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Feryel Azzi1,2, Kelly AubertinID
1,2¤, Samuel KadouryID

1,2,4, Mathieu Latour3,6,

Roula Albadine3,6, Susan Prendeville7, Paul BoutrosID
8,9,10,11,12, Michael FraserID

8,13, Rob

G. BristowID
13, Theodorus van der Kwast13, Michèle OrainID

14,15, Hervé BrissonID
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Abstract

Background

Prostate cancer (PC) is the most frequently diagnosed cancer in North American men.

Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to

confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histo-

pathological variant for which therapeutic options are now available. Our aim was to identify

IDC-P with Raman micro-spectroscopy (RμS) and machine learning technology following a

protocol suitable for routine clinical histopathology laboratories.

Methods and findings

We used RμS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue

on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded
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in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between

1993 and 2013. The main measures were the presence or absence of IDC-P and of PC,

regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years.

Most of the specimens from the first cohort (Centre hospitalier de l’Université de Montréal)

were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts

(University Health Network and Centre hospitalier universitaire de Québec–Université

Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483

patients were pT2 stage (44%–69%), and pT3a (22%–49%) was more frequent than pT3b

(9%–12%). To investigate the prostate tissue of each patient, 2 consecutive sections of

each TMA block were cut. The first section was transferred onto a glass slide to perform

immunohistochemistry with H&E counterstaining for cell identification. The second section

was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7

Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core).

Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular

information and to generate classification models using machine learning technology. Mod-

els were trained and cross-validated using data from 1 institution. Accuracy, sensitivity,

and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC

from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate

IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent

institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and

87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%,

and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be

differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant

intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and

specificities > 95% in both training and testing cohorts. As we used stringent criteria to diag-

nose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify

lesions from our datasets.

Conclusions

In this study, we developed classification models for the analysis of RμS data to differentiate

IDC-P, PC, and benign tissue, including HGPIN. RμS could be a next-generation histopath-

ological technique used to reinforce the identification of high-risk PC patients and lead to

more precise diagnosis of IDC-P.

Author summary

Why was this study done?

• Given its consistent association with prostate cancer (PC) recurrence, PC metastasis,

and PC-specific death, the precise reporting of intraductal carcinoma of the prostate

(IDC-P) is of the utmost importance.

• Pathologists nowadays rely mostly on morphology to differentiate intraductal lesions,

with reported low interobserver agreement.
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• Implementation of new methods in the clinical workflow would help reinforce the iden-

tification of high-risk PC patients and lead to more precise diagnosis of IDC-P.

What did the researchers do and find?

• We used Raman micro-spectroscopy to identify the molecular composition of samples

in the study of prostatic specimens.

• Spectral data retrieved from Raman micro-spectroscopy was analyzed using machine

learning methods to generate predictive models based on biomolecular features to iden-

tify IDC-P, high-grade prostatic intraepithelial neoplasia (HGPIN), PC, and benign

tissue.

• The tissue preparation protocol follows hospital standard operating procedures, facili-

tating implementation in clinical histopathology laboratories.

What do these findings mean?

• This multicenter diagnostic accuracy case–control study showed Raman micro-spec-

troscopy combined with machine learning techniques could be used by pathologists to

improve classification of intraductal lesions in PC.

• To substantiate the clinical implementation of Raman micro-spectroscopy, prospective

validation studies including the full spectrum of intraductal lesions (i.e., from HGPIN

to IDC-P including borderline lesions) will be necessary.

Introduction

Prostate cancer (PC) is the most common cancer in North American men, and the second

leading cause of death by cancer in men in the United States [1]. Diagnostics by pathologists

involve visualizing hematoxylin and eosin (H&E)–stained 4-μm-thick tissue sections under

the microscope, but there is a lack of reliable biomarkers to accurately characterize PC to

ensure that precision medicine can benefit affected men [2]. Importantly, there are no clini-

cally implemented biomarkers for the identification of intraductal carcinoma of the prostate

(IDC-P), an aggressive variant of PC. In the vast majority of IDC-P cases, IDC-P occurs in

combination with usual, invasive PC, and it is identified in approximately 20% of PC cases [3].

Given its consistent association with PC recurrence, PC metastasis, and PC-specific death, the

precise reporting of IDC-P is of the utmost importance [3,4]. Molecular investigation of

tumors or tumor regions with and without IDC-P have identified probabilistic differences in

the frequency of different driver genes [5], in transcriptional and epigenomic profiles [6], in

their microenvironment [7], in tumor evolutionary features [8], and in their visibility to multi-

parametric magnetic resonance imaging [9]. However, once the intraductal nature of a pros-

tatic lesion has been established, only morphological criteria can currently be used to diagnose

IDC-P, resulting in reports of low interobserver concordance [10,11]. Importantly, IDC-P can

be mistaken for other intraductal proliferations such as high-grade prostatic intraepithelial
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neoplasia (HGPIN), and vice versa [10,11]. These misinterpretations crucially affect the care of

men with PC, as HGPIN and IDC-P are associated with opposite clinical significance, HGPIN

being presumed to be a precursor of PC [11]. Biomarkers are available to solve this diagnostic

pitfall, including phosphatase and tensin homolog (PTEN) loss of expression and ETS tran-

scription factor ERG overexpression (both detected by immunohistochemistry [IHC]). How-

ever, these biomarkers have low sensitivity (60%–75%) and are thus not used frequently by

genitourinary pathologists [12]. Reliable biomarkers of IDC-P with high sensitivity and speci-

ficity (>85%) would thus help reinforce the identification of such high-risk patients and lead

to more appropriate patient management, ensuring the therapies are in line with IDC-P status

[13–16].

Apart from standard molecular pathology techniques, tissue characterization methods have

evolved with the use of optical microscopy, lately with a steep increase in data acquisition and

data analysis capacities [17–21]. Among optical microscopy techniques, confocal Raman

micro-spectroscopy (RμS) measures light scattering resulting from interactions with specific

molecular bonds (among others, in proteins, lipids, DNA, and RNA), allowing for the global

molecular characterization of a specimen [22]. The first RμS spectrum of normal prostate tis-

sue was reported by Stone et al. in 2002, describing spectra acquired from snap-frozen tissues

[23]. Subsequently, other groups reported the capacity to distinguish the different zones of the

prostate as well as different prostatic cell lines, whether benign or malignant, with high sensi-

tivity and specificity [24–26]. RμS has also been used on human tissues to successfully predict

the occurrence of end-stage PC (i.e., castration-resistant PC) as well as to determine PC grade

[27–30]. Reported results demonstrated the potential of RμS to identify PC; however, to our

knowledge the technique has not been used to characterize subtypes of PC such as IDC-P.

Previous RμS studies were performed using snap-frozen samples, formalin-fixed paraffin-

embedded (FFPE) tissues, or cytospin preparations of cell lines, deposited on expensive sub-

strates such as CaF2, quartz, and gold-coated glass. Importantly, when performing a clinical

diagnosis of PC, no tissue is available for snap freezing outside research purposes [31]. The

previously reported RμS protocols for FFPE samples also involved tedious sample preparation,

such as long dewaxing procedures or thick tissue sections. Those are key issues limiting clinical

implementation of RμS.

As the currently available biomarkers of IDC-P are not sufficiently robust to be of clinical

relevance and as RμS has been previously used to identify PC, but not IDC-P, we hypothesized

that RμS could be used as a diagnostic biomarker of IDC-P. To investigate the central issue of

identifying biomarkers of IDC-P, we developed a FFPE tissue slide preparation protocol that

mirrors standard hospital procedures to facilitate clinical implementation of RμS for the char-

acterization of PC. We then conducted a RμS study aimed at differentiating PC from benign

prostate epithelium, as well as differentiating IDC-P from PC and benign prostatic epithelium,

including HGPIN. This was achieved in FFPE radical prostatectomy specimens from 483

patients from 3 Canadian institutions.

Methods

Study overview

We conducted this study to present RμS as a promising, ancillary technique that could be inte-

grated into the pathological workflow (Figs 1, S1 and S2). Tissue samples from 483 PC patients

from 3 different institutions were studied: Centre hospitalier de l’Université de Montréal

(CHUM), University Health Network (UHN), and Centre hospitalier universitaire de Qué-

bec–Université Laval (CHUQc-UL). FFPE tissue microarrays (TMAs) were used to allow

high-throughput RμS acquisitions (S3 Fig). Two adjacent sections of each TMA block were
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cut. The first section was transferred onto a glass slide to perform IHC to detect AMACR/p63/

34BE12 with H&E counterstaining [32]. The second section was placed on an aluminum slide

with low Raman activity (Miro5011, Anomet, Brampton, ON, Canada). TMA sections on alu-

minum slides were dewaxed for 8 minutes according to the CHUM standard clinical dewaxing

protocol. Briefly, slides were agitated for 1 minute in each bath: 2 xylene substitute baths

(VWR, Radnor, PA, US), 3 100% ethanol baths (Alcools de Commerce, Boucherville, QC,

Canada), and 3 distilled water baths. A vacuum dryer was used for 20 minutes to avoid residual

Fig 1. Integration of Raman micro-spectroscopy into the pathology workflow. Prostate cancer (PC) patients are often treated by first-line

radical prostatectomy (whole specimen extraction). After surgery, the whole prostate is sent to the pathology department for routine analysis

workflow: macroscopic visual examination, formalin fixation, paraffin embedding, microtome sectioning, and hematoxylin and eosin

(H&E) staining. The pathologist examines H&E slides using a brightfield optical microscope (histopathology analysis) to determine the

diagnosis before reporting. Ancillary analyses can increase the specificity of the diagnosis (e.g., identification of basal cells in benign

prostatic tissues). The most frequently used complementary ancillary technique is immunohistochemistry (IHC), performed within

approximately 24 hours. The cocktail of antibodies targeting α-methylacyl-CoA racemase (AMACR)/p63/34BE12 is applied to the prostate

tissue to help identify benign glands and ducts, which are invaded by PC in the aggressive intraductal carcinoma of the prostate (IDC-P).

However, no specific biomarker is available to identify IDC-P. Raman micro-spectroscopy (RμS) combined with a machine learning

classification model can complement IHC in histopathology by providing a molecular fingerprint of the tissue that can predict the presence

of IDC-P within 90 minutes. Technical aspects of the RμS workflow and graphical details associated with the machine learning workflow are

shown in S1 and S2 Figs.

https://doi.org/10.1371/journal.pmed.1003281.g001

PLOS MEDICINE Raman for intraductal carcinoma of the prostate

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003281 August 14, 2020 5 / 20

https://doi.org/10.1371/journal.pmed.1003281.g001
https://doi.org/10.1371/journal.pmed.1003281


water on the slides prior to RμS measurements, which were performed without any additional

tissue processing.

IHC H&E-stained slides were digitized using a Nanozoomer Digital Pathology slide scanner

(Hamamatsu, Bridgewater, NJ, US) before identification of lymphocytes, benign prostatic tis-

sue, PC tissue, IDC-P, and HGPIN on the IHC-stained slide by 5 observers (AAG, TN, MB,

JW, and FA, under the supervision of DT). A second pathologist (RA) confirmed the presence

of IDC-P on targeted cores, ensuring all cases with morphological characteristics that failed

diagnostic criteria were interpreted as negative for IDC-P [33].

Each acquisition using a Raman micro-spectrometer lasted for 50 seconds. All acquisitions

were supervised by a research assistant specialized in RμS (MB). After all acquisitions were

completed, support vector machine (SVM) classification models were trained with data from

the CHUM cohort. In an SVM model, spectra are represented as points in a high-dimensional

space where each dimension corresponds to a feature, i.e., a spectral wavelength shift associ-

ated with a distribution of Raman signal intensities. Support vectors are the basic entities or

parameters computed by the algorithm to classify between different tissue classes. As support

vectors are actual data points in the N-dimensional feature space, they have a geometrical

interpretation with respect to the decision boundary, i.e., a multidimensional plane (a hyper-

plane with N − 1 dimensions), that separates the 2 targeted tissue classes. The SVM algorithm

finds the optimal decision boundary, corresponding to the hyperplane that best separates the

data into 2 classes within the feature space, by maximizing a loss function that depends on the

geometrical distances of all data points to the decision boundary (S2 Fig). The SVM algorithm

takes as input the following parameters, or hyperparameters: (i) the regularization parameter

C, (ii) the kernel function (linear or Gaussian), and (iii) the kernel coefficient γ (see “Statistical

analysis and tissue classification”). The SVM statistical model was then applied to 2 indepen-

dent testing cohorts (UHN and CHUQc-UL). Our results determined the accuracy, sensitivity,

and specificity of our statistical models to identify each cell and tissue type in PC patient sam-

ples. This study is reported as per diagnostic studies guidelines (STARD checklist; S1 Table).

For this study, a prospective analysis plan was constructed in 2015 as part of an internal

grant covering RμS analysis of PC as well as other optical analysis of PC. Based on team discus-

sions and external reviews, the analysis plan was reviewed in early 2019 to include a compari-

son between HGPIN and IDC-P. In 2020, following peer review comments, the revision of

IDC-P by a second pathologist (RA) as well as confusion matrices analysis were also added.

Human tissue samples

This multi-institutional retrospective study included a total of 483 PC patients and was

approved by the CHUM ethics review board (15.107), after approval of the construction of the

TMAs by local ethics review boards. All patients signed an informed consent allowing for the

use of their prostate tissue samples in research. The TMAs from CHUM, UHN, and CHUQc-

UL include patients treated by first-line radical prostatectomy and recruited from January 1,

1993, to December 31, 2013. FFPE PC tissues from surgery (radical prostatectomies) were

used for the construction of TMAs, either by random selection of PC tissue (CHUM) or by tar-

geted selection of representative grades (UHN and CHUQc-UL). All TMAs included benign

tissues (tissue within normal, non-tumor range) from the radical prostatectomies performed

to treat PC.

Raman micro-spectroscopy

All Raman spectra were acquired using a Renishaw inVia confocal Raman microscope

(Renishaw, Gloucestershire, UK) equipped with a 785-nm line focus laser. Each acquisition (4
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acquisitions/TMA core) lasted 50 seconds (i.e., 5 accumulations of 10 seconds) with 150-mW

laser output power using the 50× short working distance objective of the microscope (numeri-

cal aperture = 0.75). A rectangular area of 24 μm2 (8 μm × 3 μm, approximately corresponding

to single-cell analysis) within cell-rich tissue, whether PC cells, IDC-P cells, benign epithelial

cells, or lymphocytes, was targeted at each acquisition. Recognizable structures such as glandu-

lar lumens or the cobbly surface of cancer cell sheets were used to aim the laser on cells rather

than extracellular matrix or areas without tissue such as glandular lumens. A grating of 1,200

lines/mm allowed the visualization of Raman shifts between 602 and 1,726 cm−1. Spatial regis-

tration of Raman spectra with the IHC H&E-stained slide ensured acquisitions were per-

formed at the exact location of the cells from the tissues of interest. As aluminum slides are

inevitably streaked, the final white-light tissue images on aluminum slides were processed with

a filter in the frequency domain to avoid streak visualization. All Raman spectra files are avail-

able from the Dryad Digital Repository database [34].

Statistical analysis and tissue classification

Aluminum background and intrinsic tissue fluorescence in the spectra were removed from the

raw spectrum with the rolling ball algorithm [35]. As the resulting Raman spectra consisted of

more than 1,000 spectral wavelengths shifts with a resolution of approximately 1.1 cm−1, a

dimensional reduction procedure based on a linear SVM with L1 regularization was used

prior to producing the classification models. This procedure allowed preselection of only those

features (individual intensity values within a spectrum) that were most relevant in distinguish-

ing tissue classes. The regularization method that was used, known as Lasso regression, assigns

a weight to each feature within an optimization function (i.e., loss function) and gives a non-0

weight only to features that contribute significantly to establishing a decision boundary (S2

Fig).

Although SVM classifiers are linear classifiers, they can also be implemented using a non-

linear kernel function mapping the original data to another high-dimensional space, allowing

improved classification performance by capturing more complex (i.e., nonlinear) attributes of

the data. Here, the method used to produce the classification models from the preselected fea-

ture set was an SVM with a nonlinear Gaussian kernel. Prior to submitting the data to the clas-

sification algorithm [36], either for training or testing, each feature set underwent a

standardization so that individual features had a mean of 0 and a unit variance.

Hyperparameters for the feature selection step and the subsequent classification model

development were selected by performing a grid search. For the feature selection step, an SVM

with a linear kernel was used with a regularization parameter C varying between 0.05 and 0.5,

with larger values corresponding to more features being retained. For the development of the

classification models (using only the preselected features), the regularization parameter C of

the Gaussian SVM varied between 0.1 and 1,000, effectively acting as a penalty term for mis-

classified points. The kernel coefficient γ, which defines the variance of the Gaussian kernel,

was varied between 10−4 and 10−1.

For each combination of hyperparameters (C and γ), the performance was assessed through

5-fold cross-validation. For this procedure, the training dataset was split into 5 nonoverlapping

subsets. Each individual subset was used as a validation set while the other 4 were used to train

a model, to assess the performance associated with a combination of hyperparameters. Cross-

validation predictive performance was computed by averaging accuracy, sensitivity, and speci-

ficity across all folds, and the standard deviation was reported as modeling uncertainty. The

model selected for testing was the one associated with hyperparameters yielding optimal classi-

fication. This final model was trained on the complete CHUM cohort and then tested on the
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UHN and CHUQc-UL cohorts. Training and testing performances were assessed through

receiver operating characteristic (ROC) curves in which sensitivity and specificity were opti-

mized by selecting the point with the minimal distance to the upper left corner (S5 Fig).

Results

RμS on TMAs

Three independent PC patient cohorts from Canadian hospitals were analyzed (Table 1).

TMAs with core diameters ranging from 0.6 mm to 1.2 mm were assembled beforehand to

ensure that all samples fit onto a small number of slides, to increase imaging throughput (S3

Fig) [37,38]. All Raman spectra were acquired using a confocal Raman microscope (inVia

model, Renishaw, Gloucestershire, UK) equipped with a 785-nm line focus laser with an out-

put power of 150 mW. Time for each acquisition was 50 seconds (5 accumulations of 10 sec-

onds); the total time required for tissue processing and Raman spectra acquisition was<90

minutes for 1 patient. This was significantly shorter than other ancillary histopathology tech-

niques, e.g., ~24 hours for IHC and several days for gene sequencing. Following a series of pre-

processing steps including background removal, the Raman spectra were used to create

classification models trained on the CHUM cohort and independently tested on the UHN and

CHUQc-UL cohorts. Testing the model on data that were not used at any stage of the training

phase ensures better clinical validity compared to internal validation strategies or the use of

separate cohorts from a single institution for training and testing. Overall, 4 classification

models were produced: The first identified lymphocyte clusters within prostate tissue, a classi-

fication that is reliably performed by pathologists; the second distinguished benign and malig-

nant prostate epithelial cells to ensure recognition of cells from the same lineage; the third

Table 1. Clinicopathological characteristics of patients from the 3 independent cohorts.

Characteristic Institution

CHUM UHN CHUQc-UL

Number of patients 272 76 135

Median age in years at radical prostatectomy (IQR) 62 (58–66) 61 (57–66) 62 (59–67)

Median pre-operative PSA in μg/l (IQR) 7.4 (5.1–11.9) 6.9 (5.2–10.7) 6.6 (4.9–9.1)

Radical prostatectomy Gleason score, n (%) 265 67 133

�3 + 3 139 (52) 14 (21) 10 (8)

3 + 4 74 (28) 34 (51) 69 (52)

4 + 3 22 (8) 14 (21) 42 (32)

�4 + 4 30 (11) 5 (7) 12 (9)

Pathological tumor stage, n (%) 270 72 134

pT2 185 (69) 32 (44) 77 (57)

pT3a 60 (22) 32 (44) 41 (31)

pT3b 25 (9) 8 (11) 16 (12)

Presence of IDC-P among patients, n (%) 15 (6) 14 (18) 15 (11)

Raman micro-spectroscopy analysis

Number of TMA cores per patient 1 1–3 1–6

Number of spectra per core 4 4 4

Number of spectra per patient 4 4–12 4–24

CHUM, Centre hospitalier de l’Université de Montréal; CHUQc-UL, Centre hospitalier universitaire de Québec–

Université Laval; IDC-P, intraductal carcinoma of the prostate; IQR, interquartile range; PSA, prostate-specific

antigen; TMA, tissue microarray; UHN, University Health Network.

https://doi.org/10.1371/journal.pmed.1003281.t001
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distinguished IDC-P from invasive carcinomas; and the fourth distinguished HGPIN from

IDC-P for an accurate identification of the intraductal proliferation. Specifically, this protocol

was developed to complement conventional pathology analyses in the identification of IDC-P

(Figs 1, S1 and S2).

Identification of different cell types in PC tissue by RμS

Following the development of classification models for the detection of lymphocytes, 3 other

classification models were developed to characterize PC and IDC-P: (i) benign versus cancer,

(ii) IDC-P versus cancer, and (iii) HGPIN versus IDC-P. The potential of RμS to accurately

differentiate cell types was quantified using a machine learning technique using as input (from

the feature selection algorithm, see Methods) the Raman peaks contributing the most to the

variability between different classes. As differentiation between lymphocytes and PC cells is

straightforward in histopathology, we first tested the development of a RμS classification

model to confirm the capacities of the system. This model could differentiate lymphocytes

from PC cells with cross-validation accuracy, sensitivity, and specificity of 98%, 99%, and 98%,

respectively (Methods; S2 Table). Classification performances were similar when testing the

model on 2 independent cohorts. The peaks contributing the most to the classification models

were assigned to vibrational modes and biochemical constituents (S4 Fig; S3 Table) [24–

28,39,40].

Machine learning/feature selection was then applied to distinguish benign prostate epithe-

lial cells from PC cells. The diagnosis was determined by 1 pathologist (DT) on slides stained

with antibodies targeting AMACR/p63/34BE12 to distinguish PC from benign glands [41]

prior to RμS acquisitions on adjacent tissue sections (Fig 2A). The CHUM cohort, comprising

99 patients with benign prostatic tissue (400 spectra) and 272 patients with PC tissue (1,088

spectra), was used as the training set for the classification model. The Raman spectra for all

CHUM patients were classified with an accuracy, sensitivity, and specificity of 87% ± 5%, 86%

Fig 2. Prostate cancer diagnosis using Raman micro-spectroscopy. (A) Standard histology immunostaining for high

molecular weight cytokeratins and p63 (basal cell markers in brown) and α-methylacyl-CoA racemase (cancer cell marker in

red), followed by hematoxylin and eosin (H&E) counterstaining to identify benign prostatic glands and prostate cancer tissues.

An adjacent 4-μm-thick tissue section slide was used to target a precise tissue point for Raman micro-spectroscopy (RμS) on

unstained prostate tissue. (B) Average Raman spectra of benign prostatic glands (99 patients; 400 spectra) and prostate cancer

(272 patients; 1,088 spectra) from the Centre hospitalier de l’Université de Montréal (CHUM) cohort. Raman peaks (i.e.,

biochemical constituents of tissue) that were dominant contributors to the classification are identified with dotted gray lines.

Bottom frame shows the standardized Raman spectra, where each individual feature has 0 mean and unit variance. Spectra with

their respective variance are shown in S6A Fig.

https://doi.org/10.1371/journal.pmed.1003281.g002
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± 6%, and 89% ± 8%, respectively (Table 2; S7A Fig). The model was then applied to the UHN

cohort including 49 patients with benign prostatic tissue (196 spectra) and 76 patients with PC

tissue (818 spectra). Performance on this testing cohort was comparable to that of the training

dataset (CHUM) with an accuracy, sensitivity, and specificity of 84%, 84%, and 82%, respec-

tively (S7B Fig). In the other testing cohort (CHUQc-UL), with 68 patients with benign pros-

tatic tissue (272 spectra) and 135 patients with PC tissue (1,450 spectra), accuracy, sensitivity,

and specificity were 86%, 87%, and 81%, respectively (S7C Fig).

We identified 32 important Raman spectral differences between benign and malignant pros-

tate tissue, and those features were used to produce the machine learning classification models.

From these, the 10 Raman peaks contributing the most to the classification of benign and cancer

tissues were identified (Fig 2B; Table 3) [24–28,39,40]. The peaks at 1,450 cm−1 and 1,484 cm−1

were significantly increased in the average Raman spectrum of PC tissue compared to benign

prostate tissue. Biochemical constituents assigned to these peaks were mostly from DNA and

RNA, as well as from the backbone of proteins and from lipids. All other biochemical compo-

nents of PC tissue identified by RμS were decreased compared to benign prostate tissue. More

specifically, the nucleobase adenine from DNA and RNA, and the amino acids proline, tyrosine,

valine, phenylalanine, and tryptophan were reduced in the average Raman spectrum of PC tissue.

RμS as a biomarker of IDC-P

To train our statistical model, we used the cohort from CHUM. A total of 15 patients (17

cores) were identified with IDC-P (Fig 3A). When IDC-P was compared to adjacent invasive

Table 2. Classification performance when distinguishing benign prostate tissue, prostate cancer, IDC-P, and

HGPIN in training and testing cohorts.

Performance measure Classification performance, percent ± SD

Training CHUM Testing

UHN CHUQc-UL

Benign/cancer

Accuracy 87 ± 5 84 86

Sensitivity 86 ± 6 84 87

Specificity 89 ± 8 82 81

AUC 87 ± 5 83 84

IDC-P/cancer

Accuracy 95 ± 2 91 85

Sensitivity 96 ± 4 88 85

Specificity 94 ± 2 93 86

AUC 95 ± 3 90 85

HGPIN/IDC-P

Accuracy 97.5 ± 1.4 97.8 98.3

Sensitivity 98.2 ± 1.5 95.5 96.4

Specificity 97.1 ± 1.4 100 100

AUC 97.6 ± 1.4 97.7 98.2

The classification was performed using an SVM with a Gaussian kernel coupled to a feature selection algorithm based

on an SVM with a linear kernel and L1 regularization term. Confusion matrices for each classification are shown in

S7 Fig for all training and testing sets.

AUC, area under the curve; CHUM, Centre hospitalier de l’Université de Montréal; CHUQc-UL, Centre hospitalier

universitaire de Québec–Université Laval; HGPIN, high-grade prostatic intraepithelial neoplasia; IDC-P, intraductal

carcinoma of the prostate; SVM, support vector machine; UHN, University Health Network.

https://doi.org/10.1371/journal.pmed.1003281.t002
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PC from the same core, RμS could not differentiate IDC-P from PC (in the UHN cohort, sensi-

tivity was of 21%). Since several histopathological studies have reported that adjacent PC is

similar to IDC-P [42–46], we combined the spectra of both regions of the prostate tissue, for a

total of 112 spectra. We used the average Raman spectrum of each core with IDC-P and com-

pared this to the average Raman spectrum of each PC core without IDC-P (272 patients, 1,088

spectra). The classification using machine learning (cross-validation) was performed, achiev-

ing an accuracy, sensitivity, and specificity of 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively

(Table 2; S7D Fig). We then used our 2 other cohorts to test this classification model. From the

UHN cohort, 14 patients were identified with IDC-P and adjacent PC on at least 1 TMA core.

Table 3. Most important features used for the classification of benign and malignant prostate tissue and their associated Raman peaks.

Feature (cm−1) Peak center (cm−1) Tissue type with increase Main vibrational modes Main molecules

720/733 719–726 Benign Ring breathing mode, C-S DNA/RNA (adenine), protein

828 827–828 Benign O-P-O stretch, ring breathing DNA/RNA backbone, protein (tyrosine)

841 853 Benign C-C stretch, ring breathing Protein (proline, tyrosine)

931 935–937 Benign C-C stretch Protein (proline, valine, α-helix)

1,012/1,013 1,000–1,003 Benign Symmetric ring breathing Protein (phenylalanine)

1,035 1,031–1,032 Benign C-H stretch Protein (phenylalanine)

1,200 1,206–1,207 Benign C-C6H5 stretch Protein (phenylalanine, tryptophan, tyrosine)

1,329 1,338 Benign Unknown DNA/RNA (adenine)

1,431 1,447–1,450 Cancer CH2 deformation DNA/RNA, protein, lipid

1,470 1,484 Cancer Ring breathing mode DNA/RNA (adenine, guanine)

The feature selection algorithm used was a linear SVM with L1 regularization. Tentative molecular assignment of prostate Raman peaks based on literature findings [24–

28,39,40].

https://doi.org/10.1371/journal.pmed.1003281.t003

Fig 3. The presence of intraductal carcinoma of the prostate and adjacent usual invasive prostate cancer detected by

Raman micro-spectroscopy. (A) Standard histology immunostaining for high molecular weight cytokeratins and p63 (basal cell

markers in brown) and α-methylacyl-CoA racemase (cancer cell marker in red), followed by hematoxylin and eosin (H&E)

counterstaining to identify intraductal carcinoma of the prostate (IDC-P) along with adjacent cancer and prostate cancer

without IDC-P. An adjacent 4-μm tissue section on an aluminum slide was used to target a precise location for Raman micro-

spectroscopy (RμS) on unstained prostate tissue. (B) Average Raman spectra of IDC-P with adjacent cancer (15 patients; 112

spectra) and prostate cancer (272 patients; 1,088 spectra) from the Centre hospitalier de l’Université de Montréal (CHUM)

cohort. Raman peaks (i.e., biochemical constituents of tissue) that were dominant contributors to the classification are identified

with dotted gray lines. Bottom frame shows the standardized Raman spectra, where each individual feature has 0 mean and unit

variance. Spectra with their respective variance are shown in S6B Fig.

https://doi.org/10.1371/journal.pmed.1003281.g003
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We acquired 139 Raman spectra from the 22 TMA cores from the 14 patients. For the classifi-

cation, these spectra were compared to 767 PC spectra of TMA cores without IDC-P from 71

patients. Performances were comparable to cross-validation results from the training set, with

an accuracy, sensitivity, and specificity of 91%, 88%, and 93%, respectively (S7E Fig). In the

CHUQc-UL cohort, 9 patients (16 cores) with IDC-P were studied, and from these cores, we

acquired 104 IDC-P spectra. PC from TMA cores without IDC-P from 93 patients was investi-

gated, leading to 1,017 PC Raman spectra. The identification of IDC-P with the machine learn-

ing model using this cohort was performed with an accuracy, sensitivity, and specificity of

85%, 85%, and 86%, respectively (S7F Fig).

By comparing usual invasive PC to IDC-P, the feature selection algorithm retrieved 92 fea-

tures from the training cohort. As when distinguishing benign versus cancer tissue, we identi-

fied the 10 most important Raman peaks that were used by machine learning (Fig 3B; Table 4)

[24–28,39,40]. Specifically, the DNA and RNA backbone were increased in IDC-P compared

to invasive PC. For proteins, α-helix and β-sheet secondary structures, specifically for the

amide III peak, were more intense in the average Raman spectrum of IDC-P. Importantly, 3

features were associated with the amino acid tyrosine peak at 1,171 cm−1. Other amino acids

(i.e., proline, valine, and phenylalanine) were identified mostly in IDC-P. We also observed a

decrease in a few biochemical constituents in this aggressive variant of PC: the amino acid

tryptophan (759 cm−1 peak), the nucleobase guanine, fatty acids, and the amide I peak from

the protein α-helix (1,667 cm−1 peak).

We then tested the capacity of RμS to distinguish 2 intraductal proliferations, HGPIN and

IDC-P (Fig 4A). The Raman spectra for all CHUM patients were classified (training, cross-val-

idation) with an accuracy, sensitivity, and specificity of 97.5% ± 1.4%, 98.2% ± 1.5%, and

97.1% ± 1.4%, respectively (Table 2; S7G Fig). The model was then used on the UHN cohort,

including 9 patients with HGPIN (23 spectra), and on the CHUQc-UL cohort, including 13

patients with HGPIN (30 spectra). Performance on testing cohorts was comparable to that of

the training dataset (CHUM), with an accuracy of 97.8%–98.3%, a sensitivity of 95.5%–96.4%,

and a specificity of 100% (S7H and S7I Fig).

For HGPIN and IDC-P, a total of 19 features were selected by the model. From these, we

analyzed 5 Raman peaks that were the dominant contributors to the classification (Fig 4B;

Table 4. Most important features used for the classification of IDC-P and invasive prostate cancer tissue, and their associated Raman peaks.

Feature (cm−1) Peak center (cm−1) Tissue type with increase Main vibrational modes Main molecules

759 758–760 Cancer Symmetric ring breathing Protein (tryptophan)

834 827–831 IDC-P O-P-O stretch, ring breathing DNA/RNA backbone, protein (tyrosine)

952 935–937 IDC-P C-C stretch Protein (proline, valine, α-helix)

996 1,000–1,003 Cancer Symmetric ring breathing Protein (phenylalanine)

1,004 1,000–1,003 IDC-P Symmetric ring breathing Protein (phenylalanine)

1,108 1,090–1,100 IDC-P O-P-O stretch Lipid/phospholipid, DNA backbone

1,172/1,183/1,184 1,171 IDC-P C-H bend Protein (tyrosine)

1,250/1,251 1,242–1,250 IDC-P Amide III Protein (β-sheet)

1,266 1,263 IDC-P Amide III DNA/RNA (thymine, adenine), protein (α-helix)

1,477 1,484 Cancer Ring breathing mode DNA/RNA (adenine, guanine)

1,638/1,649 1,657–1,667 Cancer C = O stretch, amide I Protein (α-helix), lipid (fatty acid), DNA/RNA (thymine)

The feature selection algorithm used was a linear SVM with L1 regularization. Tentative molecular assignment of prostate Raman peaks based on literature findings [24–

28,39,40].

IDC-P, intraductal carcinoma of the prostate.

https://doi.org/10.1371/journal.pmed.1003281.t004
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Table 5). The biochemical constituent predominantly found in HGPIN was adenine from

DNA and RNA. Proteins were increased in IDC-P compared to HGPIN, more specifically the

amino acid phenylalanine (1,003 cm−1 peak) and the β-sheet secondary structure (1,242 cm−1

peak).

Discussion

Beyond distinguishing between PC and benign prostatic tissue with accuracy�84%, RμS indi-

cated the presence of IDC-P within the diagnostic FFPE prostatic tissue with an accuracy of at

least 85% throughout the 3 studied independent cohorts. Importantly, IDC-P could also be

distinguished from HGPIN with accuracy >97%.

A precise diagnosis of IDC-P is a challenge for genitourinary pathologists [10,11], especially

since no specific biomarker is clinically available to reliably identify this aggressive histological

Fig 4. Raman micro-spectroscopy to accurately distinguish intraductal carcinoma of the prostate and high-grade prostatic

intraepithelial neoplasia. (A) Standard histology immunostaining for high molecular weight cytokeratins and p63 (basal cell

markers in brown) and α-methylacyl-CoA racemase (cancer cell marker in red), followed by hematoxylin and eosin (H&E)

counterstaining to identify high-grade prostatic intraepithelial neoplasia (HGPIN) and intraductal carcinoma of the prostate

(IDC-P) along with adjacent cancer. The images used to represent IDC-P are the same as those in Fig 3. An adjacent 4-μm tissue

section on an aluminum slide was used to target a precise location for Raman micro-spectroscopy (RμS) on unstained prostate

tissue. (B) Average Raman spectra of IDC-P with adjacent cancer (15 patients; 112 spectra) and HGPIN (64 patients; 170

spectra) from the Centre hospitalier de l’Université de Montréal (CHUM) cohort. Raman peaks (i.e., biochemical constituents of

tissue) that were dominant contributors to the classification are identified with dotted gray lines. Bottom frame shows the

standardized Raman spectra, where each individual feature has 0 mean and unit variance. Spectra with their respective variance

are shown in S6C Fig.

https://doi.org/10.1371/journal.pmed.1003281.g004

Table 5. Most important features used for the classification of HGPIN and IDC-P, and their associated Raman peaks.

Feature (cm−1) Peak center (cm−1) Tissue type with increase Main vibrational modes Main molecules

720 725–726 HGPIN C-S stretch, CH2 rocking DNA/RNA (adenine), protein

1,000/1,008 1,000–1,003 IDC-P Symmetric ring breathing Protein (phenylalanine)

1,233/1,234 1,242–1,250 IDC-P Amide III Protein (β-sheet)

1,346 1,338 HGPIN CH3CH2 DNA/RNA (adenine), collagen

1,696 1,657–1,667 HGPIN C = O stretch, amide I Protein (α-helix), lipid (fatty acid), DNA/RNA (thymine)

The feature selection algorithm used was a linear SVM with L1 regularization. Tentative molecular assignment of prostate Raman peaks based on literature findings [24–

28,39,40].

IDC-P, intraductal carcinoma of the prostate; HGPIN, high-grade prostatic intraepithelial neoplasia.

https://doi.org/10.1371/journal.pmed.1003281.t005
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variant of PC. Indeed, once a lesion has been confirmed to be intraductal on a prostate biopsy,

the most common biomarkers of IDC-P, ERG overexpression and PTEN loss, are used only by

25% of all genitourinary pathologists [12]. Here we showed RμS combined with machine

learning technology could be used as a specific molecular biomarker of IDC-P, results that are

in line with the described capacity to identify PC in FFPE and snap-frozen samples [24–26].

Interestingly, from the Raman peaks that were associated with IDC-P (Table 4), 2 were also

associated with end-stage, castration-resistant PC by Wang et al. (1,171 cm−1 and 1,247 cm−1)

[27]. As the association between IDC-P and castration-resistant PC is well established

[15,47,48], we believe these results support the value of our classification models.

To ensure maximal clinical validity, we studied 3 nonoverlapping cohorts, composed of 76

to 272 PC patients, from different institutions to independently train and test our machine

learning classification models. This study on RμS includes large cohorts of patients from differ-

ent institutions, with stringent morphological and immunohistochemical classification of the

lesions. Other groups have conducted PC RμS studies on only 1 patient or on single-center

cohorts composed of a maximum of 50 patients [23–30,49]. Studying a large group of men

with PC from different institutions paves the way to the use of Raman spectra as a biomarker

of IDC-P.

In addition to showing the capacity to detect a diagnostic signature for a histological variant

of PC, our RμS protocol is fully compatible with the standard clinical histopathological work-

flow. First, in contrast to other published protocols using fresh or frozen tissues, our analyses

were performed using FFPE tissues. Because PC is most often visually undetectable and impal-

pable, the entirety of prostate specimens examined in the specific context of PC diagnosis are

FFPE in toto, i.e., no tissue is available for snap freezing outside research purposes [31]. Impor-

tantly, blindly harvesting tissue to eventually perform RμS on snap-frozen tissue—a method

that is adopted for other organ systems instead of FFPE-based evaluations—could lead to ana-

lyzing a tissue devoid of PC or, even worse, underestimating disease severity if significant por-

tions of the tumor are unavailable for routine H&E evaluation.

Second, we developed our protocol to enable smooth implementation into a clinical labora-

tory setting without disruption of routine service. Cut at the same thickness as standard tissue

sections (4 μm) and dewaxed using our regular routine dewaxing protocol, RμS tissue sections

can be treated using the same apparatus at the same settings as the vast majority of the tissue

sections processed in a histopathology laboratory. The aluminum slides we used were of the

same size as standard microscope glass slides and compatible with all chemicals used to

dewax/prepare the sample for RμS and are in addition inexpensive. Tissue sections do not

need further labeling before RμS acquisitions. Classification models can also be applied with-

out technical engineering assistance with only basic training in the use of a RμS microscope.

The cost of a Raman confocal microscope is in the same range as the cost of an automated

immunostainer to perform IHC, and a Raman confocal microscope is also smaller than an

automated autostainer. Therefore, a laboratory setup in which some slides are analyzed by

standard molecular pathology techniques (e.g., IHC) while others are sent for RμS evaluation

can be envisioned with minimal disruption of the standard clinicopathological workflow.

As our results involve large-scale validation and the use of a clinically implementable slide

preparation protocol, the inclusion of lesions that fall short of the diagnostic criteria of IDC-P

would have improved the clinical significance of our results. Indeed, these difficult-to-classify

lesions are the lesions for which pathologists are expected to use RμS. However, as IDC-P was

present in 6% to 18% of the investigated patients, as expected by the small diameter of the

TMA cores and the limited size of IDC-P within PC [50], the number of borderline, difficult-

to-classify lesions in our TMA set was insufficient for proper classification. Importantly, the
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RμS algorithms we designed provide a quantitative evaluation of the probability of a diagnosis

(e.g., IDC-P, 75% probability), therefore decreasing the impact of this limitation.

Before clinical implementation, in which RμS could be used similarly to IHC (Figs 1, S1

and S2), next steps for research include, among others, validation in cohorts using material

entirely processed in each center (from tissue fixation to slide preparation to RμS acquisitions)

to ensure reproducibility of all the steps of the protocol regardless of the laboratory. Impor-

tantly, a thorough validation of the use of RμS in different disease classifications and organ

types [51] will also facilitate the clinical implementation of RμS, by maximizing the use of the

Raman microscopes. Moreover, other RμS modalities such as surface-enhanced Raman spec-

troscopy (SERS) or coherent anti-Stokes Raman spectroscopy (CARS) could be tested to

improve the acquisition speed (allowing one to analyze larger portions of the specimens) and/

or to modify the substrate on which RμS is performed to allow the use of glass slides. Alto-

gether, RμS is a promising tool for histopathological ancillary studies, but further large-scale,

multicenter studies are needed before actual clinical implementation.

The extent of similarity between IDC-P and immediately adjacent PC will also have to be

investigated. Indeed, when IDC-P was present in a core, the Raman spectra from PC and

IDC-P on the core were indistinguishable, despite their different localization with respect to

prostatic ducts (inside for IDC-P, outside for PC). We thus combined the spectra from IDC-P

and from the adjacent invasive PC tissue from the same core. As IDC-P and immediately adja-

cent PC have been shown to have similar expression of biomarkers such as ERG and PTEN

[42–46], this similarity is not unexpected. However, beyond the scientific phylogeny questions

raised by these similarities, from a technical standpoint, it will be of tremendous importance to

characterize the “Raman-identical” zone around IDC-P. Among other factors, the size of this

zone is likely to define the needed precision when evaluating an intraductal lesion.

Overall, we provided a large study of the use of RμS to detect PC and IDC-P in 3 indepen-

dent cohorts of men with PC. Our results are not only in line with the current literature associ-

ating the important Raman features of IDC-P with the development of castration-resistant PC,

but they also provide solid evidence to pursue the clinical implementation of RμS as an ancil-

lary technique to refine the diagnosis of PC. In perspective, a prospective study on fully anno-

tated specimens, including difficult-to-classify lesions, will ensure the transition from the

testing of research TMAs to clinical workflow.

Supporting information

S1 Fig. RμS workflow. The localization of the tissue for the RμS acquisition is done by looking

simultaneously at the digitalized-stained-annotated TMAs and the sample viewer from

Renishaw WiRE software. Adjusting the position of the laser on the sample is done by moving

the stage of the microscope; the position of the laser is seen on the sample view of the WiRE

software. Via this adjustment, the laser is correctly positioned on the cell(s) of the tissue to be

probed.

(TIF)

S2 Fig. Machine learning workflow. The workflow of the classification is read from top to

bottom. In our analysis, features are spectral wavelengths (e.g., 1,004 cm−1, 1,477 cm−1) with a

corresponding value (Raman intensity) different for each Raman spectrum. The feature selec-

tion algorithm is a linear SVM with a L1 regularization. As it assigns a weight to each feature,

only features contributing to the decision boundary are assigned a non-zero weight. The classi-

fication algorithm is an SVM with a Gaussian kernel that maps the original feature set to a dif-

ferent high-dimensional space in which data are linearly separable.

(TIF)
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S3 Fig. Prostate cancer tissue microarray. A representative standard histology immunostain-

ing of a TMA for high molecular weight cytokeratins and p63 (basal cell markers in brown)

and α-methylacyl-CoA racemase (cancer cell marker in red), followed by H&E counterstain-

ing to identify low-grade PC (contoured in green), high-grade PC (contoured in red), IDC-P

(contoured in yellow, as well as other intraductal atypical lesion), lymphocytes (contoured in

white), and a focus of perineural invasion (contoured in black). Cores with uniform morphol-

ogy were investigated but not contoured. Black dots indicate RμS measurement locations.

(TIF)

S4 Fig. Identification of lymphocyte clusters in PC tissue by RμS. (A) Standard histology

immunostaining for high molecular weight cytokeratins and p63 (basal cell markers in brown)

and α-methylacyl-CoA racemase (cancer cell marker in red), followed by H&E counterstain-

ing to identify lymphocytes and PC tissues. An adjacent 4-μm tissue section on aluminum

Miro5011 slide was used to target a precise tissue point for RμS on unstained prostate tissue

(image modified to enhance tissue visualization). (B) Average Raman spectra of lymphocytes

(40 patients; 168 spectra) and PC (272 patients; 1,088 spectra) from the CHUM cohort. Raman

peaks (i.e., biochemical constituents of the tissue) that were dominant contributors to the clas-

sification are identified through a linear SVM with L1 regularization and shown with dotted

gray lines. Biochemical constituents are expressed in bold when multiple features are associ-

ated with a single Raman peak. Bottom frame shows the standardized Raman spectra, where

each individual feature has 0 mean and unit variance.

(TIF)

S5 Fig. Receiver operating characteristic curves. Receiver operating characteristic (ROC)

curves for benign prostatic glands and PC (A), IDC-P with adjacent cancer and PC (B), and

IDC-P with adjacent cancer and HGPIN (C). CHUM training set is indicated with a solid line,

whereas UHN and CHUQc-UL testing sets are denoted with a dashed line and a dotted line,

respectively. Red dots correspond to the point that is the closest to the upper left corner—asso-

ciated with maximum sensitivity and specificity—and represent values that optimize sensitiv-

ity and specificity for each set; threshold values associated to each figure are 0.75 (A), 0.25 (B),

and 0.33 (C).

(TIF)

S6 Fig. Average spectra and respective variance. Average Raman spectra of benign prostatic

glands and PC (A), IDC-P with adjacent cancer and PC (B), and IDC-P with adjacent cancer

and HGPIN (C) from the CHUM cohort. Average spectra are shown (bold) with their associ-

ated variance (shaded area). Raman peaks (i.e., biochemical constituents of the tissue) that

were dominant contributors to the classification were identified through a linear SVM with L1

regularization and are shown with dotted gray lines.

(TIF)

S7 Fig. Confusion matrices. Confusion matrices associated with models differentiating

between benign tissue, PC, IDC-P, and HGPIN in training and testing cohorts. In each panel

(A–I), columns represent the predicted numbers for a given class while rows represent the

numbers belonging to their true class (pathological labels). These numbers allow extraction of

true positive, true negative, false positive, and false negative rates for each model in both train-

ing and testing sets. Numbers in each cell represent the number of cores, except for IDC-P in

(D–G) and HGPIN in (G), which correspond to the total number of spectra.

(TIF)
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