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Counterintuitive properties of the fixation
time in network-structured populations

Laura Hindersin and Arne Traulsen

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany

Evolutionary dynamics on graphs can lead to many interesting and counterin-

tuitive findings. We study the Moran process, a discrete time birth–death

process, that describes the invasion of a mutant type into a population

of wild-type individuals. Remarkably, the fixation probability of a single

mutant is the same on all regular networks. But non-regular networks can

increase or decrease the fixation probability. While the time until fixation for-

mally depends on the same transition probabilities as the fixation probabilities,

there is no obvious relation between them. For example, an amplifier of selec-

tion, which increases the fixation probability and thus decreases the number of

mutations needed until one of them is successful, can at the same time slow

down the process of fixation. Based on small networks, we show analytically

that (i) the time to fixation can decrease when links are removed from the net-

work and (ii) the node providing the best starting conditions in terms of the

shortest fixation time depends on the fitness of the mutant. Our results are

obtained analytically on small networks, but numerical simulations show

that they are qualitatively valid even in much larger populations.
1. Introduction
Most analytical results for evolutionary dynamics have been obtained for

well-mixed populations, regular networks or deme-structures. However, the

consideration of non-regular networks has shown that there is a wealth of evol-

utionary phenomena that is not captured by these approaches. For example,

while the fixation probability of a single mutant is the same on all regular net-

works [1], some non-regular networks can increase this probability and serve as

amplifiers of selection, or decrease it and serve as suppressors of selection. It

seems to be tempting to use amplifiers of selection to speed up experimental

evolution, as the probability of the fixation of beneficial mutants could be

increased. However, it turns out that amplifiers of selection can at the same

time slow down the time until fixation. Thus, such an approach would have

the drawback that while the time until a mutant appears is decreased, the

time until it takes over is increased [2,3].

Evolutionary dynamics on network structures can also serve as a powerful

abstraction when studying the somatic evolution of cancer [4–6]. In this con-

text, the idea is that directed networks can substantially decrease the number

of cells at risk and thus inhibit the accumulation of cancer mutations.

While most previous work on network structured populations has focused on

the fixation probability [1,4,7–11], the time to fixation has received considerably

less attention so far [2,3,12]. Several questions that appear somewhat obvious are

still open: does the time to fixation always increase when a link is removed from a

network? Do amplifiers of selection always change the time to fixation?

We study constant selection, where the fitness does not depend on the frequen-

cies of the types. There exists a huge body of closely related research on

evolutionary game theory on graphs (e.g. [12–21]). It has been shown there that

the graph structure can substantially affect evolutionary game dynamics. But as

the fixation time on networks already leads to interesting and counterintuitive

results for constant selection, we focus on this case.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0606&domain=pdf&date_stamp=2014-08-20
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As the number of possible states in non-regular networks

rapidly increases with population size N, we focus on the smal-

lest population size that allows us to obtain any interesting

results, N ¼ 4. We consider all six possible undirected networks

in detail and calculate (i) the probability of fixation, (ii) the time

to fixation, and (iii) the sojourn times depending on the fitness

of the mutant. This approach illustrates that the time to fixation

can actually increase when a link is added to the network. It

particularly allows us to infer in which states the system

spends this additional time. Moreover, our approach shows

that the optimal starting point for a novel mutation in terms

of its fixation time also depends on the fitness of this mutation.

1.1. The Moran process in well-mixed populations
The Moran process is a birth–death process in a well-mixed

population [22]. We start from N 2 1 wild-type individuals

with fitness 1 and one mutant with fitness r . 0. If r . 1, the

mutant is advantageous compared to the wild-type, whereas

r , 1 implies a disadvantage. One can also study neutral evol-

ution, where r ¼ 1. At each time step, one of the N individuals

is selected for birth with probability proportional to its fitness.

This individual gives birth to an identical offspring which

replaces another randomly chosen individual.

The probabilities of increasing and decreasing the number

of mutants are given by a tridiagonal transition matrix

T(Nþ1)�(Nþ1). The probability to increase the number of

mutants by one is given by

Ti,iþ1 ¼
ri

riþN � i
� N � i
N � 1

, (1:1)

for 0 � i � N. The probability to decrease the number of

mutants from i to i 2 1 in one time step is

Ti,i�1 ¼
N � i

riþN � i
� i
N � 1

, (1:2)

for 0 � i � N.

We assume a mutation rate of zero, which is reflected

by T0,1 ¼ TN,N21 ¼ 0. As T0,21 ¼ TN,Nþ1 ¼ 0, the boundaries

i ¼ 0 and i ¼ N are absorbing.

If a mutant replaces another mutant or a wild-type

replaces another wild-type, the population does not change.

This happens with probability Ti,i ¼ 1 2 Ti,iþ1 2 Ti,i21.

As the ratio of the transition probabilities is

Ti,i�1

Ti,iþ1
¼ 1

r
, ð1:3Þ

for 1 � i � N 2 1, the fixation probability fi,N for i mutants in

a well-mixed population is given by [23–25]

fi,N ¼
1þ

Pi�1
k¼1

Qk
l¼1

Tl,l�1

Tl,lþ1

1þ
PN�1

k¼1

Qk
l¼1

Tl,l�1

Tl,lþ1

¼ 1� 1=ri

1� 1=rN : (1:4)

The time which one mutant needs to take over the whole

population, given that it does succeed, is called conditio-

nal fixation time because it is conditioned on the success of

the mutants. By contrast, the unconditional fixation time

measures how long it takes for the mutants to either go

extinct or fixate, starting from one mutant. For birth–death

processes (and the Moran process in particular), the expected

conditional fixation time t1,N is given by [23–25]

t1,N ¼
XN�1

k¼1

Xk

l¼1

fl,N

Tl,lþ1

Yk

m¼lþ1

Tm,m�1

Tm,mþ1
: (1:5)
1.2. The Moran process in structured populations
Population structure can be introduced into the Moran model

by assuming that individuals are represented by the nodes in

a network and assuming that reproduction and replacement

is only possible between connected nodes (see [1] and [24,

ch. 8]. The fixation probability can then be assessed in the follow-

ing way: individuals of the wild-type with fitness 1 are placed on

the nodes of a network. A single mutant with fitness r is placed

on one of the nodes at random. In each time step, one individual

is chosen for birth with probability proportional to its fitness.

Then one of its neighbours is chosen at random to be replaced

by the new offspring. Thus, the links of a node determine into

which of the neighbouring sites the individual on that node

can reproduce. Throughout our work, we only consider con-

nected undirected networks with equal weights. The standard

Moran process corresponds to the complete network, where

every node is adjacent to all other nodes, which implies that

the probability of being replaced is equal for all individuals.

On isothermal networks, where every node has the

same number of neighbours in the case of undirected net-

works, it has been shown in [1] that the fixation probability is

the same as in the well-mixed population. Examples for

isothermal networks are the ring and the two-dimensional lat-

tice with periodic boundary conditions. But in general, the

probability of replacement can vary crucially between different

nodes, resulting in fixation probabilities that are distinct from

the well-mixed population. Non-isothermal networks that

increase (decrease) the fixation probability for advantageous

mutants and decrease (increase) it for disadvantageous

mutants are called amplifiers (suppressors) of selection.

1.3. A general approach to calculate probabilities and
times of fixation

While the analytical results for birth–death processes can be tai-

lored to some network structures [3,26], this does not always

work. For assessing absorption probabilities and times of

Markov chains, a more general approach, which is typically

used in numerical considerations, described in ch. 11 of [27] can

be exploited (see also [28] for an application in another context).

Let Ts�s be the transition matrix of a discrete-time Markov

chain with at least one absorbing state. We renumber the

states such that the t transient states are first and the a absorb-

ing states are last, where t þ a ¼ s is the total number of states

(for our problem, we will always consider the case of two

types, which implies a ¼ 2). The transition matrix now has

the following canonical form:

Ts�s ¼
Q R
0 I

� �
, (1:6)

where Qt�t consists of the transition probabilities between tran-

sient states and Rt�a describes the transitions from the transient

into the absorbing states. As transitions are not possible from

an absorbing state to a transient state, the lower left block is

zero. Once absorbed, the process will stay there forever, there-

fore the lower right block of T is an identity matrix Ia�a. For a

starting distribution x1�s, the product xTm gives the distri-

bution after exactly m time steps. For m!1, we can recover

the fixation probabilities from this.

Let us call F ¼ S
1
n¼0Qn ¼ (I�Q)�1 the fundamental

matrix of the Markov chain. The i,jth entry of F, given by

Fi,j ¼ (I�Q)�1
� �

i,j (1:7)
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Figure 1. The six possible connected undirected networks of size N ¼ 4. The
complete graph (which corresponds to the well-mixed population) and the
ring are isothermal (homogeneous) networks, implying that the fixation
probabilities on these networks are identical. The other four networks are
degree heterogeneous and thus not isothermal. (Online version in colour.)
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is the expected sojourn time in the transient state j, given that

the process started in the transient state i [27, ch. 11].

Multiplying F with the transition probabilities to the

absorbing states provides the absorption probabilities. The

absorption probability in state j after starting in state i, fi,j,

is the ijth entry of F ¼ F . R,

fi,j ¼ (I�Q)�1R
� �

i,j: (1:8)

To assess the total time the process spends before absorption,

we look at the so-called unconditional fixation time. The uncon-

ditional fixation time, which is the expected number of time steps

before the process is absorbed in either of the absorbing states,

can be calculated from the expected sojourn time. Summing

over the ith row of F yields the unconditional fixation time ti,

after starting in state i. For N 2 1 transient states, this is given by

ti ¼
XN�1

j¼1

Fi,j: (1:9)

To calculate the conditional fixation time from the uncon-

ditional sojourn times, we use an approach described in

[29,30]. If fi,N is the fixation probability to reach state N start-

ing in state i and Fi,j is the unconditional sojourn time in state

j after starting in state i, then the conditional fixation time of

the process on any network, starting in state i, is given by

ti,N ¼
XN�1

j¼1

f j,N

fi,N
� Fi,j

� �
: (1:10)

This allows us to go beyond unconditional times even on

heterogeneous networks.
2. Results
2.1. Analytical results for small networks
First, we analyse small networks that allow a fully analytical

approach. There are six different connected undirected

graphs with four nodes, illustrated in figure 1.

Out of these six networks in figure 1, only the complete

graph and the ring are isothermal. On the other four net-

works, the nodes vary in degree, i.e. number of neighbours.

The diamond has two nodes with degree two and two

nodes with degree three. On the shovel, there are three

types of nodes: having either one, two or three neighbours.

The least possible number of links in a connected network

of size four is three links. The two associated networks are

called the line and the star. The two outer nodes of the line

have one neighbour and the two inner nodes have two neigh-

bours. On the star, the nodes vary even more in degree: the

centre node has three neighbours, whereas the three leaf

nodes are only connected to the centre.

2.1.1. States and transition matrices
To calculate the fixation probability, we first look at the differ-

ent possible states and the transitions between states. Then

we rearrange the states in the transition matrix as discussed

in §1.3, such that the transient states are first.

Complete graph and ring of size four. Let I, II, III and IV be the

states with 1, 2, 3 and 4 mutants, respectively, and V the state

with only wild-type individuals. The states of this Markov

chain are shown in figure 2. Transient state numbers are high-

lighted in blue, whereas absorbing states are shaded in grey.
In figure 2, the five different states of the Moran process

on a well-mixed population and a ring of size four are dis-

played. State I is the initial state. If the absorbing state IV is

reached, this means that the mutant reached fixation in the

population. Owing to the special structure of the ring,

mutants can only invade in a cluster. Therefore, a change in

the number of mutants can only happen if nodes at the

boundary of the mutant cluster are selected for birth.

The canonical form of the transition matrix for the process

on the complete graph is given in equation (2.1). Transient

states are highlighted in blue and absorbing states in light grey.

(2.1)

The diagonal of the transition matrix Tmix is positive. The

Moran process stays in the same state, meaning that the

number of mutants does not change whenever a mutant

replaces a mutant or a wild-type individual replaces another

wild-type individual.

With the approach given in §1.3, we reproduce the well-

known fixation probability of a mutant in the well-mixed

population [23,24]

fmix
1,N ¼

1� 1=r
1� 1=r4

: (2:2)

For the ring, we obtain the canonical transition matrix

(2.3)

Recall that the ring is isothermal. Hence, the fixation

probability must be the same as for the well-mixed
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Figure 2. The five states of a Markov chain on a complete graph and a ring of size four. Grey nodes indicate mutants, whereas white nodes represent wild-type
individuals. The arrows show possible transitions between states of the chain in one time step. The process can also stay in the same state whenever a mutant or
wild-type individual replaces one of its own kind. The process starts at state I and moves around on the state space until it reaches one of the absorbing states IV or
V. Note that for these two networks, the same transitions are possible, but the transition probabilities are different. (Online version in colour.)
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population and given by equation (2.2) as well. Indeed, the

ratio Ti,i21/Ti,iþ1 ¼ 1/r remains unchanged for transient

states 1 � i � N 2 1.

However, the second line of Tring in equation (2.3) is

different from the second line of Tmix in equation (2.1). For

example, whenever there are two mutants on the ring net-

work, the probability to stay with two mutants in the next

time step is TII,II ¼ 1/2, whereas the corresponding prob-

ability to stay at the state with two mutants on the

complete graph is only TII,II ¼ 1/3. This indicates that fixation

takes longer on the ring, because the probability of no change

in state II is higher [3].
Diamond. Next, let us consider the diamond, which has

nine states I, II,. . ., IX shown in figure 3. There are several

possible mutant–node configurations in this network, such

that the states are no longer just determined by the number

of mutants. Instead, they are also determined by the degree

of the respective node.

Owing to the larger state space, the process on the dia-

mond is not a simple birth–death process. Thus, the

transition matrix does not have a tridiagonal shape and the

conditional fixation time is not given by equation (1.5), but

has to be computed from equation (1.10). The canonical

form of the transition matrix for the diamond is given by
Tdiamond =
The state space and transition matrix of the other three net-

works of size four (shovel, line and star, see figure 1) can be

analysed in a similar fashion, but a numerical approach is

often more efficient to implement. In §2.1.2, we use the tran-

sition matrices to compute the fixation probabilities on these

networks.

2.1.2. Fixation probabilities
The fixation probability on the six different networks of size

four is shown in figure 4. It can be seen that, compared with

the well-mixed population, the star increases fixation prob-

ability for advantageous mutants and decreases it for

disadvantageous mutants. Thus, the star is called an ampli-

fier of selection. As the ring is isothermal, i.e. every node

has the same number of neighbours, a mutant has the

same fixation probability on the ring as in the well-mixed

population [1]. From figure 4, we can conclude that the dia-

mond, the shovel, the line and the star are amplifiers of

selection. Thus for size four, all non-isothermal networks
are amplifiers, which means that there are no suppressors

of selection. Calling a network an amplifier of selection

seems to imply that evolution proceeds faster on this net-

work than on the complete graph. This arises from the

idea that the waiting time for a successful mutation to

occur is much longer than the fixation time which the

mutation needs to spread through the population. In the fol-

lowing, we focus on the fixation time in order to see how it

is affected by the removal and addition of links.
2.1.3. Fixation times
With the approach from §1.3, we can calculate the expected

conditional fixation time for the well-mixed population

depending on the fitness r of the mutants,

tmix
1,N ¼

11r2 þ 14rþ 11

2(r2 þ 1)
� 9� 7

4
(r� 1)2, (2:4)

which is of course identical to the result arising from equation
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Figure 3. Owing to the different degrees of the nodes, the diamond has more possible states than the complete graph. There are two nodes with degree three and
two nodes with degree two. Therefore, one must distinguish between those two types of nodes. For example, this leads to the distinction between states I and II,
which would be the same if all nodes had the same degree. Note that even between the transient states I, II,. . ., VII not all transitions are bidirected. The transition
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(1.5). The ring has the conditional fixation time

t
ring
1,N ¼

2(3r2 þ 4rþ 3)

r2 þ 1
� 10� 2(r� 1)2: (2:5)

The fixation time t diamond
1,N can be calculated in the same

fashion, but it is a rational function with both numerator

and denominator of degree 15 with up to 13-digit coefficients.

Therefore, only the Taylor approximation for weak selection

up to second order is included here,

t diamond
1,N � 10:7þ 0:4(r� 1)� 2:5(r� 1)2: (2:6)

The structures shovel, line and star have a substantially

higher conditional fixation time than the complete graph,

the ring and the diamond. For neutral evolution, these are

t shovel
1,N (1) � 16, t line

1,N (1) � 21:3 and t star
1,N (1) � 23:2. This shows

that on every network of size four, neutral fixation is

slower than on the complete network.

Let us now focus on the complete network, the ring and

the diamond to analyse the effect of the removal and addition

of one link. We first compare the analytical results to simu-

lations. Figure 5 shows the expected conditional fixation time

of one advantageous mutant in a population of size four.

The analytical result is plotted together with the averages

over 106 independent realizations.

Figure 5 shows that on the diamond and on the ring, fixation

time is higher than on the complete graph. On the ring, the

increase is approximately one time step, whereas the diamond

increases fixation time even more. Thus, figure 5 reveals a sur-

prising aspect of the fixation times: intuitively, one may

speculate that the removal of a link should always prolong

the process of fixation, because fewer possible paths for the

mutant to spread should slow down the process. This intuition

can be illustrated by road networks, where one would think

that more connections speed up overall traffic. But this is not

true for our case and even for road networks, there are paradox-

ical situations, where the traffic flow can be increased by closing

a road [31]. From equations (2.5) and (2.6), we see that although

the ring is constructed by dropping one link from the diamond,
fixation is faster on the ring than on the diamond. This is

also seen in figure 5, where the fixation time is plotted against

the mutant’s fitness r. This result seems counterintuitive

and needs a closer investigation, which can be provided by

analysing the sojourn times.
2.1.4. Sojourn times
Intuitively, the more links a network has, the faster the fix-

ation of mutants should happen. But this is not true in

general, as shown in figure 5. An additional link may not

only provide more possibilities for the mutants to place

their offspring; it may also delay fixation when the mutants

replace each other more often. We look at the sojourn times

to understand this process in more detail.

The sojourn times measure how much time is spent in the

transient states on average before one of the absorbing states
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of the system is reached [32]. Omitting the cases in which the

mutants become extinct, the conditional sojourn times measure

the expected time spent in the transient states before mutant fix-

ation. Summing over the conditional sojourn times before

absorption into the all-mutant state yields the total time it

takes to go from one to N mutants, the conditional fixation time.

By comparing the conditional sojourn times in the transi-

ent states of different networks, we can infer which states

cause the delayed fixation.

In figure 6, we plot the expected time the system spends

in states with one, two and three mutants for the well-

mixed population, the ring and the diamond. For neutral

evolution, r ¼ 1, the well-mixed population and the ring

have exactly the same sojourn time in the states with one

and three mutants. The ring prolongs the sojourn in the

state with two mutants for one time step on average. The dia-

mond has a shorter sojourn time in the two-mutant states

than the ring; however, it increases the sojourn times in all

states compared with the complete graph.

In figure 6b, we consider the limit of strong selection, r!1.

The process on the ring stays in the states with one and three

mutants for the same amount of time as the process on the

complete graph. So the only difference is the sojourn in the

two-mutant state, which causes the conditional fixation time

to be higher on the ring than in the well-mixed population.

We saw in figure 5 that a mutant on the diamond has a higher

conditional fixation time than on the ring. As we can see in

figure 6b, this increase in fixation time is mainly due to the

increased sojourn time in the two different states with three

mutants. The three states with two mutants on the diamond

have a lower sojourn time than the two-mutant state on the

ring. However, the average sojourn in states with three mutants

is almost one time step longer. Interestingly, under strong selec-

tion more time is spent in these two states than under neutral

selection. This is because the probability to leave states VI and

VII decreases with higher intensity of selection.

So far, we only know that the total sojourn time in all of the

three-mutant states is increased on the diamond. Let us now

address the question as to which of the two different states

with three mutants causes the prolonged sojourn time, VI or

VII. For this purpose, we visualize the sojourn time as a

function of the mutant’s fitness for all seven transient states.

Looking at the sojourn time in all transient states, see

figure 7, we see that for neutral evolution and slight fitness
difference, the system spends most time in state IV. This

changes at r � 1.65. For higher selective advantage, most

time is spent in state VII (where the one wild-type individual

is situated at a node with two neighbours, see figure 3). This

can be explained in the following way: in state VII, the one

wild-type individual has lower chances of being replaced,

because it is only connected to two of the three mutants.

The three mutants keep replacing each other for a longer

time than in state VI, therefore the process stays longer in

this state before going to fixation.
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Figure 9. The simulated mean conditional fixation time on three different lat-
tice networks for population sizes 4, 9,. . ., 100, 121 and mutant fitness r ¼ 2.
On both panels, the dashed line depicts the mean conditional fixation time on
the complete network of the respective size. Panel (a) shows the fixation time
on the lattices without periodic boundary conditions, as they are exemplarily
depicted in the legend for size 16. For the fixation time shown in panel
(b), the boundaries of each lattice are connected, such that the structure
can be illustrated on the surface of a torus. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140606

7
2.1.5. Initial mutant placement
Instead of randomly choosing a node to place the first mutant

on, we now assess the effect of the initial node on the fixation

time. On the complete graph and the ring, all nodes have the

same number of links and therefore all initial conditions are

identical. However, the diamond consists of two nodes

with three neighbours and two nodes with two neighbours.

The conditional fixation time for those two initial conditions

is plotted in figure 8. The average of the two curves is iden-

tical to the conditional fixation time shown in figure 5,

because the probability to place the first mutant at either

one of the initial states is 1/2.

In figure 8, the initial position of the mutant has a non-tri-

vial impact on the fixation time. For small values of r, starting

from a node with degree 2 takes longer to fixate than starting

from a node with degree 3. This changes at r � 5.8. For larger

values of r, starting at a node with degree 3 leads to a slightly

higher fixation time than starting at a node with degree 2.

2.2. Numerical simulations for larger networks
So far, we have only considered very small networks in order

to allow for an analytical consideration of the fixation times.

Thus, we still have to show that this is not only an effect of

these extremely small systems. To explore whether the

removal of links can also decrease the fixation time, we use

our small networks as motifs of a larger network that is con-

structed from these motifs (see figure 9). As several links are

removed simultaneously, the effect size is not expected to

decrease rapidly with the system size. For these larger net-

works, the analytical approach is not feasible and we

therefore perform simulations instead. We start the birth–

death Moran process by putting one mutant on a random

node of a network consisting solely of wild-type individuals.

At each time step, one individual is chosen for birth with

probability proportional to its fitness. The offspring then

replaces one of its neighbours at random. The fixation time

of the mutants is averaged over 105 independent realizations.

Figure 9 shows the mean conditional fixation time on

quadratic lattices with and without periodic boundary con-

ditions for mutant fitness r ¼ 2. Fixation occurs much faster

with periodic boundary conditions than on the corresponding

networks without periodic boundary conditions. Note that by

connecting the boundaries, we make the lattices isothermal, i.e.

all nodes have the same number of neighbours. Hence, the fix-

ation probability on these networks is the same as on the

complete network of the same size. However, the fixation

time is increased, compared with the well-mixed population

on a complete network.

Intuitively, the fewer links a graph has, the longer fixation

should take. And as figure 9 shows, the lattices with periodic

boundary conditions confirm that intuition. Meaning that

starting from network F, by dropping links to obtain network

E, the fixation time increases. By dropping even more links

(network D), the fixation time increases even more. A similar

result was found by Whigham & Dick [33]. They simulated

the process on different isothermal ring structures of size

N ¼ 100 and showed that the fixation time decreases with

increasing node degree. But this ordering property by the

number of links seems to only hold for isothermal graphs.

Interestingly, the lattices without periodic boundary con-

ditions do not behave according to that intuition. Instead,

fixation takes longer on network A than on network B,
even though A has more links. This shows that the results

obtained for size N ¼ 4 are qualitatively still valid for larger

lattices without periodic boundary conditions.
3. Discussion
Evolutionary dynamics on networks is a way to consider

population structures that can lead to many non-trivial

findings. For example, one can construct amplifiers or sup-

pressors of selection which lead to fixation probabilities that

deviate from results in a systematic way. The isothermal
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theorem states that for the birth–death Moran process, all

regular networks have the same fixation probability, which

is a remarkable finding [1]. Also temporal aspects of this

dynamics can be highly interesting: a population structure

that leads to higher probabilities of fixation can at the same

time increase the time of the fixation process itself. Based

on the results of Frean et al. [3], we originally set out to

show that the fixation time increases on undirected networks

if links are removed. However, as we have shown here, it is

possible to construct counter-examples in which the removal

of links decreases the fixation time.

A similar phenomenon has been reported in transpor-

tation systems, where the flow through a system can be

increased if connections are removed [34]. The Braess Para-

dox describes the situation where adding a seemingly

helpful link can have a negative effect on the flow through

the network [31].

Our analytical approach for small networks allows us to

infer how much time the system spends in which states,

meaning that the fixation time can be dissected in great detail.

By analysing the sojourn times, we have shown why our

intuition of decreasing fixation time by adding links is not true

in general. As we have seen, adding links to a network not

only increases the possibilities for invasion of the mutants, but

also increases the likelihood of mutants replacing each other.

Therefore, a general statement about the behaviour of the

fixation time when removing or adding links is not possible.

Furthermore, we have shown that the starting position of the

first mutant has a crucial impact on the fixation time. Depending

on the fitness of the mutant, it can be faster if the mutant is
placed at a highly connected node or at a node that has only

very limited connectivity. On the diamond, a disadvantageous

or slightly advantageous mutant does better in terms of fixation

time when starting at the more highly connected nodes. How-

ever, if the mutant is very advantageous, the more isolated

nodes provide a shorter fixation time.

To investigate the counterintuitive result obtained for size

N ¼ 4, the small networks were used to create larger quadra-

tic lattices. We have shown that this decrease of the fixation

time with the removal of links is not just a finite size effect,

but can also be found for large population sizes.

In particular, heterogeneous networks seem to be most

relevant for the real world. They are found among humans

and different animal species [35–41]. However, to directly

transfer our results to such systems seems premature, as it

is unclear whether the dynamics in our model is a good

approximation for the processes in these networks. Moreover,

our analysis reveals that there are still open challenges for a

full theoretical understanding of evolutionary dynamics on

networks. Unfortunately, the size of the state space increases

rapidly with the system size and requires a tedious construc-

tion of transition matrices. While analytical approaches are

still being developed [42–44], exploring these networks will

largely rely on numerical simulations.
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