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The metabolic stages of bacterial development and viability under different 

stress conditions induced by disinfection, chemical treatments, temperature, 

or atmospheric changes have been thoroughly investigated. Here, we aim to 

evaluate early metabolic modifications in bacteria following induced stress, 

resulting in alterations to bacterial metabolism. A protocol was optimized 

for bacterial preparation using energy-dispersive X-ray (EDX) microanalysis 

coupled with scanning electron microscopy (SEM), followed by optimizing 

EDX data acquisition and analysis. We  investigated different preparation 

methods aiming to detect modifications in the bacterial chemical composition 

at different states. We first investigated Escherichia coli, acquiring data from 

fresh bacteria, after heat shock, and after contact with 70% ethanol, in order 

to prove the feasibility of this new strategy. We then applied the new method 

to different bacterial species following 1 h of incubation with increasing doses 

of antibiotics used as a stress-inducing agent. Among the different materials 

tested aiming to avoiding interaction with bacterial metabolites, phosphorous-

doped silicon wafers were selected for the slide preparation. The 15 kV 

acceleration voltage ensured all the chemical elements of interest were 

excited. A thick layer of bacterial culture was deposited on the silicon wafer 

providing information from multiple cells and intra-cellular composition. The 

EDX spectra of fresh, heat-killed, and alcohol-killed E. coli revealed important 

modifications in magnesium, potassium, and sodium. Those same alterations 

were detected when applying this strategy to bacteria exposed to antibiotics. 

Tests based on SEM–EDX acquisition systems would provide early predictions 

of the bacterial viability state in different conditions, yielding earlier results 

than culture.
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Introduction

Assessing bacterial viability is of great interest to clinical 
and fundamental microbiology (Caron et al., 1998; Kumar and 
Ghosh, 2019). Monitoring the bacterial metabolic state under 
different conditions has been intensely investigated. Numerous 
studies have explored and reported metabolic modifications in 
bacteria aiming to investigate and improve growth in different 
culture conditions, biofilm formation, and their response to 
chemical agents (Diaper et al., 1992; Maukonen et al., 2000; 
Keer and Birch, 2003; Rogers et al., 2010). Accessing this kind 
of information would provide better insights on the 
development, survival, and metabolism of bacteria, leading to a 
better understanding of the bacterial state and viability (Barer 
and Harwood, 1999). Several methods have been developed 
which aim to evaluate bacterial metabolic state for multiple uses 
in clinical and environmental microbiology, assessing the 
performance of disinfection shock treatment, and the detection 
of bacterial pathogens in food and water. Some of these methods 
have been based on quantifying colony formation and bacterial 
growth using digital microscopy and image analysis algorithms 
(Fredborg et al., 2013; Price et al., 2014; Le Page et al., 2015). 
Other approaches have used single-cell detection, combining 
optics and microfluidic devices to detect quantifiable (Mohan 
et  al., 2013; Etayash et  al., 2016) or morphological changes 
(Nilsson et  al., 1991; Choi et  al., 2014; Quach et  al., 2016; 
Baltekin et  al., 2017; Zahir et  al., 2019). Some studies have 
evaluated the presence of viable microorganisms in water using 
direct culture or co-culture strategies (Adams et  al., 2003; 
Delgado-Viscogliosi et  al., 2005), or by amplifying and 
quantifying RNA (van der Vliet et  al., 1994; Prudent et  al., 
2017). Fluorescence detection by flow cytometry or imaging has 
also been extensively researched and widely used for the 
detection and assessment of viable potential foodborne 
pathogens in various ecosystems (Diaper and Edwards, 1994; 
Boulos et  al., 1999; Adams et  al., 2003; Delgado-Viscogliosi 
et al., 2005; Brauge et al., 2019). Recently, scanning electron 
microscopy (SEM) has been re-evaluated for applications in 
clinical microbiology (Cushnie et  al., 2016; Hannachi et  al., 
2020; Haddad et al., 2021a,b). In addition to high-resolution 
images, SEM can provide information on the chemical elements 
present in a specimen when coupled with energy-dispersive 
X-ray spectroscopy (EDX). An SEM–EDX system enables semi-
quantitative elemental microanalysis by measuring the 
generation of characteristic X-rays from each chemical element 
present in the specimen. One recent study revealed the potential 
for bacterial identification by combining SEM morphological 
information and EDX data (Khan et al., 2020).

In this study, we investigated bacterial chemical composition 
and modifications to it, based on EDX coupled with a tabletop 
SEM. We  aimed to monitor the bacterial metabolic state and 
detect early onset metabolic modifications of various bacterial 
species under stress induced by heat, disinfection, and 
antimicrobial agents.

Materials and methods

Bacterial strains collection and growth 
conditions

Six bacterial isolates of Escherichia coli, Klebsiella 
pneumoniae, and Enterobacter cloacae were collected from the 
“Collection de Souches de l’Unité des Rickettsies” (CSUR, 
WDCM 875; Table 1). Bacteria were identified using matrix-
assisted laser desorption/ionization time-of-flight mass 
spectrometry (MALDI-TOF MS) on a Microflex LT 
spectrometer (Bruker Daltonics, United States; Seng et al., 
2009). The bacterial strains were grown overnight in tryptone 
soya broth (TSB; Becton Dickinson, United States) at 37°C 
under aerobic conditions. Then, the fresh cultures were 
diluted using TSB and adjusted at an optical absorbance of 
0.18 (106–107 CFU/ml), at a wavelength of 600 nm measured 
by an Ultrospec 10 cell density meter (Biochrom, 
United Kingdom). Experiments were carried out on 4 ml of 
bacterial suspension per condition and bacterial 
concentrations were validated by the colony counting method.

Proof of concept

Conditions tested
Fresh E. coli bacterial suspensions were analyzed to identify 

their elemental EDX spectra. The same bacterial suspensions were 
also heat shocked at 90°C for 30 min or exposed to 70%ethanol to 
kill the bacteria. We aimed to detect modifications in the chemical 
composition of fresh and dead bacteria. All experiments were 
performed in triplicate.

SEM–EDX method

Optimization of sample preparation for EDX 

measurements

For the sample preparation support, different materials 
(including glass slides, phosphorous-doped silicon (Si) 
wafers, plastic and metallic surfaces) were assessed for 
minimum interaction with bacterial metabolites during EDX 
acquisition. The bacterial suspensions were centrifuged at 
1,700 × g for 10 min (Centrifuge 5810R, Eppendorf, 
Germany) to separate bacterial pellets. After removing the 
supernatant, the pellets were then rinsed in 3 ml of distilled 
water (Bio-Rad Laboratories, United States), followed by a 
second centrifugation under the same conditions. Five to 
10 μl of condensed bacterial suspensions were collected.  
The condensed bacterial suspension was applied to the 
surface of a 15 mm × 35 mm Silicon (Si) wafer (Siltronix, 
France) and dried under a biosafety hood. Dried spots of 
bacterial deposits with a typical thickness of 5–15 μm were 
obtained depending on the bacterial concentration 
after rinsing.
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EDX measurement conditions: Selection of settings

Bacterial deposits were observed using the Tabletop SEM 
TM4000 Plus (Hitachi High-Tech, Japan) combined with the 
AZtecOne EDX system (Oxford Instruments, United 
Kingdom). The preparations were loaded into the TM4000 
Plus with a 10 mm distance between the sample surface and 
the detector. Glucose was used as a sample material for the 
Monte Carlo simulation, since it has an elemental composition 
similar to bacterial cells. The acceleration voltage was set at 
15 kV, with the highest beam current mode (LensMode 4) 
under vacuum conditions (<30 Pa). Each bacterial deposit was 
observed at ×300 magnification. Map-sum EDX spectra of 
each image area were taken using a mapping mode at 256 
times image resolution, three times frame count, and 200 μs 
pixel dwell time. EDX spectra from Si substrate were also 
measured for spectral analysis.

EDX spectral analysis and calculation

To analyze elemental peaks originating from bacterial cells as 
accurately as possible, peaks from EDX spectra were first extracted 
by a numerical fitting based on the least square method (Van 
Grieken and Markowic, 2002; Bevington and Robinson, 2003). In 
our analysis, only the main Kα peaks of Si, carbon (C), oxygen 
(O), nitrogen (N), calcium (Ca), magnesium (Mg), sulfur (S), 
sodium (Na), phosphorous (P), chlorine (Cl), and potassium (K) 
were taken into consideration (Supplementary material; 
Supplementary Figure S1).

Application: Antibiotic-induced bacterial 
stress

For a biochemically induced stress that would allow the 
investigation of progressive modifications in bacteria, we selected 
a carbapenem (imipenem). Bacterial strains were selected based 
on their susceptibility profiles against imipenem (Table 1). The 
antimicrobial susceptibility of the six isolates was assayed by the 
E-test technique (bioMérieux) using Mueller Hinton E agar 
(bioMérieux, France) and incubated at 37°C for between 16 and 
18 h. Different antibiotic concentrations were added, varying from 
one-quarter to four times the epidemiological cut-off (ECOFF) for 
each of the species (The European Committee on Antimicrobial 
Susceptibility Testing, 2022; Breakpoint tables for interpretation 
of MICs and zone diameters). The cultures were incubated at 37°C 

for 60 min under agitation and then analyzed using the same 
strategy described above (Supplementary Figure S2).

Method validation: Reproducibility and 
statistical analysis

Each measurement of individual bacterial deposits consisted 
of three different fields of view. The peak height of each element 
was calculated by averaging the three EDX spectra from each 
image. In-house software (MCAM version 7.0) was used for the 
Monte Carlo simulation to assess the electron beam scattering in 
the sample with different acceleration voltages (Kyser and Murata, 
1974). Excel 2010/2016 was used for EDX spectral analysis and the 
least squares fitting to the theoretical curve. A one-way ANOVA 
test was applied, followed by a Tukey’s test, to compare each 
condition to the antibiotic-free control at p < 0.05 using GraphPad 
Prism software 5.03 (GraphPad, San Diego, CA).

Results

Sample preparation and EDX 
measurements: Selected conditions

Si was selected as a material for the substrate, given its negligible 
concentration in typical bacterial cells, avoiding interactions and 
overlapping elements between the bacteria and the slide. This overlap 
removal will ensure the absence of interaction between EDX signals 
from the substrate and the sample, thus eliminating biased results.

The acceleration voltage of the electron beam is one of the most 
important parameters in EDX measurement. The electron beam is 
scattered in the sample while generating X-rays, which are detected as 
an EDX signal. The Monte Carlo simulation (Supplementary Figure S3) 
revealed that when the acceleration voltage was 5 kV, the penetration 
depth of the electron beam was <500 nm, which mainly provides 
signal from the bacterial surface. With an acceleration voltage of 
15 kV, the penetration depth was about 3 μm. With the larger 
penetration volume, the EDX signal is generated from more bacterial 
cells and thus provides averaged information from multiple cells, 
including the intra-cellular atomic composition. The acceleration 
voltage was set at 15 kV with the highest beam current mode. This 
setting ensured excitation of all the chemical elements of interest and 
obtaining as many X-ray signals as possible.

TABLE 1 List of bacteria and antibiotic susceptibility profiles.

Species Strain Susceptibility Antibiotic MIC ECOFF

Escherichia coli Q5586 Susceptible Imipenem 0.25 mg/L 0.5 mg/L

Escherichia coli P1872 Resistant >32 mg/L

Klebsiella pneumoniae Q5580 Susceptible Imipenem 1 mg/L 2 mg/L

Klebsiella pneumoniae Q2447 Resistant 4 mg/L

Enterobacter cloacae P9549 Susceptible Imipenem 0.25 mg/L 1 mg/L

Enterobacter cloacae P9548 Resistant 2 mg/L
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EDX spectral analysis and calculation

The experimental EDX spectrum contained a non-bacterial 
contribution. First, the spectrum of the Si substrate taken from the 
background measurements was subtracted from all the experimental 
spectra to cancel out the Si peak. This background spectrum was 
observed as an increase in the Na, P, Cl, and K peaks, affecting the 
quantitative analysis of bacterial chemical components. To derive the 
spectrum of the bacterial deposition, the difference between the 
averaged spectrum of the control samples with rinsing I ER ( )   
and without rinsing I ENR ( )  was subtracted from the original 
spectrum I E0 ( ) . This correction procedure enabled the direct 
comparison of EDX spectra under different conditions.

Metabolic modification in E. coli after 
heat shock

Major chemical elements observed in the spectra were C, O, and 
P. Other minor elements were also detected, namely N, Ca, Mg, S, K, 
and Na. Processed EDX spectra revealed alterations in the bacterial 
elemental composition for Mg, K, and Na between the fresh and 
heat-killed bacteria (Figure  1A), which we  correlated to the 
metabolic response of the bacteria to the heat shock. Judging from 
these observations, Mg, K, and Na concentrations were used as 
chemical indicators of bacterial metabolic modifications (Figure 1B).

Metabolic modification in E. coli after 
exposure to alcohol

C, O, and P were the most common chemical elements present 
on the EDX spectra. Traces of other elements were also detected. 
We found the same differences in bacterial elemental composition, 
mainly for Mg, K, and Na, between fresh bacteria and those 
exposed to 70% ethanol (Figure 2). Based on our results, these 

elements were adopted as chemical markers of bacterial 
metabolic changes.

Metabolic modification in bacteria after 
antibiotic treatment

EDX spectra of E. coli, K. pneumoniae, and E. cloacae 
incubated without and with increasing imipenem 
concentrations were acquired (Figure  3). In some cases, 
aluminum (Al) peaks (1.49 keV) were detected, owing to the 
interaction between scattered electrons and the sample 
support made of Al. Signal fluctuation around 1.74 keV 
resulted from the subtraction of Si peaks. Obvious decreases 
in the Mg and K peaks, and a rise in the Na peak were also 
detected for the susceptible strains (E. coli Q5586, 
K. pneumoniae Q5580, and E. cloacae P9549), with increasing 
imipenem concentrations (MIC: 0.25, 1 and 0.25 mg/L 
respectively; Figures  3A,D,G). We  correlated these 
modifications to the metabolic response of the bacteria to the 
induced chemical stress. However, these modifications were 
not observed in the resistant strains (E. coli P1872, 
K. pneumoniae Q2247, and E. cloacae P9548; MIC: >32, 4 and 
2 mg/L respectively; Figures  3B,E,H).These results were 
confirmed by culture and SEM imaging. However, the K and 
Na concentrations express a high variability among the spectra 
from the same bacterial deposit, due to their presence in the 
culture medium. Therefore, the measurement of Mg was 
selected as the follow-up chemical element for our metabolic 
profiling. Regarding the susceptible strains Q5586, Q5580, and 
P9549, the Mg/C ratio showed no significant change from the 
control (p > 0.05) below the MIC. Exceeding this limit, the 
Mg/C ratio tends to decrease monotonically with increasing 
imipenem concentrations, which was more pronounced in the 
case of K. pneumoniae and E. cloacae (p < 0.0001; 
Figures 3C,F,I). The Mg/C ratio of the resistant strains showed 

A B

FIGURE 1

(A) Processed EDX spectra of fresh and heat-killed Escherichia coli (Q5586). Each curve represents the average of three spectra taken from the 
same bacterial deposition. Spectra are offset by 3. (B) Evolution of the K/C, Mg/C, and Na/C ratios between the fresh and the heat-killed E. coli.
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no significant changes compared to the imipenem-free 
controls below the MIC, where K. pneumoniae Q2247 and 
E. cloacae P9548 showed a decreasing tendency which is less 
prominent than the susceptible isolates (p < 0.01 and p > 0.05, 
respectively; Figures 3C,F,I). These results indicate that the 

antibiotic-concentration dependency of the Mg/C ratio 
corresponds well to conventional MICs. When evaluating the 
correlation of the K/C and Na/C ratios with Mg/C for 
K. pneumoniae Q5580, the plots were distributed along a line 
with a positive and negative slope, respectively (Figure  4). 

A B

FIGURE 2

(A) Processed EDX spectra of E. coli (Q5586) at the fresh state and after exposure to 70% ethanol. Each curve represents the average of three 
spectra taken from the same bacterial deposition. Spectra are offset by 3. (B) Evolution of the K/C, Mg/C, and Na/C ratios between the fresh and 
the alcohol-killed E. coli.

A B C

D E F

G H I

FIGURE 3

EDX spectra and Mg/C ratio of Gram-negative bacilli incubated with imipenem. EDX spectra of (A, D, G) susceptible (Q5586, Q5580 and 
P9549) and (B, E, H) resistant (P1872, Q2247, and P9548) strains of E. coli, Klebsiella pneumoniae and Enterobacter cloacae, respectively. Each 
curve represents the average of three spectra taken from the same bacterial deposit. Spectra are offset by 5 (C, F, I) Mg/C ratio of tested strains 
calculated from the respective EDX spectra. Error bars: standard deviations. Blue and red triangles: MIC of tested strains. *p < 0.01; **p < 0.001; 
**p < 0.0001; (ns): not significant.
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These correlations imply the leakage of cytoplasmic cations 
caused by bacterial lysis. Similar correlations were also 
observed in the case of E. coli Q5586 and E. cloacae P9549 
(not shown).

Discussion

In our study, we  optimized a method for the rapid 
preparation of bacterial cultures on Si wafers, followed by EDX 
spectral acquisition and analyses to evaluate early metabolic 
modifications. Monitoring and understanding bacterial 
metabolic alterations imply comparing bacteria under stress 
conditions induced by temperature change, disinfection, and 
biochemical treatments. Our choice of antibiotics to study the 
metabolic changes in bacteria reveals details with progressive 
changes at increasing concentrations (Hanberger et al., 1991; 
Cushnie et al., 2016; Haddad et al., 2021b). When the cell wall 
is damaged, pores are created, leading to diffusive ion 
movement, resulting in a decrease of K+ and Mg2+ and an 
increase in Na+(Lu et al., 2017). The integrity of the bacterial 
cell wall relies on lipid ordering and bilayer stability, both 
affected by heat or solvents (de Kruijff et al., 1985; Yura et al., 
1993; Ramos et al., 2001). Also, increasing Mg2+ was correlated 
with the dividing phase of E. coli in actively dividing cultures 
(Chang et al., 1986). In this study, we confirmed these results 
by detecting a dissipation of the Mg2+ peak after bacterial 
death. Moreover, Chang et  al. reported the reduction in 
monovalent ions signals after washing EDX substrates with 
distilled water, while cellular Mg and membranous Ca seemed 
more tightly bound and conserved (Chang et  al., 1986). 
Therefore, leakage of cytoplasm caused by cell lysis in stressful 
conditions is the main cause of the decrease in Mg, which also 

corresponds to the cell lysis of the isolates when incubated 
with antibiotics (Hanberger et al., 1991; Le Page et al., 2015). 
EDX spectra complement the SEM investigations, especially 
in the case of delayed or non-visible morphological alterations, 
depending on the micro-organism tested. However, our 
method remains limited, since the sample preparation was 
optimized on a thick layer of bacteria from pure cultures. 
Further investigations are needed to apply this method directly 
to a given sample, accounting for interference of the EDX 
spectrum from the culture medium and other components. 
One way to resolve this issue would be a complete separation 
of bacterial cells from the remaining culture medium and 
other components, for an accurate analysis of the signal. On 
the other hand, this method proved to be  efficient at 
investigating and detecting early onset metabolic 
modifications in bacterial composition induced by heat, 
disinfection, and antimicrobial agents, giving robust and 
consistent results, thus providing predictive information on 
bacterial metabolic state and viability, and yielding earlier 
results than culture. In this work, EDX coupled to SEM proved 
its ability capability of detecting non-morphological antibiotic 
effects at early stages of the bacterial growth when incubated 
with antibiotics, opening a new strategic path in assessing the 
early bacterial response. This assay presents a potential 
candidate for the development rapid antibiotic susceptibility 
testing applicable in clinical microbiology. Furthermore, 
automatically identifying the field of view will be  easily 
achievable by depositing the bacterial suspension at 
reproducible positions with an optimal design of the substrate. 
Shortening the preparation and EDX acquisition time, as well 
as system automation, should be considered as key factors for 
future potential implementation of our newly developed  
strategy.

A B

FIGURE 4

Comparison of Mg/C ratio, K/C ratio, and Na/C ratio of a Klebsiella pneumoniae susceptible strain incubated with various concentrations of 
imipenem. K/C ratio (A) and Na/C ratio (B) as a function of Mg/C ratio. Numbers in the figure represent the imipenem concentration. Dashed lines 
are linear fitting for all plots.
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