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Abstract 
Background: The negative impacts of COVID-19 (ImpactCOVID) on public health are commonly assessed using the cumulative 
numbers of confirmed cases (CNCCs). However, whether different mathematical models yield disparate results based on varying 
time frames remains unclear. This study aimed to compare the differences in prediction accuracy between 2 proposed COVID-19 
models, develop an angle index that can be objectively used to evaluate ImpactCOVID, compare the differences in angle indexes 
across countries/regions worldwide, and examine the difference in determining the inflection point (IP) on the CNCCs between 
the 2 models.

Methods: Data were downloaded from the GitHub website. Two mathematical models were examined in 2 time-frame scenarios 
during the COVID-19 pandemic (the early 20-day stage and the entire year of 2020). Angle index was determined by the ratio 
(=CNCCs at IP÷IP days). The R2 model and mean absolute percentage error (MAPE) were used to evaluate the model’s prediction 
accuracy in the 2 time-frame scenarios. Comparisons were made using 3 visualizations: line-chart plots, choropleth maps, and 
forest plots.

Results: Exponential growth (EXPO) and item response theory (IRT) models had identical prediction power at the earlier outbreak 
stage. The IRT model had a higher model R2 and smaller MAPE than the EXPO model in 2020. Hubei Province in China had the 
highest angle index at the early stage, and India, California (US), and the United Kingdom had the highest angle indexes in 2020. 
The IRT model was superior to the EXPO model in determining the IP on an Ogive curve.

Conclusion: Both proposed models can be used to measure ImpactCOVID. However, the IRT model (superior to EXPO in the 
long-term and Ogive-type data) is recommended for epidemiologists and policymakers to measure ImpactCOVID in the future.

Abbreviations:  CNCC = cumulative number of confirmed cases, EXPO = exponential growth, ImpactCOVID = impacts of the 
COVID-19 outbreak, IRT = item response theory, LID = the length of infected days effectively under control, MA = model accuracy, 
MAPE = mean absolute percentage error, PP = prediction power, QE = quadratic equation.

Keywords: COVID-19, exponential growth model, inflection point, IRT model, item response theory, MAPE, Ogive curve, Ogive 
curve, R-square

1. Introduction

In the field of epidemiology, an “outbreak” refers to a sudden 
increase in occurrences of a disease at a particular time and 
place. For comparison, a “pandemic” is defined as a near-global 
disease outbreak in which multiple countries across the world 
are infected.[1] The cumulative numbers of confirmed cases 

(CNCCs) are a commonly used indicator to assess the negative 
impacts of the COVID-19 outbreak (ImpactCOVID for short).[2–

5] However, this practice might be questionable because CNCCs 
do not involve the length of infected days to control COVID-19 
(denoted by LID). This concept is reflected in the inflection point 
(IP) days on the CNCC curve, wherein the curvature changes 
its sign from an increasing concave (concave downward) to a 
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decreasing convex (concave upward) shape or vice versa.[1] 
Hence, combining CNCCs and IP-based LID for measuring 
ImpactCOVID is reasonable and necessary.

1.1. Literature review

1.1.1. Using IP and CNCCs to assess ImpactCOVID. If 
CNCCs and IP-based LID are considered, then ImpactCOVID 
(= CNCCs ÷ LID) is similar to the journal impact factor (i.e., 
IF = citations ÷ publications). Many metrics, such as the h- and 
x-indexes, have been proposed to improve the drawbacks of 
impact factors.[6,7] The h-index is determined by the maximum 
square that fits under an author’s citation curve when the 
numbers of citations are plotted in decreasing order, and the 
x-index is determined by the maximum area rectangle that fits 
under the curve.[7] All excessive citations and publications are 
excluded from the metric computation.

The IPcase index, which uses the rectangular area (“core area”) 
multiplied by the IP days and the CNCCs, has been proposed to 
identify ImpactCOVID.[1,4] However, this index has 2 drawbacks: 
it has an identical value but a distinct meaning (e.g., IPcase index 
= CNCC × IP = height × width = 100 = 4 × 25 = 25 × 4 = 10 × 10), 
and it does not denote the momentum of a sudden ImpactCOVID. 
Thus, the improved angle index is defined as follows:

angle index = θ = Degrees(Atan(
∆CNCCk

(∆IPk
)),

 
(1)

where Degrees() and Atan() are derived from the func-
tions in Microsoft Excel. For instance, ∆IP = 7 days, ∆CNCC 
= 27,100 – 11,177 = 15,934, ratio = 15,934/(7−1)= 2563, 
θ  =  Degrees(Atan(2653.8)) = 89.97. The angle index ranges 
from 0 to 90, wherein a high θ value means a great negative 
impact (“severely hit”) by COVID-19 in a given country or 
region. The premise is to determine the IP days (similar to the 
LID defined in the previous section) before calculating the angle 
index for a specific country/region.

1.1.2. Using mathematical models to determine the IP. In 
general, the mean number of confirmed cases across varying 
periods (number of days) yields significantly different IP days, 
even though the daily number of confirmed cases (computed 
based on the previous 7 days) can be applied to estimate the 
observed IP days.[8,9] In a similar situation, using a mathematical 
model to determine the expected IP days is more objective than 
traditionally observing the IP days on the mean number of 
confirmed cases; the latter is typically but irrationally employed 
in practice.[2]

Although many mathematical models[2,10–21] have been 
proposed to predict the number of COVID-19 cases, none 
(except the one using item response theory [IRT][2,20,21]) have 
been applied to determine the IP days on the CNCC curve. 
Nonetheless, the differences in model accuracy (MA) and pre-
diction power (PP) should be compared. MA and PP can be 
measured by the R2 model and mean absolute percentage error 
(MAPE), respectively (see the Methods section for details on 
R2 and MAPE).

Therefore, we applied MA and PP as indicators in the 2 
COVID-19 models (i.e., exponential growth (EXPO) and 
IRT)[2,18] and used the angle index to measure ImpactCOVID for 
each country/region.

1.2. Main Goals

This study aimed to compare the differences in MA and PP 
between the 2 proposed COVID-19 models, develop an angle 
index that can be objectively used to evaluate ImpactCOVID, 
compare the differences in angle indexes across countries/
regions worldwide, examine the difference in determining the 

Key points

 • The Angle index was introduced for ImpactCOVID 
evaluation in the future.

 • A comparison of differences in indicators using forest 
plots is recommended for future research.

 • Determining IP days is important in epidemic research. 
The comparison was conducted between the difference 
in resulting and recommended IP days for future research 
and the ImpactCOVID assessed using the angle index.

Figure 1. Study flowchart.
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IP on the CNCC curve between the 2 mathematical models, and 
compare goodness-of-fit measures for the 2 models.[2,18]

2. Materials

2.1. Data source

COVID-19 data have been obtained from GitHub[22] for each 
country/region[23] (see Supplemental Digital Contents 1, http://
links.lww.com/MD/G983 and 2, http://links.lww.com/MD/
G984). The downloaded data are publicly available on the 
website.[22] It was not necessary to obtain ethical approval 
for this study since all data were obtained from the GitHub 
website.

2.2. Introducing the mathematical models

2.2.1. The EXPO model. In the study of natural science, 
nonlinear regression and iterative methods are commonly 
employed.[24,25] As part of the COVID-19 prediction model, 

EXPO has been proposed,[18] which is based on the daily growth 
rate (GR) of confirmed cases using Eq. 2:

GRn−1 =
casen − casen−1

casen−1
,
 

(2)

GRt−1 = ae−βt, (3)

where casen and casen−1 are the daily number of confirmed 
cases on days n and n − 1, respectively. The GR can be modeled 
in Eq. 3, where a is a constant representing the growth rate at 
t = 0, β is an attenuation coefficient that indicates the effective-
ness of government isolation and quarantine, and t represents 
the evolution of the epidemic.[18] Based on Eq. 2, nonlinear 
regression and iterative methods can be constructed to predict 
the CNCCs using Eq. 4:

CNCCk = CNCC0 ×
k∏
i=1

(1+ ae−βt).
 

(4)

where CNCC_0 and CNCCk are the CNCCs at t = 0 and the 
expected CNCC at t = k, respectively (see Supplemental Digital 
Content 1, http://links.lww.com/MD/G983).

2.2.2. The IRT Model. The item response model (IRT) was 
proposed in 2021[2,20,21] using Eq. 5:

P (θ) =
1

1 + e−1.7∗a(θ−b)
=

e1.7∗a(θ−b)

1 + e1.7∗a(θ−b)
,
 

(5)

The a and b parameters represent the discrimination (i.e., a 
slope from 0 to 4) and the difficulty (i.e., a value from −5 to 5, 
with the left value indicating that the outbreak started earlier 
and the right value indicating that it lasted longer).[2,20,21] The 
number of infected days denoted by θ is standardized to range 
between −5 and 5 (see Supplemental Digital Content 2, http://
links.lww.com/MD/G984).

Table 1

Comparison of goodness-of-fit measures for the models.

Indicator Formula 

AUC =CC*CC
Residual =∑(i = 1 to n)[(Oi– Ei)^2]
AIC =-2 ln(L) + 2 k = n*ln(SSE/n)+2k
BIC =2 ln(L) + ln(n)*k
Brier score =∑(i = 1 to n)[(Oi – Ei)^2]/n

SSE = ∑(i = 1 to n)[(Oi – Ei)^2] =the sum of squares due to error = Residual; n = observed 
counts; CC = correlation coefficient; Ln(L) = log(maximum likelihood); Oi = the ith observed value; 
Ei = the ith expected value; k = the number of model parameters; AUC = area under the curve = 
determination coefficient = CC*CC.

Figure 2. Comparison of accuracy among the proposed models.

http://links.lww.com/MD/G983
http://links.lww.com/MD/G983
http://links.lww.com/MD/G984
http://links.lww.com/MD/G984
http://links.lww.com/MD/G983
http://links.lww.com/MD/G984
http://links.lww.com/MD/G984
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2.2.3. Model parameter estimations. The model parameters 
can be estimated by minimizing the residual using the Microsoft 
add-in tool.[2,20] Details are provided in Supplemental Digital 
Contents 1, http://links.lww.com/MD/G983 and 2, http://links.
lww.com/MD/G984 (e.g., executing the procedure, SolverSolve 
UserFinish: = True, ShowRef: = “ShowTrial,” using visual basic 
for applications, VBA).[2,20,21,23]

2.2.4. Analyzing model accuracy and prediction power. Both 
R2 and MAPE statistics were applied to evaluate the model 
accuracy (MA) and prediction power (PP) in the 2 time-frame 
scenarios (see the training and testing samples shown in Fig. 1). 
We applied the model parameters calibrated in the training 
sample to predict the CNCCs in the testing sample by observing 
the 2 measures of R2 and MAPE. The R2 and MAPE are defined 
in Eqs. 7 and 8:

R2 = 1− model residual∑n
i=1 (Oi −Ohat)2 

(7)

n∑
i=1

(Oi − Ei)
2

 
(8)

where Oi denotes the observed CNCCs and O-hat is the mean 
CNCC in a given country/region. The model residual is com-
puted by Eq. 8. Ei represents the expected CNCCs.

MAPE =
1
n
×

n∑
i=1

| (Oi − Ei)

Oi
|
 

(9)

where Oi is the observed CNCC and Ei is the predicted 
CNCC. The absolute value in Eq. 8 is summed across all 
predicted points in days and divided by the number of fitted 
points n.

2.3. Three tasks using forest plots in model comparisons

The forest plot[26] was used to examine the difference in R2 
and MAPE. The first task was to compare the effects of R2 and 
MAPE in the 2 models at the early outbreak stage. The second 
task was to observe their difference in R2 and MAPE throughout 
2020. The 3 tasks were to compare their IP days on vaccination 
data from January 1 to November 6 in 2021. The angle index 
defined in Eq. 1 was used to measure ImpactCOVID (see the 
example in the Introduction).

Figure 3. Comparison of R2 and MAPE across continents, China, and the US based on the 3 models. MAPE = mean absolute percentage error.

http://links.lww.com/MD/G983
http://links.lww.com/MD/G984
http://links.lww.com/MD/G984
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We used choropleth maps[27] to present the angle indexes 
for countries/regions at an early stage and throughout 2020. 
The darker color in countries/regions indicates more severe 
impacts as measured by ImpactCOVID. On clicking a colored 
region, line plots that are used to predict the future CNCCs are 
generated.

2.4. Task 4: goodness-of-fit measures for the 2 models

Using the goodness-of-fit measures shown in Table 1, 5 indica-
tors were compared between the 2 models.[2,18] The area under 
the curve (AUC) is defined by the regression R2 (i.e., the determi-
nation coefficient computed by plotting the Pearson correlation 
coefficients between the 2 variables of the last 7-day predicted 

and observed confirmed cases in the 2 scenarios of the 20-day 
early outbreak stage and throughout 2020) and drawn on a 
scatter plot with the 95% control lines[28] for countries/regions 
based on the IRT and EXPO mode ls.

The residuals on the two 7-element variables were computed 
by Eq. 8. The other 3, including the Akaike information cri-
terion,[29] the Bayesian information criterion,[30] and the Brier 
score,[31] are compared. A smaller value means better modeling 
of the COVID-19 pandemic.

2.5. Statistical tools and data analysis

The mean and standard deviation (SD) were extracted to com-
pare the standardized mean difference (SMD) in the forest plot. 
A significance level of type I error was set at 0.05.

Visual displays of the forest plot and choropleth map illus-
trate the comparison between MA and PP. The angle indexes 
were plotted online on Google Maps. The parameter estima-
tion was executed in Microsoft Excel[23] (Supplemental Digital 
Contents 1, http://links.lww.com/MD/G983 and 2, http://
links.lww.com/MD/G984). The study flowchart is shown in 
Figure 1.

3. Results

3.1. Task 1

3.1.1. Model comparisons at the early outbreak stage. An 
example of Guangdong in China and New York in the United 
States was used to illustrate the comparison. The results show 
that the EXPO model is superior to the IRT model when 
examining the trajectories of CNCCs at the early stage. As 
shown in the top panel in Figure 2, in Guangdong, China, model 
R2 = 1.0, 0.99 and MAPE = 0.02, 0.06 for the EXPO and IRT 
models, respectively. In comparison to New York (US), model 
R2 = 1.0, 1.0 and MAPE = 0.01, 0.29 for the EXPO and IRT 
models, respectively.

The following figure shows a comparison between R2 (at the 
earlier 20-day stage) and MAPE (at the following 7-day stage). 
We note that there is no significant difference in R2 or MAPE 
between these 2 models when measuring ImpactCOVID on con-
tinents at the early outbreak stage.

3.1.2. Comparison of Angle Indexes at the Early Outbreak 
Stage. In Figure  4, we present the angle indexes based on 
the early outbreak stage of 20 days. Higher angle indexes are 
observed in Hubei Province (including Wuhan) in China as well 
as in New York and New Jersey in the United States. Darker 
colors indicate countries severely affected by COVID-19, 
including Iran and Turkey. The angle indexes were calculated 
using Eq. 1 below. The reader is encouraged to scan the QR code 
in Figure 4 to examine the Ogive curves for countries/regions 
when the color region is clicked.

3.2. Task 2

3.2.1. Comparison of the EXPO and IRT models for 
2020. Modeling the CNCC data in the EXPO and IRT models 
to estimate their parameters in the long run revealed that the 
IRT model has significantly higher R2 and smaller MAPE 
values, as shown in Figure 5. Forest plots were generated by 
computing the respective pair statistics of the mean and SD 
values in R2 and MAPE, as shown in the upper and lower 
panels, respectively.

Currently, only South America and the United States have 
the same R2 (>0.90) between the 2 models; see the upper panel 
of Figure 5. In other continents and in China, the IRT model 
has a higher R2 and a smaller MAPE than the EXPO model; 

Figure 4. ImpactCOVID based on the angle index at the earlier stage. 
ImpactCOVID = impacts of the COVID-19 outbreak.

http://links.lww.com/MD/G983
http://links.lww.com/MD/G984
http://links.lww.com/MD/G984
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see Figure 5 for a higher R2 in the left column (which favors 
the IRT) and a smaller MAPE in the right column (which also 
favors the IRT).

3.2.2. Comparison of angle indexes in the long run. Figure 6 
depicts the angle indexes based on the 2020 data. The most 
negatively impacted countries were India, the United Kingdom, 
and the United States (specifically California). In Figure 7, the 
angle is computed by the ACNCC (=CNCC at IP * CNCC at 
IP-6) divided by the LID (=6). In this regard, ImpactCOVID 
reflects the meaning of the disease outbreak since a 7-day 
incubation period is used to compute the angle index.

The reader is also invited to scan the QR code in Figure 6 
to view the ogive curves for countries/regions of interest 
when the color region is clicked. For example, the EXPO 
and IRT models are used to compare the 2 ogive curves of 

Hubei Province (including Wuhan) in China. Even though 
the 2 curves appear similar, the projection curve in the IRT 
model (shown at the bottom of Fig. 6) has a higher R2 and a 
smaller MAPE than the EXPO model (0.99 vs 0.98 and 0% 
vs 0.2%, respectively).

3.3. Task 3

3.3.1. IP days in these 2 models on vaccination uptake per 
100 people. In Figure 7, line-chart plots were used to compare 
vaccination rates per 100 people. Based on Figure  8, it can 
be seen that the IRT model performed better than the EXPO 
model for the CNCCs with a given Ogive curve (e.g., China 
and Algeria) and different IP days resulted from the 2 models 
(Fig.  8A), which significantly influenced the computation of 
ImpactCOVID using the angle index.

Figure 5. Comparison of the R2 and MAPE values between the EXPO and IRT models using forest plots. EXPO = exponential growth, IRT = item response 
theory, MAPE = mean absolute percentage error.
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3.3.2. Comparison of IP days using the IRT model. Figure 8B 
shows that Europe has the shortest IP days, followed by the 
United States and South America. In contrast, Africa had longer 
IP days in 2021.

3.4. Task 4

3.4.1. Comparison of goodness-of-fit measures. We 
compared the 5 goodness-of-fit measures in terms of the 
usefulness of the model. Only the AUC possesses the feature that 
a high score indicates a more appropriate model for the COVID-
19 pandemic. According to Figure 9, the EXPO model is more 
appropriate for early outbreak stages, while the IRT model is 
more appropriate for the entire year. Note that all paired data 
obtained from the 2 models were standardized into ~N(0,1) due 
to significantly wider ranges among the 5 indicators. Thus, the 
SMD can be compared using the forest plot in Figure 9.

3.4.2. Comparison of AUC indicators. According to the 
scatter plot with the 95% control lines (Fig.  10), (1) the US 
states have higher AUCs (i.e., the determination coefficient in 
regression analysis) than the provinces/metropolitan cities in 
China. Most countries/regions lie along the 45-degree identity 
line. The AUC in Ukraine, for example, is 0.99, and in Taiwan, 

it is 0.96. The AUC of other countries can be examined by 
scanning the QR code and clicking on the bubble of interest on 
the dashboard we designed on Google Maps.

3.5. Online dashboards shown on Google Maps

The QR codes in the figures are linked to the dashboards. 
Readers are recommended to view the dashboards on Google 
Maps.

4. Discussion

4.1. Principal findings

We observed that (1) EXPO and IRT models had identical PP at 
the earlier outbreak stage; (2) the IRT model had a higher model 
R2 and smaller MAPE than the EXPO model in 2020; (3) Hubei 
Province in China had the highest angle index at the early stage; 
and (4) India, California (US), and the United Kingdom had the 
highest angle indexes in 2020. The IRT model is superior to the 
EXPO model when determining the IP on an Ogive curve.

4.2. Contributions of the study

Although the IP case index has been applied to examine the 
effective control of COVID-19,[2,20] the angle index can accu-
rately evaluate ImpactCOVID, as shown in Figures 4 and 6.

Many researchers[10–21] have proposed the use of mathemati-
cal models to predict the number of COVID-19 cases, and others 
have investigated IP days during the COVID-19 pandemic.[32–36] 
However, no one used the IP days to compare the ImpactCOVID 
or applied the angle index to inspect the ImpactCOVID in 
countries/regions.

The second contribution of this study is the comparison of 
mathematical COVID-19 models using forest plots. To date, 
only a few studies have compared the MA and PP between mod-
els because of a lack of familiarity with the algorithms proposed 
by other authors. In this work, we compared 2 mathematical 
models[2,18] based on common conditions (e.g., the evolution of 
CNCC and ∆IP = 7 across countries/regions).

The EXPO model[18] has been verified in several regions 
in China, including Wuhan in Hubei Province, Guangdong 
Province, and other parts of mainland China, during the early 
outbreak stage (from January 27 to February 18, 2020). For 
comparison, this study featured (1) 2 time-frame stages (i.e., the 
early 20-day outbreak stage and the entire year of 2020) and (2) 
all countries/regions hit by ImpactCOVID using the angle index.

The quadratic equation model (QE) model[19] has been used 
to present the projected cases in Colombia and the deaths in 
Russia, India, and the rest of the world using past 31-day data 
up to May 29, 2020. In Tsai et al,[37] the authors set the con-
strained term at the middle point (i.e., P(x2, y2)) of the observa-
tions with exponential growth during the COVID-19 epidemic 
and found that the IRT model is superior to the QE model.

Using less constrained parameters makes the model a good fit 
for the data.[36,38] However, the one constrained term set at the mid-
dle point (i.e., P(x2, y2)) of the observations in the QE model[19] 
yields a low MA, which has been verified in a previous study.[37]

Two other studies[20,21] applied the IRT[39,40] to construct an 
Ogive curve and determine the IP days used for predicting 
the projected cases in a country/region based on the CNCCs. 
Nonetheless, a sophisticated analysis to determine the IP days 
using the Newton–Raphson Iteration Method[21,41–43] must be 
conducted in future studies.

4.3. Implications and recommendations

Numerous mathematical COVID-19 models[10–21] and IP deter-
minations[2,8,9] have been proposed. However, none developed 

Figure 6. Top 3 countries hit by ImpactCOVID based on the angle index (top) 
and the comparison of modeling effects between the EXPO and IRT models 
(bottom). EXPO = exponential growth, ImpactCOVID = impacts of the COVID-
19 outbreak, IRT = item response theory.
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an angle index that can be used to measure ImpactCOVID and 
overcome the problem of the IP case index.[2,20]

Many online real- or near-real-time dashboards have been 
launched to track the worldwide spread of the COVID-19 out-
break.[44–49] However, most of these tools are similar to other tra-
ditional websites[50–54] and merely provide the same information 
as the WHO COVID-Dashboard.[45] An accurate assessment of 
COVID-19 requires further mathematical analyses of global 
data.[49] Although dashboards (e.g., JHU,[43] WHO,[45] and oth-
ers[44,46,47]) have provided interesting visualizations for reporting 
the current state of COVID-19, these presentations lack import-
ant information on the disease outbreak using mathematical 
models to predict the projection of CNCCs in the future and 
understand COVID-19 trends[19] further in data.

One study[53] assessed 158 public Web-based COVID-19 
dashboards and found that only a few dashboards employed 
predictive analytics by simulating various future scenarios. 
Thus, the imprecise predictive models and simulations early in 
the pandemic may have restricted their application. The current 
study presented predictive approaches with an online dashboard 
design that can benefit policymakers and epidemiologists during 
the COVID-19 epidemic.

4.4. Strengths of the study

First, the comparison of ImpactCOVID using the angle index in 
countries/regions can be applied to future relevant studies and is 
not limited to those merely focusing on the COVID-19 pandemic.

Second, MP4 videos on how to model the CNCCs and esti-
mate the parameters for mathematical models[23] have been pro-
vided to ordinary readers who are familiar with Microsoft Excel 
and hope to replicate the study in the future.

Third, the use of Microsoft Solver add-in to estimate the 
model parameters is a common approach that can be easily 
adopted by researchers.[2,4,54–56] Data and model-building vid-
eos are provided in Supplemental Digital Contents 1, http://
links.lww.com/MD/G983 and 2, http://links.lww.com/MD/

G984. Approaches for the search of IP days that can also 
be used for computing the angle index have been previously 
studied.[2,20,21]

Fourth, the choropleth and forest plots used in this study can 
provide comprehensive insights into the difference in the com-
parison of various countries/regions or pair-panel statistics. In 
turn, these differences can be used by policymakers and deci-
sion-makers in visualizing their data.

Furthermore, an MS Excel module for drawing the forest plot 
is provided. Readers are recommended to watch the abstract 
video and the Excel module presented in Chien.[23]

4.5. Limitations and future studies

Our study has several limitations. First, only 2 models were 
compared for MA and PP assessment. Future investigations are 
required to study other COVID-19 models and further under-
stand their differences and merits.

Second, only short- and long-term time periods during the 
COVID-19 pandemic were compared using the forest plot in 
the 2 models. Whether differences in MA and PP exist in the 
medium-term (or mid-term) epidemic must be investigated in 
the future.

Third, the case number is changeable and may vary day by 
day, particularly in countries undergoing second or third waves 
(peaks) in the ongoing pandemic. Thus, model parameters and 
angle indexes would also vary with time.

Fourth, the Microsoft Solver add-in is not unique in estimat-
ing model parameters. Many other methods and mathematical 
techniques should be used in making estimations and com-
parisons in the future, such as the Newton–Raphson iteration 
method[21,41–43] for searching IPs on a given ogive curve.[21]

Fifth, visual dashboards on Google Maps are not free of 
charge, and a paid project key for using the Google cloud plat-
form is needed. One limitation in using the dashboard is that it 
cannot be easily replicated by other authors or programmers for 
use in a short period of time.

Figure 7. Comparisons of IP day yields by the 2 models using line-chart plots. IP = inflection point.

http://links.lww.com/MD/G983
http://links.lww.com/MD/G983
http://links.lww.com/MD/G984
http://links.lww.com/MD/G984
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Sixth, only 5 goodness-of-fit measures were applied to com-
pare model usefulness (Fig. 10). Other indicators (e.g., Hannan–
Quinn criterion[57] and minimum description length[58]) could be 
employed in future studies.

Although IRT has superior MA and PP in the long run, 
other user-friendly mathematical models are also available for 
readers to understand the properties of exponential growth[18] 

and quadratic equations[19] in nature and for scientists to build 
improved COVID-19 models for further comparisons.

5. Conclusions
The 2 proposed models were compared according to their MA, 
PP, and 5 goodness-fit measures in 2 time-frame scenarios, 

Figure 8. Comparisons of IP day yields by the 2 models across continents and IP comparison among continents. IP = inflection point.

Figure 9. Comparisons of goodness-of-fit measures for models in 2 scenarios.
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namely, the early outbreak stage and throughout the entire 
year of 2020. We found that the IRT model is superior to the 
EXPO model in the long term. However, the EXPO model is 
better than the IRT model at the early stage because only the 
Ogive curves in the IRT model can appropriately generate 
the IP, which can then be used to compute the angle index. 
Both models are recommended so that readers can accurately 
project the CNCCs in other outbreak scenarios in the future. 
In addition, these models are not limited to the COVID-19 
pandemic.
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