
RESEARCH ARTICLE

OCLSTM: Optimized convolutional and long

short-term memory neural network model for

protein secondary structure prediction

Yawu ZhaoID, Yihui Liu*

School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of

Sciences), Jinan, China

* yxl@qlu.edu.cn

Abstract

Protein secondary structure prediction is extremely important for determining the spatial

structure and function of proteins. In this paper, we apply an optimized convolutional neural

network and long short-term memory neural network models to protein secondary structure

prediction, which is called OCLSTM. We use an optimized convolutional neural network to

extract local features between amino acid residues. Then use the bidirectional long short-

term memory neural network to extract the remote interactions between the internal resi-

dues of the protein sequence to predict the protein structure. Experiments are performed on

CASP10, CASP11, CASP12, CB513, and 25PDB datasets, and the good performance of

84.68%, 82.36%, 82.91%, 84.21% and 85.08% is achieved respectively. Experimental

results show that the model can achieve better results.

Introduction

Protein is the material basis of life activities, the basic organic matter that constitutes cells, and

the main bearer of life activities. The structure of protein determines its function, so the pre-

diction of protein structure has great research value. The structure of a protein mainly includes

primary structure, secondary structure, tertiary structure and quaternary structure. The pri-

mary structure of a protein is the basic structure of the protein, and the amino acid sequence

corresponds to the protein structure. Protein secondary structure is formed by folding based

on protein primary structure. The tertiary structure of the protein is further coiled and folded

based on the secondary structure, and the specific spatial structure formed by the maintenance

of the secondary bond is called the tertiary structure of the protein. And so on, protein quater-

nary structure refers to a polymer structure formed by connecting multiple polypeptide chains

with independent tertiary structure through non-covalent bonds. In the field of bioinformat-

ics, protein secondary structure prediction is a very important and challenging problem [1], it

is difficult to predict the spatial structure of a protein from a primary structure, so the predic-

tion of protein secondary structure has been valued by many people.

At present, there are many basic methods to predict the protein secondary structure.

For example, traditional machine learning methods: SVM [2], Bayesian algorithm [3]. In
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recent years, big data, deep learning methods, and other technologies have been widely

used. Combined with deep learning models to predict the secondary structure of the pro-

tein has become a trend in research. Convolutional neural networks [4] have the charac-

teristics of local perception, weight sharing, and downsampling. The convolutional

neural network proposes that each neuron does not need to perceive all the pixels in the

image, but only perceives the local pixels of the image, and then combines this local infor-

mation at a higher layer to obtain all the characterization information of the image. The

weight-sharing network structure reduces the complexity of the network model and the

number of weights. The pooling layer does not perform any learning and is usually

referred to as a form of nonlinear downsampling. The result of the merging process is to

reduce the feature size and parameters to reduce the amount of calculation and increase

the calculation speed. MUFOLD-SS [5] proposed a new deep neural network architecture,

named the Deep inception-inside-inception (Deep3I) network for protein secondary

structure prediction. Wavelets and convolutional neural networks [6] first used wavelets

to extract features from the PSSM matrix and then input them to the convolutional neural

network to further extract features. DeepCNF [7] used deep neural networks and condi-

tional neural fields to predict for 3- and 8-state secondary structure. PSRM [8] utilized

big data to train support vector machines [9]. This training uses protein length-based

division and random subspaces of training data to train on various training targets. Com-

pared with machine learning methods, convolutional neural networks can automatically

extract local features of amino acid residues. For example, convolutional neural networks

[7,10] and recurrent neural networks [11] have achieved remarkable results. In 1997,

Hochreiter first proposed the Long Short-Term Memory (LSTM) [12], which is a special

recurrent neural network (RNN). It can effectively solve the problem of gradient disap-

pearance or gradient explosion of RNN and can learn long-distance dependencies. Guo

et.al [13] fused asymmetric convolutional neural networks and long short-term memory

neural network models and applies them to predict eight classes of the secondary struc-

ture of proteins. The paper [11] used long short-term memory (LSTM) bidirectional

recurrent neural networks (BRNN), which can capture long-range interactions without

using sliding windows. Paper [14] used bidirectional long and short-term memory neural

networks to capture the long-distance correlation between amino acid residues for sec-

ondary structure prediction.

Most of the above models improve the structure of the deep network and add features to

improve the prediction accuracy rate. However, the selection of network model parameters is

based on manual adjustment, these models of parameters have not been optimized. To solve

this problem, in this paper we used Bayesian optimization convolutional neural network was

combined with long short-term memory neural network models for the prediction of protein

secondary structure. The model combines the optimized convolutional neural network and

BiLSTM neural network and used the protein feature matrix to predict the protein secondary

structure. The optimized convolutional neural network can extract local features between

complex amino acid residues in protein sequences. Besides, the BiLSTM neural network can

further extract complex remote interactions between amino acids. Experimental results prove

that the model in this paper can achieve better results.

Materials and methods

A. Model structure

We proposed an optimized convolutional neural network and BiLSTM neural network model

for protein secondary structure prediction. Firstly, the Bayesian algorithm is used to optimize

PLOS ONE OCLSTM

PLOS ONE | https://doi.org/10.1371/journal.pone.0245982 February 3, 2021 2 / 14

https://doi.org/10.1371/journal.pone.0245982


the learning rate, network layers, gradient impulse, and regularization coefficients of the con-

volutional neural network. Through continuous iteration, the optimal network structure can

be obtained. Secondly, extract the fully connected layer features of the convolutional neural

network as the input of the BiLSTM neural network, and adjust the number of hidden unit lay-

ers. Fig 1 shows the model of this paper.

To get the best convolutional neural network structure, position-specific scoring matrix

(PSSM) [15] represents the evolutionary information of acid amino sequence and can be

used as a feature vector for predicting secondary structure. PSI-BLAST [16] software is used

to calculate the position specific scoring matrix. In this paper, the PSSM evolution matrix is

generated by multiple sequence alignment on the NR database using the PSI-BLAST pro-

gram. The parameter of the PSI-BLAST program is set to a threshold of 0.001, and 3 itera-

tions are performed to generate a 20xN matrix, where N is the length of the amino acid

sequence and 20 represents the type of amino acid. The filter parameter is used to mask out

the low complexity in the input sequence or the known repetitive sequence. There are two

options, T and F. When we select "T" in this program, the program will shield simple repeti-

tions and low-complexity sequences. Such as, when the sliding window is 13, to define the

protein sequence as the center of the first sliding window, then it is necessary to make up 6

zeros before the first amino acid of the protein sequence and 6 zeros after the last amino

acid of the protein sequence to cover all the residue, the processed PSSM matrix is used as

the input to the convolutional neural network.

The widely used protein structure definition DSSP [17] contains eight class secondary

structures, which are H (α-helix), B (β-turn), E (folded), G (3-helix), and I (5-helix), T

Fig 1. Model structure (Bayes optimizes the convolutional neural network and extracts local features, and BiLSTM extracts global features).

https://doi.org/10.1371/journal.pone.0245982.g001
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(corner), S (curl), and L (ring). In this paper, G, H, I will be replaced by H, B, E will be replaced

by E, and the rest will be replaced by C.

The experimental environment of this article is as follows: The cluster hardware is com-

posed of 4 NF5280M5, 1 NF5288M5, and two Gigabit switches. NF5280M5 is equipped with

Tesla V100 GPU (16G memory) computing card, NF5288M5 is equipped with Tesla V100

GPU (32G memory) computing card, and all nodes in the cluster are installed with Centos7.4

X64 standard system.

B. Datasets

In this research, we selected seven public datasets: ASTRAL [18], CullPDB [19], CASP10 [20],

CASP11 [21], CASP12 [22], CB513 [23] and 25PDB [24]. The ASTRAL dataset is version 2.03

released in 2013, it contains a total of 59514 proteins and contains more than 65% of the pro-

tein structure in the protein database. The CullPDB dataset contains 12,288 proteins. The

CullPDB dataset was selected based on the percentage identity cutoff of 25%, the resolution

cutoff of 3 angstroms, and the R-factor cutoff of 0.25. We removed the repeated protein

sequences from the ASTRAL and CullPDB dataset and obtained 15,696 proteins as the training

set.

Public datasets CASP10, CASP11, CB513, and 25PDB were used to test the model in this

paper, and sequence identity is less than 25%. There are no duplicate protein sequences in the

training and test dataset. The number of protein sequences is shown in Table 1.

OCLSTM

A. Convolutional neural network

Convolutional neural networks [25] can extract local features between amino acid residues

and improve the accuracy of protein secondary structure prediction. For the PSSM matrix, the

data is divided in a sliding window manner as the input of the convolutional neural network.

The convolutional layer is used to perform local feature extraction on the input data through

local convolution and weight sharing. The input of each neuron in the convolutional layer

comes from the neurons in a specific area of the previous layer feature map and the size of this

specific area is determined by the convolution kernel. The process of convolution is to realize

the convolution operation through the feature extraction filter "sliding" on the input matrix

PSSM. Each region must be multiplied by the input matrix and weights, and then added with

the offset parameter bk to obtain the feature map. The feature map ci is defined as follows:

Ci ¼ Ci
1
;Ci

2
;Ci

3
; . . . ;Ci

k; . . . ;Ci
N

� �
ð1Þ

Ci is a convolution kernel group of the i-th layer, Ci
k is a convolution kernel of the i-th layer, N

is the number of convolution kernels of the i-th layer. In the Bayesian optimization process,

the number of convolution kernels is proportional to the depth of the network, so that

Table 1. Number of proteins in the test datasets.

Test dataset Number of proteins Number of original proteins

CASP10 51 99

CASP11 36 81

CASP12 9 19

CB513 411 513

25PDB 999 1672

https://doi.org/10.1371/journal.pone.0245982.t001
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networks of different depths have approximately the same number of parameters. In this

paper, when the sliding window is 13 and 19, the depth of NetworkDepth is selected between

[1,7] and the number of convolution kernels is 256/sqrt (NetworkDepth). For example, when

the NetworkDepth is 4, the NetworkDepth parameter controls the depth of the network. The

network has four parts, and each part has the same NetworkDepth convolutional layer. There-

fore, the total number of convolutional layers is 4�NetworkDepth. In each layer, the number of

convolution filters proportional to 256/sqrt(NetworkDepth) is used. Wi� 1
h is an area map gen-

erated by the input amino acid PSSM matrix and the convolution kernel from the previous

layer. After the convolution of the i-th layer, the feature map Jik can be obtained, which is

defined as follows:

Jik ¼ f
X

h

Wi� 1

h � C
i
k þ bk

� �
ð2Þ

Variable bk is the offset parameter, f is the activation function and the activation function is

Relu. It is role is to perform non-linear operations on the output of the convolutional layer.

The pooling layer does not perform any learning, it is often referred to as a form of non-lin-

ear downsampling. The result of the pooling process is to reduce the feature dimensions and

parameters to increase the calculation speed. It can also effectively reduce overfitting, and also

have the characteristics of constant translation, which increases robustness.

Each neuron in the fully connected layer must be connected to the neurons in the previous

layer, and the neurons in the fully connected layer are not connected to each other so that the

local features extracted by the convolutional layer and the pooling layer can be synthesized to

obtain global characteristics. The Softmax layer is the output layer, which is composed of three

neurons. The output of this layer satisfies the following formula:

X3

j¼1

Pj ¼ 1 ð3Þ

Variable j represents the structures E, H and C of the protein.

B. Bayesian optimization

In recent years, with the development of computer science and technology, the rise of various

industries and fields has been born. The larger amounts of data generated by these industries

also require more complex decision-making algorithms. For the above complex problems,

Bayesian optimization algorithms [26] are an effective solution. The Bayesian optimization

algorithm only needs a few objective function evaluations to obtain better results, and the

Bayesian optimization algorithm has been widely used in games [27], recommendation sys-

tems [28], and navigation [29]. Due to the increasing number of protein sequences, applying

the convolutional neural network model to the prediction of protein secondary structure, it

takes a long time to adjust the hyperparameters of the convolutional neural network. There-

fore, this paper uses a Bayesian optimization algorithm to optimize the convolutional neural

network of hyperparameters.

The model proposed in this paper specifies the architecture of the convolutional neural net-

work and the variables to be optimized, it includes learning rate, gradient impulse, regulariza-

tion coefficient, and network layer and these variables are used as options for training

algorithms. Create an objective function for the bayesian optimizer using training and valida-

tion data as inputs, and this function uses the variables to be optimized as input to train and

verify the network. The CASP10 data set is used as the validation set.
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The optimization of the hyperparameters of the convolutional neural network can be

regarded as the optimization of the unknown black-box function. Bayesian optimization is to

find the minimum value of the loss function f(x) on the bounded set D. It can construct a prob-

ability model for the function f(x) and use this model to judge how the set D evaluates the

function. First, assume that the Gaussian kernel function is an optimized black-box function,

and then choose an acquisition function to determine the next sampling point. Bayesian opti-

mization of hyperparameters is Gaussian prior modeling of the loss function f(x) by hyper-

parameters.

Lðmx;VhÞ ¼
X

ðxi ;yiÞ2Vh

I mxðxiÞ;Yi

� �
ð4Þ

Since the observations on the validation set have noisy, so add gaussian noise to each observa-

tion.

f ðxÞ ¼ Lðmx;VhÞ þ y ð5Þ

mx is the model parameter generated by the convolutional neural network, including the learn-

ing rate, gradient impulse, and regularization coefficient. I(mx(xi),Yi) is objective function and

y � Nð0; s2
nÞ.

When using Gaussian process regression, there is no need to declare a specific function

form. Any finite number of hyperparameters causes a multivariate gaussian distribution,

which is determined by the covariance function K and the mean function μx.

L � GPðmx;KÞ ð6Þ

Where K = [k(x�,x1),k(x�,x2),. . .,k(x�,xn)]T, x� are hyperparameters.

Suppose the input hyperparameters Xi = (x1, x2,. . .xn) gets the output Y = L(xi, Vh) on the

validation set. In each experiment, the Gaussian function evaluates f(x) based on the hyper-

parameter Xi and the validation set output Y and then the next set of hyperparameters is

selected by the acquisition function. The predicted distribution of hyperparameter Xi is

expressed as:

V½f ðxiÞ� ¼ kðxi; xiÞ � KT
�
ðK þ s2

nIÞ
� 1K� ð7Þ

In the process of Bayesian optimization of the parameters of the convolutional neural network,

during each iteration, the collection function observes f(x), and then compares the next sam-

pled hyperparameters to find the optimal solution. Expected Improvement [30] is defined as

follows.

aðxjDÞ ¼ E½maxð0; fx � fbestÞ� ð8Þ

Where fbest is the optimal solution based on the validation set.

To get the input of the BiLSTM neural network, we extract the output of the fully connected

layer in the convolutional neural network. The protein sequence F represents as follows:

F ¼ fcðWi� 1

h � J
i
k þ bÞ ð9Þ

Where, the amino-acid sequence is represented as F: F1, F2,. . .,FN-1,FN.

C. BiLSTM

Compared with RNN, LSTM has designed the controller of the neural unit (Cell), which can

judge whether the information is useful. In summary, the long-distance interdependencies

[11,31] of amino acids are critical for protein secondary structure prediction. Therefore, local
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features extracted by the optimized convolutional neural network are sent to BiLSTM to obtain

the long-distance dependencies of amino acids. The Cell control unit shows in Fig 2.

The control unit of the LSTM model consists of a memory unit that records the state and

three gates (input gate it, output gate ot, and forget gate ft). At time node t, the amino acid data

enters the control unit for calculation. LSTM can choose to remember or forget certain infor-

mation and control the output of information and pass this status information to the next time

t + 1. The calculation method of each control information is as follows:

it ¼ sigmoid Wiht� 1 þWiFt þ bið Þ ð10Þ

ot ¼ sigmoidðWoht� 1 þWoFt þ boÞ ð11Þ

ft ¼ sigmoidðWfht� 1 þWfFt þ bf Þ ð12Þ

ct ¼ ft � ct� 1 þ it � tanhðWcht� 1 þWcFt þ bcÞ ð13Þ

ht ¼ ot � tanhðctÞ ð14Þ

Where ft is forgotten gate information at time t, it is input gate information at time t, ot is out-

put gate information at time t. ct represents the update of the memory unit, ht produces the

current output, and decides which information is finally output. Moreover, W, b and� respec-

tively represent weight matrix, bias value, and element-wise multiplication.

In this paper, BiLSTM consists of a bidirectional LSTM neural network, as shown in Fig 3.

The amino acid sequence was used as inputs to the forward and reverse LSTM networks to

capture the long-distance dependence of amino acid residues. After the outputs of the two

LSTM layers are combined, the softmax function is used for classification.

Fig 2. Internal architecture of the LSTM cell.

https://doi.org/10.1371/journal.pone.0245982.g002
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The inputs of the forward LSTM and backward LSTM in the BiLSTM model at time t are

respectively:

h
!

i ¼ L
!

ðFi; h
!

i� 1
Þ ð15Þ

h
 

i ¼ L
 

ðFi; h
 

i� 1
Þ ð16Þ

Where, hi
!

is the output of the hidden state of the forward LSTM, hi
 

is the backward LSTM hid-

den state output. Combine the two as the hidden state output result hi of BiLSTM.

Results and discussion

As shown in Fig 1, we propose an optimized convolution and BiLSTM neural network model

called OCLSTM. In the optimized convolution process, the NetworkDepth parameter controls

the depth of the network. The network has four parts, and each part has the same Network-

Depth convolutional layer. Therefore, the total number of convolutional layers is

4�NetworkDepth. In each layer, the number of convolution filters proportional to 1/sqrt(Net-

workDepth) is used. Therefore, for different part depths, the number of parameters and the

amount of calculation required for each iteration are roughly the same. We used regularization

to prevent overfitting. BiLSTM neural network can capture the long-distance dependence of

the amino acid features extracted by the convolutional neural network.

By Bayesian optimization of the hyperparameters of the convolutional neural network, it

can be found that the number of network layers, learning rate, gradient impulse, and regulari-

zation coefficient have a certain effect on the accuracy of the test dataset. The process of adjust-

ing the hyperparameters show in Tables 2 and 3 (Network layers include: the input layer,

convolutional layer, ReLU layer, pooling layer, fully connected layer, and softmax layer).

Fig 3. BiLSTM neural network structure.

https://doi.org/10.1371/journal.pone.0245982.g003
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Table 2. Hyperparameters with sliding window of 13.

network layers Learning rate Gradient impulse Regularization

10 0.0069 0.9359 2.15e-10

14 0.0013 0.8699 1.90e-04

18 0.0038 0.7562 5.62e-08

22 0.0027 0.9484 3.98e-06

https://doi.org/10.1371/journal.pone.0245982.t002

Table 3. Hyperparameters with sliding window of 19.

network layers Learning rate Gradient impulse Regularization

10 0.0035 0.7594 6.46e-05

14 0.0016 0.9455 7.11e-09

18 0.0024 0.6354 3.52e-07

22 0.0041 0.8720 4.52e-04

https://doi.org/10.1371/journal.pone.0245982.t003

Table 4. Max pooling layer accuracy with a sliding window of 13.

Test dataset 10 14 18 22

CASP10 80.02 80.80 80.23 81.09

CASP11 77.49 79.98 78.25 78.30

CB513 78.29 82.42 80.53 80.05

25PDB 79.33 82.41 83.46 80.66

https://doi.org/10.1371/journal.pone.0245982.t004

Table 5. Max polling layer accuracy with a sliding window of 19.

Test dataset 10 14 18 22

CASP10 79.97 80.09 80.02 81.36

CASP11 77.93 78.29 78.48 80.83

CB513 80.08 82.34 83.76 84.29

25PDB 81.45 83.40 83.80 84.80

https://doi.org/10.1371/journal.pone.0245982.t005

Table 6. Average pooling layer accuracy with a sliding window of 13.

Test dataset 10 14 18 22

CASP10 79.92 80.23 79.81 80.47

CASP11 77.28 78.82 78.23 77.69

CB513 78.14 81.16 79.35 79.58

25PDB 79.29 81.54 82.77 80.02

https://doi.org/10.1371/journal.pone.0245982.t006

Table 7. Average pooling layer accuracy with a sliding window of 19.

Test dataset 10 14 18 22

CASP10 79.51 79.48 79.68 80.95

CASP11 77.38 77.63 78.09 80.31

CB513 79.06 81.87 82.97 83.64

25PDB 79.87 83.04 83.42 84.18

https://doi.org/10.1371/journal.pone.0245982.t007
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It is found through experiments that different hyperparameters have different accuracy

rates. Different network structures can get different accuracy rates, as shown in Tables 4 and 5.

The pooling layer includes max pooling and average pooling. As the hyperparameters of

the convolutional neural network, the differences between them are: (1) the average pooling is

to average the points in the area. (2) max-pooling is the maximum value of the output area.

The accuracy rates in Tables 4 and 5 are the results obtained at the max-pooling layer. Tables 6

and 7 show the accuracy rate under average pooling.

The optimal network structure model can be obtained by comparing the results in Tables

4–7. When the sliding window is 19, the network model structure is 8 convolutional layers, the

first four convolutional layers (convolution kernel size is 19, the number is 94), and the last

four convolutional layers (convolution kernel size is 8, the number is 128), after each convolu-

tional layer adds a ReLU layer. And after every four convolutional layers, the max-pooling

layer size is 2�2.

In this paper, we obtain the optimal convolutional neural network structure through exper-

iments. On this basis, local features of the convolutional neural network are extracted as the

input of BiLSTM.

It can be from Table 8 that when the input feature dimension is 50, the CASP10 data set has

the highest accuracy rate. We will adjust the number of neurons with a feature dimension of

50. LSMT1 is the number of neurons in the first layer, and LSTM2 is the number of neurons in

the second layer. Q3 accuracy shows in Tables 9 and 10.

In this paper, we make a comparative experiment to prove the effectiveness of the OCLSTM

model. We use the unoptimized convolutional neural network combined with BiLSTM to pre-

dict protein secondary structure. The experimental results show in Table 11.

Table 8. Accuracy in different feature dimensions.

BiLSTM input dimension CASP10

50 84.32

100 84.25

150 83.23

200 84.07

250 84.09

300 83.92

350 84.04

400 83.96

450 83.73

500 83.51

550 83.60

600 83.97

https://doi.org/10.1371/journal.pone.0245982.t008

Table 9. Q3 accuracy the number of different neurons.

LSTM2 LSTM1

200 400 600 800 1000

200 83.88 83.94 84.46 83.86 84.31

400 84.29 83.97 81.75 83.87 83.53

600 83.93 84.15 83.42 84.04 84.30

800 84.07 83.99 84.19 83.84 84.53

1000 84.08 83.79 83.71 83.97 84.18

https://doi.org/10.1371/journal.pone.0245982.t009
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For the training dataset of 15696 proteins, one of 3 cross-validation experiments has

2540889 training samples and 1322362 test samples. The length of the sliding window is set to

13 and 19, to catch the long-range interaction of the amino acid sequence. Each experiment is

running 3-fold cross-validation to 3 times. Table 12 shows the results based on CNN and

OCLSTM are respectively.

In order to evaluate the accuracy of the model in this paper, four public test sets were used:

CASP10, CASP11, CB513, and 25PDB. The model in this paper is compared with SPINE-X

[32], SSpro [33], PSIPRED [34], JPRED [35], and DeepCNF [7] models. The accuracy of pre-

dicting the secondary structure of three types of proteins used as an index to evaluate the model

in this paper. SPINE-X used a multi-step neural network, SSpro used a bidirectional naive

recursive neural network, PSIPRED used a two-layer feedforward neural network, RaptorX-SS8

used a conditional neural field, and DeepCNF is a combination of a deep neural network and a

conditional neural field. In Fig 4 and Table 13, the results of SPINE-X, SSpro, PSIPRED,

JPRED, and DeepCNF on the test set are all taken from the paper [1,7]. We used the original

test set and the duplicated test set to verify the OCLSTM model. The results show in Table 13.

Conclusions

In bioinformatics, protein secondary structure prediction is a very important task. To better

understand the relationship between protein sequences and structures, we propose an opti-

mized convolutional neural network and long-term short-term memory neural network

method, called OCLSTM. Compared with the latest method, our model achieved better results

on three public test sets: CASP10, CASP11, and CB513. Convolutional neural networks can

extract complex local features between amino acids, and BiLSTM can capture the correlation

between distant amino acid residues. Experimental results show that OCLSTM can improve

the Q3 accuracy of protein secondary structure prediction and have the ability of invariance of

mutation, insertion, deletion of residue to some degree. The convolutional neural network

uses the maximum pooling layer and selects the maximum value of the region as the feature.

Therefore, when mutations, insertions, and deletions occur, there is a certain degree of muta-

tion invariance. In future work, we will predict the Q8 accuracy of protein secondary structure

and test our method on CASP, B513, and 25PDB datasets.

Table 11. Unoptimized convolution experiment results.

Dataset Q3 QC QE QH

CASP10 82.21 78.76 77.35 84.96

CASP11 79.41 80.21 78.36 82.67

CASP12 80.22 79.23 71.63 88.06

CB513 82.94 83.42 79.24 87.89

25PDB 84.31 82.4 80.35 89.72-

https://doi.org/10.1371/journal.pone.0245982.t011

Table 10. The results on the test set of Q3 accuracy.

Dataset Q3 QC QE QH

CASP10 84.53 83.25 75.35 83.95

CASP11 80.61 77.63 74.63 86.82

CASP12 82.55 79.0 77.61 90.56

CB513 83.76 84.1 75.17 87.37

25PDB 84.89 83.24 79.28 90.14

https://doi.org/10.1371/journal.pone.0245982.t010
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Table 13. Q3 accuracy of the tested methods on CASP10, CASP11, CASP12, CB513and 25PDB datasets. (The results of SPINE-X, SSpro, PSIPRED, JPRED, and

DeepCNF on the test set are all taken from PAPER [1,7]).

Methods CSAP10 CASP11 CASP12 CB513 25PDB

SPINE-X 80.7 79.3 76.9 78.9 -

SSpro(without template) 78.6 77.6 - 78.5 -

PSIPRED 81.2 80.7 78.0 79.2 -

JPRED 81.6 80.4 75.1 81.7 -

DeepCNF 84.4 84.7 82.1 82.3 -

OCLSTM 84.53 80.61 82.55 83.76 84.89

OCLSTM(original) 84.68 82.36 82.91 84.21 85.08

https://doi.org/10.1371/journal.pone.0245982.t013

Fig 4. Q3 accuracy comparison between OCLSTM and other methods on CASP10, CASP11, CB513, CASP12 and

25PDB datasets.

https://doi.org/10.1371/journal.pone.0245982.g004

Table 12. Q3 accuracy results of OCLSTM and CNN.

Sliding window OCLSTM

13 79.78

19 80.09

CNN

13 78.33

19 79.86

https://doi.org/10.1371/journal.pone.0245982.t012
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