [48].

If one applies an electric field perpendicular to the bilayer Hall system, then the
tunneling of electrons can be blocked in one direction (for graphene bilayer the blocking
of interlayer electron hopping occurs at vertical voltage of 1− 2 V). However, cyclotron
loops are closed and must come back if they hop between layers; thus, their hopping
between layers is completely blocked by the vertical voltage. This changes on demand
the bilayer homotopy of trajectories to a monolayer one. Such an experiment has been
performed with bilayer graphene [23] and it has been demonstrated that the change of
FQHE hierarchy goes from that characteristic of a bilayer Hall system (e.g., the state at 1

2 )
to a monolayer one (again the state 1

3 ), when the vertical voltage is switched on. Another
effect completely not understandable in CF terms is the disappearance of the FQHE state
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at ν = 1
2 in bilayer graphene if one substitutes the substrate of the graphene sample and in

this way changes the order of subbands in the LLL of bilayer graphene. In this material we
deal with eight-fold degeneracy of the LLL [41,49], the spin-valley four-fold degeneracy
and additionally the so-called accidental degeneracy of n = 0 and n = 1 oscillator states
(n is the Landau index) in bilayer graphene. Both states with n = 0 and n = 1 belong
to the LLL in bilayer graphene due to specific its microscopic structure [41,49], but these
state differ in the size of cyclotron orbits—in the subband with n = 1 the cyclotron orbit
is three-times greater than in the subband with n = 0. If the latter subband is filled with
electrons first, as in suspended sample of bilayer graphene, then the state 1

2 is visible in
the measurement [21]. However, if the former state (with n = 1) is filled first, as in the
case of hBN (hexagonal boron nitride) substrate, the 1

2 FQHE state disappears in favor
to 1

3 . This is clear in terms of the homotopy approach, because at Landau index n = 1
three-loop orbits are not required because the singleloop ones are sufficiently large to reach
nearest and next-nearest neighbors in the Wigner lattice of electrons—thus at ν = 1

3 FQHE
corresponds in this case to a single-loop one not affected by the bilayer topology. This has
been evidenced experimentally [50] and explained within homotopy approach [46].

Finally, let us mention the experiment [51,52] when the suspended scraping of the
monolayer graphene initially in the insulating state converts into FQHE state (at the
constant filling rate ν = 1

3 ) after short-time annealing by electric current impulse passing
through the sample. This triggering on demand FQHE organization is out of reach for
the CF model, but can be rationalized in terms of the braid homotopy approach [53].
An annealing reduces impurities and defects and increases the mobility of electrons in the
sample. The mobility is proportional to the mean free path of carriers. If this mean free path
is too short, the FQHE correlated state cannot be organized (all demonstrations of FQHE
need mobility of order of 100,000 cm2/Vs or higher at which the mean free path of electrons
exceeds the size of the sample). Thus, the mobility of electrons plays a triggering role
in FQHE organization. This cannot be understood within the CF model. The homotopy
approach finds, however, an argument that in order to organize the correlations of all
electrons in the system at FQHE, the possibility of implementation of long braids is also
required (besides the shorter ones limited by the cyclotron effect and electron repulsion).
The long braids realize exchanges of electrons distantly located in the Wigner lattice and to
implement such long braids (consisting of algebraic-group-multiplication of large number
of generators) the sufficiently large mean free path of electrons is required (larger than the
sample size). This explains the observation of the triggering of FQHE state organization in
the graphene sample by its annealing [51–53].

6. Conclusions

We have demonstrated how to derive the popular model of CFs from first rules in
the framework of the topological approach to multielectron correlations of 2D interacting
electrons exposed to quantizing the perpendicular magnetic field. CFs turn out to be related
with topological invariants protecting correlated phases of electrons at FQHE. The flux
quanta of some auxiliary fictitious magnetic fields in construction of composite particles
occur to be phenomenological representation of additional cyclotron loops of multiloop
cyclotron orbits described upon the braid group approach. However, the CF model is
possible to be formulated only in the case of simplest topological invariants when the
commensurability of cyclotron orbits concerns the nearest neighbors in the Wigner lattice
of electrons. This strongly limits the usability of the CF model and elucidates its failure in
higher LLs in GaAs, and in graphene—in monolayer graphene in the LLL and in bilayer
graphene in all its LLs. The limits of CF model identified in the present paper do not allow
to explain in this model the experiments with FQHE observation in double Hall systems of
GaAs, of the triggering of FQHE by annealing of graphene sample and the observations
of so-called enigmatic FQHE states in the LLL of GaAs. All these unconventional FQHE
phenomena require participation of correlations of next-nearest neighboring electrons in
the Wigner lattice, beyond the CF model, or manipulation with loops of multiloop cyclotron
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orbits between layers of double-Hall-system, also impossible in the CF model formulation
but understandable in terms of the homotopy braid group approach. Multiparticle wave
functions proposed in the framework of CF model via projection onto LLL from higher LLs
of auxiliary spinless Hall system are approximate and do not satisfy the braid symmetry
requirements. The wave functions with proper braid symmetry can be constructed upon
the topological homotopy approach. The CF model turns out to be, however, usable
in the LLL of GaAs for FQHE states belonging to so-called Jain’s hierarchy. Moreover,
fluxes attached to CFs can be described in terms of Chern-Simons gauge field theory with
convenient calculation apparatus in Hamiltonian representation.
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Appendix A. 2D Classical Wigner Crystal Lattice of Electrons

The lowest energy classical 2D Wigner lattice at T = 0 K is the triangle hexagonal
lattice as depicted in Figure 5.

Figure A1. The Wigner lattice of 2D repulsing electrons deposited on the positive jellium with
indicated nearest neighbors and next-nearest ones up to 4-th rank. The hexagonal structure of
consecutive sublattices of next-nearest neighboring electrons is visualized.

The elementary Bravais cell with one electron per cell in the Wigner lattice has the
surface of two triangles, ad, where a is the basis of the triangle and d = a

√
3

2 is its height.
For next-nearest neighbors the similar hexagonal planar lattice can be identified—cf.
Figure A1. If N repulsing electrons are distributed on the positively charged surface S (in
the thermodynamic limit with N

S = const. for S, N → ∞), then, for each electron it falls the
surface area A = S

N . Hence, in the Wigner lattice depicted in Figure A1, A = S
N = ad, as ad

is the size of the elementary Bravais cell in this lattice. If the nearest neighbors are avoided,
then the elementary Bravais cell of the rest of electrons attains the surface 3ad = 3A for
the first rank neighbors. If the next-nearest neighbors of the first rank are also excluded,
then the elementary cell in the remained lattice has the size 4ad = 4A for the second rank
neighbor lattice. Similarly, the following rank next-nearest neighbor elementary cell grows
to 7ad = 7A with two sublattices for third rank neighbors and 9ad = 9A for fourth rank
neighbors (Figure A1).
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Appendix B. Larger Size of Multiloop Planar Cyclotron Orbits

The cyclotron orbit in 2D is defined by the magnetic field flux quantum Φ. The size of
a cyclotron orbit is Φ

B . The magnetic field flux Φ can be determined by Bohr-Sommerfeld
(BS) rule. BS rule expresses number of quantum states corresponding to the area of 1D
phase space ranged by the closed classical phase trajectory. If one considers an arbitrary 1D
well U(x) with turning points a and b, then one can write the quasiclassical wave function
in two equivalent forms,

Ψ(x) =

{ G√
p sin 1

h̄

∫ x
a pdx′, f or Ψ(a) = 0,

G ′√
p sin 1

h̄

∫ x
b pdx′, f or Ψ(b) = 0,

(A1)

(where p(x) =
√

2m(E−U(x)) and assuming for simplicity vertical infinite borders of the
well). From the requirement of the uniqueness for the wave function it follows that,

2
∫ b

a
pdx =

∮
pdx = Sxp = n2πh̄ = nh. (A2)

The formula (A2) is the BS quantization rule, h is Planck constant, n is a positive
integer (for arbitrary non infinite vertical borders, Sxp = (n + 1

2 )h [54]).
One can apply the BS rule to the effective 1D phase-space (Y, Py) spanned by x, y

components of the kinematic momentum of a 2D particle exposed to a perpendicular
magnetic field. The components x and y of the kinematic momentum do not commute. One
can demonstrate it at the Landau gauge, A = (0, Bx, 0) of the magnetic field B = (0, 0, B),
when the kinematic momentum x and y components have the form,

Px = −ih̄ ∂
∂x ,

Py = −ih̄ ∂
∂y − eBx. (A3)

Their commutator equals to,

[Px, Py]− = ih̄eB. (A4)

This commutator is gauge invariant. Because of (A4), the pair of operators, Y = 1
eB Px

and Py, can be treated as operators of canonically conjugated generalized position Y and
momentum Py. For them [Y, Py]− = ih̄. The 1D phase space, (Y, Py), is equivalent to the
2D space, (Px, Py). On the other hand, each closed trajectory in (Px, Py) space is repeated
by the trajectory in ordinary position space (x, y) renormalized by the factor 1

(eB)2 and
turned in plane by π/2, which follows from the the quasiclassical Lorentz force formula,
F = dP

dt = e dr
dt × B, i.e., the relation between trajectories in both spaces is given by formulae,

dPx = eBdy and dPy = −eBdx.
Hence, the BS quantization of the Y, Py phase space trajectory resolves itself to the

quantization of x, y trajectory, ∮
dxdy =

nh
eB

(A5)

which defines (for ∆n = 1) the magnetic field flux quantum,

Φ1 =
h
e

. (A6)

For this value of magnetic flux quantum the ordinary singleloop cyclotron orbit has
the size h

eB .
In 2D position space cyclotron orbits may be obligatory attributed to non-contractible

additional loops when ordinary singleloop orbits (and related loopless cyclotron braids)
are too short and cannot match even closest electrons in the Wigner lattice. This happens
in interacting multielectron planar systems at sufficiently strong perpendicular magnetic



Materials 2021, 14, 4267 18 of 20

fields corresponding to fractional fillings of the LLL (ν < 1). In this case the only possible
braid trajectories are with additional loops. The trajectory between turning points in the BS
rule are in this case multiloop. Thus, the BS rule with q−1

2 = k-loop trajectories between
turning points (as for σ

q
i elementary braids instead of too short σi) gives (q = 2k + 1 must

be an odd integer),
SYPy = nqh. (A7)

In (x, y) space this gives,

Sx,y =
qnh
eB

. (A8)

The above formula defines the effective quantum of the magnetic field flux,

Φk = ∆Sx,yB =
qh
e

, (A9)

∆Sx,y denotes here the smallest change of Sx,y in Equation (A8), when n is changed by 1.
For new value of the effective magnetic field flux quantum, the multiloop (with q

loops) cyclotron orbit has the surface size qh
eB , which is q times larger than the size of

singleloop orbit.
The topological invariance of the cyclotron commensurability condition defining

particular homotopy patterns of 2D electron correlations in magnetic is supported by the
BS rule, which determines cyclotron orbit size. This rule is robust against interaction and
local perturbations because of its quasiclassical and geometrical character. Quasiclassical
approach is not perturbative with respect to electron interaction and the quantization
of phase trajectory is interaction independent. Similarly, the definition of the classical
Wigner crystal at T = 0 K is independent of interaction but requires nonzero its value.
The homotopy invariants can be thus defined universally in various materials provided
that the electron interaction is nonzero (in a gas none cyclotron commensurability holds).
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