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Abstract 

Endogenous viral elements (EVEs) are remnants of viral genetic material endogenized into the host genome. They have, in the last 
decades, attracted attention for their role as potential contributors to pathogenesis, drivers of selective advantage for the host, and 
genomic remnants of ancient viruses. EVEs have a nuanced and complex influence on both host health and evolution, and can offer 
insights on the deep evolutionary history of viruses. As an emerging field of research, several factors limit a comprehensive understand-
ing of EVEs: they are currently underestimated and periodically overlooked in studies of the host genome, transcriptome, and virome. 
The absence of standardized guidelines for ensuring EVE-related data availability and accessibility following the FAIR (‘findable, acces-
sible, interoperable, and reusable’) principles obstructs our ability to gather and connect information. Here, we discuss challenges to 
the availability and accessibility of EVE-related data and propose potential solutions. We identified the biological and research focus 
imbalance between different types of EVEs, and their overall biological complexity as genomic loci with viral ancestry, as potential 
challenges that can be addressed with the development of a user-oriented identification tool. In addition, reports of EVE identification 
are scattered between different subfields under different keywords, and EVE sequences and associated data are not properly gathered 
in databases. While developing an open and dedicated database might be ideal, targeted improvements of generalist databases might 
provide a pragmatic solution to EVE data and metadata accessibility. The implementation of these solutions, as well as the collective 
effort by the EVE scientific community in discussing and setting guidelines, is now drastically needed to lead the development of EVE 
research and offer insights into host–virus interactions and their evolutionary history.
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Introduction
The exponential increase in data production facilitated by multi-
omics approaches leads to difficulties in establishing a stan-
dardized and effective framework for (meta)data sharing and 
management. To address this growing problem, FAIR guiding prin-
ciples were outlined in 2016, stating that biological data should be 
‘findable, accessible, interpretable and reusable’ (Wilkinson et al. 
2016). These guidelines are increasingly being enforced by third-
party repositories, publishers, and scientific communities at large, 
as part of an effort toward Open Science. Some scientific fields, 
especially emerging ones, have not yet been able to implement 

all guidelines due to field-specific challenges, such as a lack of 
well-established practices and widely accepted standards. One 
such emerging field is the research on endogenous viral elements 
(EVEs).

EVEs are remnants of viral genetic material endogenized into 
the host genome. They arise from the integration of viral DNA 
(or DNA copies of viral RNA) into the host’s germ cells genome, 
and can be inherited by its progeny. Although different terms for 
EVE subsets exist, they can be classified into two main categories: 
endogenous retroviruses (ERVs) and non-retroviral endogenous 
viral elements (nrEVEs) (Fig. 1). Retroviruses are characterized 
by a mandatory integration into their hosts’ genome as part of 
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Figure 1. EVE is a generic term, encompassing “endogenous retrovirus” (ERV) and “non-retroviral endogenous viral element” (nrEVE). EVEs can be 
confused with integrated viruses (found in any cell type) and exogenous viruses (located outside or inside the cells but not in the host’s genome). EVEs 
can be transcribed and translated and can play a significant role in host–virus interactions. Some EVEs are linked to antiviral immune response or 
provide new functions to the host through co-option. ERVs have also been associated with a range of diseases, such as cancer, autoimmune diseases, 
and neurological disorders. In addition, EVEs can outnumber host protein-coding genes in the genome and hold significant value for paleovirological 
studies.

their replication cycle, facilitating their potential endogenization 
(for an overview, see Johnson 2019). ERVs may constitute a sub-
stantial portion of the host’s genome: in humans, for example, 
they make up approximately 9%, three times more than cellular 
protein-coding genes (Lander et al. 2001, Katzourakis and Tris-
tem 2005). Additionally, EVEs can also arise from non-retroviral 
RNA or DNA viruses, collectively known as nrEVEs (Zhdanov 1975, 
Klenerman et al. 1997, Geuking et al. 2009). Here, endogeniza-
tion is likely facilitated by reverse transcription and integration 
through retrotransposable cellular (e.g. LINE) elements or non-
homologous recombination (Young and Samulski 2001, Horie et al. 
2010). While EVEs derived from non-retroviruses are less common, 
they have been found in almost all eukaryotic organisms, includ-
ing unicellular eukaryotes (Nelson et al. 2021, Bellas et al. 2023), 
plants (Jakowitsch et al. 1999, Chiba et al. 2011; see review Taka-
hashi et al. 2019), vertebrates (Katzourakis et al. 2010, Horie et al. 
2010; see review Kapusta and Suh 2017), and arthropods (Palatini 
et al. 2017, Tassetto et al. 2019, Whitfield et al. 2017; see reviews 
Blair et al. 2020, Wallau 2022). This widespread presence provides 
a unique perspective on the long-lasting relationships of viruses 
with their hosts, allowing the exploration of their deep evolution-
ary history (Fig. 1) (Aiewsakun and Katzourakis 2015, Aswad and 
Katzourakis 2012; Holmes 2011) (see reviews Horie and Tomonaga 
2019, Barreat and Katzourakis 2022).

In addition, EVEs have been shown to have a variable and 
complex influence on host health and evolution. Elevated expres-
sions of ERVs have shown connections with some forms of can-
cer (Weiss 2006; see review Kassiotis 2014), autoimmune dis-
eases (see reviews Morandi et al. 2017, Greenig 2019, Latifi et al. 
2022), and neurological disorders such as Alzheimer’s disease and 

schizophrenia (Sankowski et al. 2019, Jönsson et al. 2021). EVEs 
may also provide new functions to the host, a phenomenon known 
as co-option (Fig. 1). A prominent example is Syncytin, derived 
from an expressed ERV’s envelope gene, now playing a pivotal role 
in placental development in mammals (Boyd et al. 1993, Venables 
et al. 1995, Sha et al. 2000). EVEs have also been shown to be 
involved in the host defense mechanisms against viral infections 
in insects, plants, and mammals (see reviews: Aswad and Kat-
zourakis 2012, Pooggin 2018, Broecker and Moelling 2019, Ophinni 
et al. 2019, Bonning and Saleh 2021, Rosendo Machado et al. 2021).

The absence of standardized guidelines for ensuring data avail-
ability and accessibility is a significant barrier to deepening our 
understanding of EVEs as important components of host–virus 
interactions. Without data being made available following FAIR 
principles, there are significant challenges in determining if spe-
cific EVEs are present at particular genomic loci, how diverse they 
are within a specific host or host group, and whether specific viral 
taxa are more likely to endogenize. Our current inability to address 
these questions impedes our understanding of the biological func-
tion and the broader ecological and evolutionary implications of 
EVEs. Here, we outline and discuss the existing challenges and lim-
itations in data availability and accessibility in EVE research and 
propose strategies to overcome them.

Data availability
We refer to data availability as the consistent and reliable pres-
ence of research data and resources to be used by the scientific 
community. It plays a pivotal role in implementing FAIR prin-
ciples by ensuring that genomic information has been reliably 
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detected and processed as well as establishing clear and standard-
ized metadata. However, challenges persist in young fields like EVE 
research, where early-stage data collection and processing already 
pose significant challenges.

Challenge: the imbalance between ERVs and 
nrEVEs
ERVs are more prominently featured in scientific research and dis-
cussions compared to nrEVEs (for an overview see Tugnet et al. 
2013, Kassiotis 2014, Morandi et al. 2017, Küry et al. 2018, Lat-
ifi et al. 2022). The abundance and clear genomic characteristics 
of ERVs, a common occurrence in host genomes, led to an ear-
lier discovery in the 1960s (Weiss 1967) and increasing awareness 
in the scientific community. In contrast, nrEVEs have been dis-
covered only relatively recently, with first reports dating back to 
the late 1990s and early 2000s (Bejarano et al. 1996, Crochu et al. 
2004). They are also more diverse, potentially spanning the com-
plete virosphere, except, by definition, retroviruses (Katzourakis 
et al. 2010). In addition, nrEVEs have attracted less attention, pos-
sibly due to low abundance in the human genome, and currently 
no known associations with health-related conditions.

The discrepancy in abundance between nrEVEs and ERVs 
prompts the question of whether this is due to the rarity of nrEVE 
integration, the increased difficulty in their detection, their lower 
visibility in the scientific community, or a combination of these 
factors. It is most likely that there are significantly more ERVs than 
nrEVEs due to the necessity for retroviruses to integrate into the 
host genome to complete their life cycle, as well as the recurrent 
copying of ERVs into host genomes through duplications or hori-
zontal gene transfer. ERVs use a “copy-and-paste” mechanism by 
transcription, followed by reverse transcription, and reintegration 
into the host genome, which increases their copy number.

A large-scale study in 2010 detected nearly 500 nrEVEs in 40 
vertebrate and 4 invertebrate genomes (Katzourakis et al. 2010). 
Three years later, nearly 90,000 ERVs from 60 vertebrate host 
genomes have been identified in a single study (Hayward et al. 
2013). This apparent bias leads to an overall lack of awareness 
or reports of the existence of nrEVEs and regular exclusions of 
newly detected nrEVEs as simple contaminants in virus discovery 
or genome assemblies (Mifsud et al. 2022).

Challenge: the biological complexity of EVEs
While ERVs contain conserved retrovirus-specific sequences, mak-
ing their in silico identification by similarity-based detection 
approaches easier, the initial discovery of nrEVEs can be diffi-
cult due to frequent partial endogenization, and high sequence 
and genomic structure diversity. In addition, after endogeniza-
tion, selective pressures on the EVE’s sequence can be altered. 
Indeed, EVEs are subjected to a slower evolutionary rate than their 
exogenous virus predecessors, with around 10−9 substitutions per 
base pair per year for mammals (Kumar and Subramanian 2002). 
Except for EVEs serving or acquiring a function within the host, 
there is typically little to no selective pressure acting to main-
tain their sequence integrity and functionality. As a result, these 
sequences accumulate mutations disrupting existing viral open 
reading frames in the form of frameshifts, premature stop codons, 
and missense protein mutations. This leads to an ever-increasing 
divergence from the viral predecessors and degradation of the 
original viral genomic structure and sequence, which may result 
in EVEs appearing more similar to host noncoding regions than to 
any exogenous viruses. In addition, EVE sequences (Palatini et al. 
2020) or even their presence (Crava et al. 2021) may vary between 
host populations.

However, depending on the time since endogenization, these 
mutations may not have accumulated sufficiently to differenti-
ate the endogenized sequence from an exogenous virus, which 
may also contain frameshifts and premature stop codons (Hill 
and Brierley 2023). The inability to recover a virus’s complete 
genome may indicate an EVE but may also indicate low exogenous 
viral abundance. Moreover, errors introduced during sequencing 
or data processing can lead to sequence contamination, which 
makes distinguishing genuine EVEs from artifactual sequences 
difficult. Flanking host genes are a reliable indicator of an EVE 
sequence but may not always be present in the sequenced tran-
script or reconstructed contig. The best indicator of an EVE would 
be its annotation in a high-quality, well-annotated host genome 
assembly, but these are often unavailable for nonmodel organ-
isms, and variations between individuals or populations may also 
exist. All these difficulties lead to uncertainty in accurately iden-
tifying, describing, and annotating EVEs, which might discourage 
researchers from submitting them to public databases.

Challenge: computational tools for EVE detection
Until now, researchers have used varying methodologies and cri-
teria for identifying and characterizing EVEs, including Southern 
blot, RT-PCRs, fluorescence in situ hybridization, and sequencing 
(Bejarano et al. 1996, Crochu et al. 2004, Filloux et al. 2015, Da 
Fonseca et al. 2016, Palatini et al. 2022). The lack of distinguish-
ing characteristics demands specialized and nuanced approaches 
for data acquisition, classification, and annotation. There is cur-
rently no field-wide preferred bioinformatic tool or recommended 
analysis pipeline for identifying EVEs in genomic or metagenomic 
datasets. This is also of concern for metatranscriptomic virus 
discovery which has grown rapidly as a field in the past decade 
(Harvey and Holmes 2022).

For nrEVEs identification within genomes, multiple approaches 
have been developed (Kryukov et al. 2019, Ter Horst et al. 2019, 
Nelson et al. 2021, Kinsella et al. 2022, Palatini et al. 2022, Pien-
aar et al. 2022, Kinsella and van der Hoek 2023), but most lack 
directly shareable pipelines and only two provide readily avail-
able tools (Fig. 2). The Database Integrated Genome Screening has 
recently been employed to identify EVEs in metazoan genomes 
(Zhu et al. 2018, Blanco-Melo et al. 2024), though this tool is yet to 
be used outside of the group that developed it. For a more targeted 
approach, CAULIFINDER presents an intuitive tool for the identi-
fication, annotation, grouping, and classification of EVEs derived 
specifically from the Caulimoviridae family in plant genomes (Vas-
silieff et al. 2022). Similarly, RepeatMasker, a tool that can identify 
and mask repeated DNA sequences, e.g. LINEs, SINEs, and ERVs, is 
typically used for ERV detection at the genome level (Smit et al. 
1996). Currently, there is no pipeline or tool designed for the 
specific identification of EVEs at a transcriptomic level.

Most tools aiming at identifying recent viral integration sites 
in somatic cells in the context of disease, such as ViFi (Nguyen 
et al. 2018), Virus-Clip (Ho et al. 2015), or VirusFinder (Wang et al. 
2013), or tools used for or aiming at identifying exogenous viruses, 
such as Kraken2 (Wood et al. 2019), Centrifuge (Kim et al. 2016), 
or VirusFinder (Wang et al. 2013), can be used to detect EVEs. 
However, the vast majority do not consider EVEs in their analysis, 
despite their high risk of being misinterpreted as, respectively, a 
recently integrated virus or as exogenous viruses (Brait et al. 2024). 
For example, Edgar et al. (2022) estimated that approximately 1% 
of RNA virus sequences in their wide-scale metatranscriptomic 
analysis could be EVEs (Edgar et al. 2022). Developing a pipeline 
or a specialized tool for categorizing novel virus sequences as 
either likely exogenous or likely endogenous from transcriptomic 
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Figure 2. Challenges (above) are present in the context of EVE data availability and accessibility, to which we propose solutions (below). (Left): 
Regarding data availability, a notable obstacle is the significant disparity between data related to ERVs and nrEVEs. In addition, the taxonomic 
assignment of EVEs as part host or as part virus is unclear. EVEs are often seen as contaminants and thus excluded from analyses or mistakenly 
assigned as being of host or exogenous virus origin. While there are some methods for genome-level EVE identification, there are currently no 
dedicated tools for identifying EVEs in eukaryotic meta-transcriptomic data. As a proposed solution, we advocate for the development of intuitive and 
accessible tools for both genomic and transcriptomic EVE identification. (Right): Data accessibility is key, as unfound data is akin to nonexistent data. 
There are no effective keyword searches for scientific papers or databases, and standards for presenting and storing EVE data are still forming. 
Moreover, annotations in host genomes for EVEs are rare, and there are only a few accessible EVE sequences. This is primarily due to the lack of 
updated and accessible EVE databases and the challenge of ensuring proper access to EVE sequences in more generalist databases. To address this, we 
propose two solutions: (i) improved integration of EVE data into existing databases, which involves tagging EVE sequences and assigning taxonomic 
associations for hosts and viruses, and (ii) a less realistic but potentially transformative implementation of a dedicated EVE-specific database that 
incrementally meets the needs of the EVE research community.

data would assist both researchers involved in virus discovery and 
studying EVEs.

Finally, some tools for assessing the completeness of an exoge-
nous virus transcript could be used for EVE detection, such as 
CheckV (Nayfach et al. 2021), VIBRANT (Kieft et al. 2020), and 
viralComplete (Antipov et al. 2020), but these were primarily 
designed for identifying environmental viruses and are less suit-
able for eukaryotic virus discovery. CheckV, for example, relies on 
high-quality reference host genomes and similar virus sequences, 
which limits its use in identifying highly divergent viral sequences.

Solutions: intuitive tools in EVE characterization
To address the challenges outlined above effectively, computa-
tional tools that cater to different challenges are required. It is 
crucial to distinguish between transcriptomic and genomic data, 
as well as between ERVs and nrEVE detection. Common standards 
for both ERVs and nrEVEs identification could include approaches 
that can detect EVEs with high sensitivity and specificity, and 
account for variations in sequence, genomic structure, and inte-
gration site. However, tools for ERV detection should be tailored 
to detect characteristic features such as long terminal repeats 
(LTRs), high copy numbers, and retroviral genes (e.g. gag, pol, 
env). In contrast, tools designed for nrEVE identification should 
be flexible enough to account for high viral diversity and pri-
marily partial genomic integration. Moreover, it should provide 
standardized metadata containing information on the predeces-
sor virus taxonomic group, the host, and the integration site, thus 
assisting in EVE classification and annotation. This could help 
for future seamless integration into existing genomic databases. 

Finally, EVE identification tools should be intuitive and accessible 
to enable researchers with varying levels of expertise to harness 
the tool’s capabilities effectively. The development and wide use 
of optimal EVE identification tools would significantly advance 
EVE research, enhance data availability, and foster a more stan-
dardized approach to EVE characterization. This would lead to an 
improvement of our understanding of EVEs as important com-
ponents of host–virus interactions, as well as harness them as 
invaluable markers for studying the deep evolutionary history of 
viruses.

Data accessibility
Here, we define accessibility, within the FAIR framework, as 
data being not only available but also easily locatable, retriev-
able, and usable by the scientific community. The inaccessibil-
ity of data is akin to its nonexistence. Accessibility promotes 
inclusivity, allowing researchers of diverse expertise levels and 
scientific backgrounds to access and use this data effectively, 
enhancing interdisciplinary research efforts. Improving accessi-
bility involves standardization efforts, as well as designing or 
modifying user-oriented databases and repositories tailored to 
EVE-related genomic (meta)data, which are major challenges for 
EVE research.

Challenge: retrievability of EVE studies and 
associated data
The need for precise and widely adopted keywords concerning 
EVEs is a recurring challenge (Fig. 2). Current literature presents 
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several classifications and nomenclatures, leading to ambigui-
ties. Proposals for EVE nomenclature have been suggested (Gifford 
et al. 2018), but they are not currently widely used. While “endoge-
nous viral element” has become popular, alternative terms exist, 
for example, the outdated “non-retroviral integrated RNA virus 
sequences” (NIRVs), which have not gained traction due to a lack 
of clear relationship to the generic “EVEs.” Most publications on 
nrEVEs and ERVs are discoverable only through the “EVE” keyword 
rather than more specific ones, which will mostly yield ERV stud-
ies due to the previously described imbalance between the two 
types. Some terms may also pertain to particular hosts, viruses, or 
viral proteins, such as “EBLN” (endogenous bornavirus-like nucle-
oprotein), and these studies are often not discoverable with the 
keywords “EVE.” We believe widely adopted and precise keywords 
such as “ERVs” and “nrEVEs” could easily solve this issue.

In addition, standardized communication practices regarding 
EVE sequences and associated metadata are still evolving. This 
includes aspects such as the methodology used for their iden-
tification, their position within the host genome, details of the 
host genome assembly used, and their association with exogenous 
viral sequences. Finally, EVEs may only be a minor publication 
focus, leading to limited data sharing: EVE sequences may not 
be included in associated data or only presented in tabular form 
specifying contigs and positions. Even if sufficient information is 
provided to retrieve associated EVE sequences, they are, as of now, 
not indexed as a searchable resource, and metadata cannot be 
easily uploaded. As a result, direct access to the data is not possi-
ble and can only be obtained by a thorough and time-consuming 
review of the associated publication and its supplementary mate-
rial.

Challenge: current EVE-specific databases
A search through both literature and database-containing plat-
forms, such as “re3data.org,” “FAIRsharing,” “The Database Com-
mons,” “ELIXIR bio.tools,” and “Integbio Database Catalog,” using 
keywords like “EVEs,” “ERVs,” and “endogenous” (Ison et al. 2016, 
Sansone et al. 2019, Ma et al. 2022) identified six EVE-specific 
databases, of which only four were still accessible at the time of 
writing (Table 1). 

Three of these databases are restricted in scope, such as 
DbHERV-Res and HERVd on human ERVs, or limited, such as gEVE 
on only 20 host genomes. On the other hand, the pEVE database 
contains predicted EVEs, primarily DNA virus-derived, in over 
4000 eukaryotic genomes (Kryukov et al. 2019). Except for HERVd, 
no database had been updated since publication, with two (ERE 
and FabriEVEs) becoming inaccessible, and none allowed external 
contributions. The lack of a centralized, updated, and open EVE 
database poses a challenge (Fig. 2).

Challenge: limitations in generalist databases
Without satisfactory EVE databases, generalist ones might offer 
effective solutions for storing EVE-related data. Many EVE 
sequences can be found in the International Nucleotide Sequence 
Database Collaboration (INSDC), but provide limited standard-
ized associated metadata and keywords. Retrieving one or all EVE 
sequences for a particular organism or derived from a specific 
virus taxon is, therefore, challenging. In addition, the deposition 
of EVE sequences in the INSDC is complicated by its require-
ment of standardized formatting and comprehensive annotations 
to maintain data accuracy and quality. These restrictive rules con-
flict with the biological nature of EVEs: many only present partial 
open-reading frames or include complex features such as stop 
codons or frameshifts which can lead to a series of tedious re-
submissions for validation. These hurdles prevent submission and 
lead to EVEs being mainly described in manuscripts or compiled 
in associated supplementary tables. A less constraining solution 
would be to deposit EVEs in host genomic annotations; however, 
this relies on the availability and quality of a reference genome. 
Even if they can be annotated, it does not guarantee the effortless 
retrieval of EVEs or associated viral metadata across annotated 
genomes.

A potential solution would be the incorporation of EVEs in a 
general virus database. Currently, however, no centralized virus 
database has fulfilled the necessary requirements, including com-
prehensive coverage of all viruses, adherence to FAIR principles, 
user-friendliness, and meticulous curation (Ritsch et al. 2023).

Solutions: integration versus dedicated 
databases
The lack of an active and open EVE database or reasonable alter-
native limits researchers’ ability to assess the known presence 
of EVEs in a particular host species. For example, Parvoviridae, 
Filoviridae, and Bornaviridae EVEs have been thoroughly described 
in marsupials (Harding et al. 2021), but these sequences remain 
difficult to retrieve due to the lack of an appropriate database. This 
limits the possibility of incorporating these sequences into subse-
quent research or identifying similar or identical EVE sequences 
in transcriptomic research or virus discovery analysis (Fig. 2).

We propose two possible solutions: improved integration in 
generalist databases, such as GenBank, or the creation of a ded-
icated EVE database (Fig. 2). The latter would provide an optimal 
design for EVE-related data, but the former would probably be 
a more practical and reasonable approach. In addition, the use 
of databases familiar to the broader research community could 
enhance their adoption, and establish additional links between 
already deposited virus, host, and EVE data.

Table 1. List of accessible EVE databases

Name (reference) Host screened  EVE type  Limitations Last update  Number of EVEs

ERE (Kao et al. 2012)  Inaccessible
gEVE (Nakagawa and 
Takahashi 2016)

20 Genomes-19 
mammalia

All Open Reading 
Frame-related

2016 736,771

DbHERV-Res (Ito et al. 
2017)

Human ERVs Just the regulation 
elements

2017 445

FabriEVEs (Zhong et al. 
2019)

 Inaccessible

pEVE database 
(Kryukov et al. 2019)

4,102 Eukaryotic 
genomes

nrEVE Mainly dsDNA 2020 6,300,132

HERVd (Paces 2002) Human Mainly ERVs - 2021 565,471
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The minimum requirement for an existing database is a tag 
or field that clearly defines an entry as an EVE. Another relatively 
simple enhancement would be incorporating two taxonomic iden-
tifications, assigning the EVE to the host and the virus based on 
sequence similarity to the current closest relative. Viral taxonomy 
itself can be challenging and may lead to issues in assigning EVEs 
to particular viral species. As an alternative, the taxonomic assign-
ment could be on a higher taxonomic level, such as genus, family, 
or higher. Such dual classification acknowledges that EVEs can be 
classified as host elements with viral ancestry or viruses residing 
within a host genome. Most databases, however, do not support 
setting two taxonomic identifiers to a single entry. A pragmatic 
solution would be to denote the second taxonomic identifier (e.g. 
of the virus) as a tag, meaning the EVE entry can be retrieved in 
virus-centered database searches. Additional information could 
be incorporated for each entry, such as linking to the appropri-
ate viral sequence used for EVE detection, facilitating backtrack-
ing, indicating which part of the virus has been integrated, and 
integrating motifs or similarities to retrotransposons.

This information can and should be incorporated into a cen-
tralized, dedicated, and curated EVE database, enhancing the 
feasibility and efficiency of meta-analyses. Conducted at the 
host level, it could allow the investigation of the genomic dis-
tribution and conserved integration patterns within the host’s 
genomic landscape. Studies at the virus level could reveal com-
monly endogenized viral segments or open reading frames, assess 
EVE abundance within genomes, and identify evolutionary con-
straints. Such a database would revolutionize our understanding 
of EVEs by preventing redundancy, opening new research lines, 
and enhancing collaboration.

Conclusion
The study of EVEs is inherently interdisciplinary and requires col-
laboration between virology, genomics, and bioinformatics. EVEs 
are important components of the complex interaction between 
hosts and their viruses, and they offer insights into their evo-
lutionary history (Aiewsakun and Katzourakis 2015, Frank and 
Feschotte 2017, Barreat and Katzourakis 2022). However, research 
on EVEs is limited by challenges in data availability and accessibil-
ity, such as the lack of intuitive identification tools or databases to 
store and retrieve EVE-related (meta)data. Here, we discussed two 
ideal solutions, a dedicated, user-oriented EVE detection tool and a 
centralized EVE database meeting the community’s diverse needs. 
The feasibility of the latter in a limited funding landscape is, at 
best, uncertain. More pragmatically, improvements to existing 
generalist databases, such as the use of an EVE tag or the pos-
sibility of assigning both host and virus taxonomic identifications 
to the record, could already address some of these challenges.

Improving the availability and accessibility of EVE-related data 
also contributes to limiting the risk of errors. Indeed, inaccu-
racies or errors in EVE sequences or associated metadata have 
the potential to lead to the misclassification of EVEs, exogenous 
viruses, or host sequences, which are difficult to correct. This can 
lead to erroneous biological insights and propagate errors that 
become increasingly entangled, drastically impacting any subse-
quent study. The identification and correction of these errors can 
only be achieved with access to substantial data for validation, a 
critical element currently only fulfilled for some EVEs.

Due to the rapid pace of technological and bioinformatics 
advancements, certain standards governing genetic data, but also 
more specifically viral (meta)data, have become outdated. Fail-
ure to update or reassess these standards in light of technological 

progress can impede discovery and innovation. For instance, the 
requirement to demonstrate cellular infection and the presence 
of viral particles led to the initial rejection of complete genome 
RNA virus discoveries from metatranscriptomic data. Similarly, 
in silico detected EVEs often required validation by PCR and cur-
rent formatting standards imposed by INSDC prevent a fast and 
easy upload of partial and/or mutation-prone EVEs. It is therefore 
important to review and revise standards to foster innovation in 
emerging biological fields.

Finally, mandating standard “user-friendly” pipelines may tem-
porarily improve inclusiveness as suggested. While we propose 
solutions for some of the challenges we highlight, we believe that 
the establishment of standardized practices following FAIR guide-
lines can only come from a collective effort of the EVE scientific 
community. Targeted conferences and collaborative initiatives can 
promote discussions, set guidelines, and disseminate knowledge. 
Furthermore, long-term progress in the field will depend on train-
ing scientists to develop computational skills in line with tech-
nological advances such as machine learning and AI. Enhancing 
the availability and accessibility of EVE-related (meta)data is now 
crucial to allow research to bring together the currently scattered 
reports. This would strengthen our understanding of the biology of 
EVEs and harness the valuable insights they offer into host–virus 
interactions.
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