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Lung cancer is one of the deadliest, most aggressive cancers. Abrupt changes in

gene expression represent an important challenge to understand and fight the disease.

Gene co-expression networks (GCNs) have been widely used to study the genomic

regulatory landscape of human cancer. Here, based on 1,143 RNA-Seq experiments

from the TCGA collaboration, we constructed GCN for the most common types of lung

tumors: adenocarcinoma (TAD) and squamous cells (TSCs) as well as their respective

control networks (NAD and NSC). We compared the number of intra-chromosome

(cis-) and inter-chromosome (trans-) co-expression interactions in normal and cancer

GCNs. We compared the number of shared interactions between TAD and TSC,

as well as in NAD and NSC, to observe which phenotypes were more alike. By

means of an over-representation analysis, we associated network topology features with

biological functions. We found that TAD and TSC present mostly cis- small disconnected

components, whereas in control GCNs, both types have a giant trans- component. In

both cancer networks, we observed cis- components in which genes not only belong

to the same chromosome but to the same cytoband or to neighboring cytobands. This

supports the hypothesis that in lung cancer, gene co-expression is constrained to small

neighboring regions. Despite this loss of distant co-expression observed in TAD and

TSC, there are some remaining trans- clusters. These clusters seem to play relevant

roles in the carcinogenic processes. For instance, some clusters in TAD and TSC are

associated with the immune system, response to virus, or control of gene expression.

Additionally, other non-enriched trans- clusters are composed of one gene and several

associated pseudo-genes, as in the case of the FTH1 gene. The appearance of those

common trans- clusters reflects that the gene co-expression program in lung cancer

conserves some aspects for cell maintenance. Unexpectedly, 0.48% of the edges are

shared between control networks; conversely, 35% is shared between lung cancer

GCNs, a 73-fold larger intersection. This suggests that in lung cancer a process of

de-differentiation may be occurring. To further investigate the implications of the loss of

distant co-expression, it will become necessary to broaden the investigation with other

omic-based approaches. However, the present approach provides a basis for future

work toward an integrative perspective of abnormal transcriptional regulatory programs

in lung cancer.

Keywords: lung adenocarcinoma, squamous lung cancer, gene co-expression networks, differentiation processes

in cancer, loss of distant co-expression
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INTRODUCTION

Lung cancer is one of the most deadly types of cancer nowadays.
The survival range for lung cancer barely reaches 5.8%, quite
below that of other malignant tumors (Torre et al., 2015). The
World Health Organization places malignant tumors of the
trachea, bronchi, and lung as the sixth leading cause of death
globally (Marciniuk et al., 2017). Lung cancer occupies the first
place in incidence and worldwide mortality among malignant
tumors. Each year there are about 1.8 million new cases and 1.59
million deaths worldwide.

Currently, based on the type of tissue, lung cancer can be
classified into two main categories: non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC). They represent
around 80 and 20% of cases, respectively. NSCLC tumors are
subclassified into squamous cells (TSC), adenocarcinoma (TAD),
and large cell (LC) carcinoma. TSC occurs more frequently in the
central area of the lungs, while TAD is found in peripheral areas,
arising from bronchial glands and bronchial epithelium (Travis
et al., 2015).

Treatment largely depends on histological diagnosis and
tumor status. Detection is performed via chest X-ray and low-
dose spiral tomography. Currently, only one-third of patients—
diagnosed at an early stage—may be candidates for a surgical
resection. However, recurrence after surgery reaches 30–60%
even with adjuvant chemotherapy. For advanced states, the first
line of treatment is chemotherapy with an average response
between 30–40%.

Molecular Biology of Lung Cancer
Several mechanisms of genomic alterations have been found in
lung cancer. For instance, DNA-repair pathways are triggered
by exposure to tobacco-derived carcinogenic chemicals. Several
single nucleotide polymorphisms (SNPs) have been identified
in these pathways. The helicase ERCC2/XPD involved in DNA
repair, the PHACTR2 protein that regulates the cytoskeleton,
the DUSP1 protein that negatively regulates the MAP-kinase
pathway are examples where SNPs have been identified (≈25%
of cases) in lung adenocarcinoma (Spinola et al., 2007).

In terms of epigenetic marks, alterations have been reported
via sputum analysis. In smokers, 14 genes with altered
methylation patterns were identified (p16INK4a, DAPK,
RASSF1A, PAX5, MGMT, GATA5, among others). These genes
were associated with an increase of 50% in the risk of developing
lung cancer. On the other hand, the p16 region has been found
hypermethylated in 25–74% of lung cancer patients in different
studies (Suzuki et al., 2014).

Alternative splicing events have been reported generating gene
fusion in lung adenocarcinoma. Tyrosine kinase domain fusions
have been identified by sequencing, including dimerization
domains, such as EML4-ALK, KIF5B-RET, and CD74-ROS1,
among other combinations. Additionally, some of these
alterations have been observed to be involved in drug resistance.
Patients with the EML4-ALK fusion treated with an ALK tyrosine
kinase inhibitors have shown better results than traditional
chemotherapy (Campbell et al., 2016). In nonsmoking women
from Korea with adenocarcinoma mutations, gene fusions,

among other alterations, were identified in c-Ret kinase as well
as genes involved in mitotic progression and G2/M transition
pathways (Campbell et al., 2016).

Two molecular pathways have been identified as relevant for
lung cancer in recent years: the epidermal growth factor receptor
(EGFR) and the anaplastic lymphoma kinase (ALK), respectively.
These pathways can be affected by mutations in the kinase
domain, amplification of the copy number or translocations, thus
inducing new transcriptional control. Clinical trials have shown
that patients whose malignant tumor is strongly related to EGFR
or ALK can be treated with drugs targeting the kinase activities of
these proteins, obtaining a 60% favorable response range (Suzuki
et al., 2014).

Copy number alterations have also been identified in lung
cancer. Chromosomal amplification of region 14q13.3 has been
frequently found in tumor adenocarcinoma (TAD). One of
the altered genes in copy number is NKX2-1, a transcription
factor related to the differentiation and epithelial morphogenesis
of the lung.

Several mutations have been reported in crucial genes
associated with carcinogenic processes of the lung. KRAS, HER2,
BRAF, EGFRvIII, and PIK3CA, among others, are frequently
mutated in patients with NSCLC. Mutated KRAS is present
in 15–25% of adenocarcinoma cases. There is no directed
treatment targeting KRAS, but the subsequent effector route,
RAS/ RAF/MEK, possesses inhibitors which may be effective
in patients with diagnosed NSCLC and mutant KRAS (Shames
and Wistuba, 2014). These are just some examples of the
multiplicity of mutations and functional events related to
abnormal regulation in lung cancer and its consequences. The
purpose of this work is to further contribute to the understanding
of these complex phenomena.

Large-Scale Studies on Abnormal Gene
Regulation in Lung Cancer
Several efforts involving next-generation sequencing techniques
have been developed by international groups. The objective is
to provide a better understanding of the molecular changes that
cells and tissues suffer during cancer progression. Endeavors
such as The Cancer Genome Atlas (TCGA) or the International
Cancer Genome Consortium (ICGC) (Consortium et al.,
2010) represent world-wide referents that have broadened our
knowledge of cancer.

Collaborations like the ones mentioned above have helped to
establish the relevance of cancer genomics and provided large
amounts of data that have contributed to improve not only our
basic knowledge of cancer biology but also oncological treatment
and clinical practice. Data generated by such consortia are public
and available to develop new knowledge based on such state-of-
the-art experiments for thousands of samples.

A useful and powerful type of data to implement -omic
analysis is the one generated by RNA-Seq technology. In the
case of lung cancer, TCGA RNA-Seq-based gene expression
databases include more than 1,100 samples for patients with
adenocarcinoma (533), squamous cell carcinoma (502), as well
as their adjacent-to-tumor healthy counterpart samples (101).
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This kind of information allows researchers to explore in-depth
the molecular mechanisms behind each cancerous genotype and
at the same time to explore the functional implications of the
concomitant phenotypes.

Gene expression data are one of the most used types of
genomic information. However, gene expression analysis alone
is not always sufficient to fully characterize and differentiate
one type of cancer from another, even in the same tissue.
Recently (Zamora-Fuentes et al., 2020, published in this research
topic), we showed that, for clear cell renal carcinoma, gene
expression signatures do not change during cancer progression.
However, what remarkably differs between stages is the
co-expression signature.

Gene co-expression networks are a helpful tool to analyze not
only network parameters to distinguish global features, such as
node degree or betweenness centrality between cases, but also
functional implications based on the network structure for each
phenotype (Amar et al., 2013; Alcalá-Corona et al., 2016, 2017,
2018; Drago-García et al., 2017; van Dam et al., 2018; Fionda,
2019; Tieri et al., 2019).

Despite several efforts to dissect the molecular mechanisms
behind lung cancer origins and development, unsolved issues
regarding the effect of gene co-expression and the relationship
between co-expression patterns and phenotypic manifestations
are still missing.

In this work, based on 1,143 gene-expression profiles of
NSCLC patients, we constructed, inferred, and analyzed gene
co-expression networks of lung cancer, as well as their healthy
counterparts. To construct the networks, we separated cancer
samples in adenocarcinoma tumors (TAD) and squamous
carcinoma tumors (TSC).

We investigated how similar are both types of lung cancer
at the expression and co-expression levels. We compared the
resulting probabilistic co-expression networks in terms of shared
interactions between lung cancer networks (TAD and TSC) and
between the healthy ones (NAD and NSC). Finally, based on
the gene co-expression signatures for both cancer networks,
we performed over-representation analysis to observe those
biological processes in which key genes participate.

MATERIALS AND METHODS

Data Acquisition
RNA-Seq files were obtained from the Genomic Data Commons
database https://portal.gdc.cancer.gov/ for the twomost common
subtypes of lung cancer (TAD and TSC) as well as for adjacent-
to-tumor normal lung tissue.

Files were downloaded using the following filters: Primary
site = lung, sample type = primary tumor or solid normal
tissue, experimental strategy = RNA-Seq, and workflow type
= HTSeq-Counts. Data files consisted of 502 TAD samples, 49
adjacent-to-TAD normal samples (NAD); 533 TSC samples and
59 adjacent-to-TSC normal samples (NSC).

Data were annotated and harmonized for subsequent
analysis using the latest genomic reference (GRCh38). Genomic
information for gene stable ID, chromosome/scaffold name, gene
start (bp), gene end (bp), gene% GC content, and gene type

was mapped using BioMart database (version GRCh38.p12). This
data pre-processing pipeline has been previously implemented to
analyze RNA-Seq data from breast cancer (Drago-García et al.,
2017; Espinal-Enriquez et al., 2017; Dorantes-Gilardi et al., 2020;
García-Cortés et al., 2020; Serrano-Carbajal et al., 2020) and clear
cell renal carcinoma (Zamora-Fuentes et al., 2020).

Data Pre-Processing
Quality control was performed using “Biotype detection” and
“Sequencing depth” functions from NOISeq package (Tarazona
et al., 2011). The most frequent sources of biases in RNAseq
sequencing are associated with GC content, transcript length,
and RNA composition (Tarazona et al., 2015). These biases were
removed using full quantile normalization for GC content and
length and TMM (Trimmed Mean of M) for RNA composition,
all functions from NOISeq package. In addition, structural
noise like batch effects were removed using ARSyN (Nueda
et al., 2012) package. Finally, genes with countspermillion <

10 were removed. Data pre-processing was carried out using
R version 3.6.0.

For data normalization, we used the DESeq2 R package
(Love et al., 2014). After normalization of the four matrices,
we preserved only those transcripts that were conserved in all
four matrices. The number of resulting transcripts was 20,101.
This number included protein coding genes, long noncoding
RNA, microRNAs, pseudogenes, and other types of RNA species.
The whole pre-processing and normalization code can be
accessed and/or downloaded from https://github.com/CSB-IG/
regulaciontrans-pipeline.

Differential Expression
Limma (Ritchie et al., 2015) is a Bioconductor component
package based on a linear model to compare gene expression
between two different gene sets. It can be used to analyze
both types of data: microarrays or RNA-Seq. With this tool, we
obtained the information about average expression, as well as the
differential expression in terms of Log2 fold change for TAD vs.
NAD, and TSC vs. NSC samples. An absolute difference of fold
change ≥ 1.5 and a Benjamini & Hochberg corrected p-value
< 0.01 were set as thresholds.

Gene Co-Expression Network (GCN)
Inference
For inferring our four GCNs (NAD, TAD, NSC, and TSC), we
used mutual information (MI) as the measure to determine gene
co-expression. ARACNe (Margolin et al., 2006) is a standard
method to calculate the MI between two data series. This
algorithm was applied to the four gene expression profiles to
establish correlations between pairs of genes. We used the serial
C++ version without Adaptive Partitioning Inference.

To improve the performance of this method, we developed
a multicore version based on the aforementioned algorithm.
This interface accelerates MI calculation depending on the
number of available cores. For this work, we inferred a GCN
of ≈ 200, 000, 000 (20, 0002/2, corresponding to the total of
genes in the matrix) of 100 sample expression matrix in 30min
using an 80-core server. This interface is available on github
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(https://github.com/josemaz/aracne-multicore). We decided to
analyze and conserve the top-10,000 interactions for the four
GCNs in order to have the same size of the four graphs, as well
as being able to compare them. Additionally, this network size
has been previously observed to be significant to analyze them in
terms of structural and functional characteristics (Alcalá-Corona
et al., 2016, 2017; Velazquez-Caldelas et al., 2019; Zamora-
Fuentes et al., 2020).

cis-/trans- Proportion Calculations
Previously, we observed in breast cancer GCNs (Espinal-
Enriquez et al., 2017; de Anda-Jáuregui et al., 2019a,b,c;
García-Cortés et al., 2020) that gene co-expression interactions
occur in a preferential manner between genes from the same
chromosome, and inter-chromosome interactions appear more
frequently in noncancer breast tissue networks. We decided
to observe whether or not that effect is also found in lung
cancer networks. For that purpose, we separated gene co-
expression interactions between intra-chromosome (cis-) and
inter-chromosome (trans-).

For these analyses, we also used the top-10,000 interactions.
However, in order to corroborate that any result generated by the
analysis with 10,000 edges network was not related to the network
size, we also performed calculations for a range of three orders
of magnitude in terms of edges, i.e., we analyzed the cis-/trans-
proportion in GCNs from 1,000 to 100,000 interactions. Finally,
network visualizations and topological analyses were performed
using Cytoscape v3.8.1.

We mentioned that the number of cancer samples is much
larger than healthy samples. To assure that the obtained results
for cancer GCNs were not due to the sample size, we developed
a method to select 100 random cancer samples from the cancer
expression matrix (table with samples and gene expression). For
this work, we generated 10 randomized expression matrices with
100 samples for adenocarcinoma samples and other 10 matrices
for squamous cancer data. The networks obtained using this
method were pruned to 10,000 interactions, and compared with
their healthy counterpart in terms of cis-/trans- proportion.

Functional Enrichment
Genes that presented a relevant network topology were in
turn mapped into Gene Ontology categories to observe those
processes that are allegedly enriched. For that purpose, we
used g:Profiler web interface tool (Raudvere et al., 2019).
We used the g:SCS option for multiple testing correction. The
significance threshold was set to 10−5. In Figure 1, the workflow
presented in this paper is depicted.

RESULTS AND DISCUSSION

Gene Co-Expression Is Chromosome
Dependent in Lung Cancer
Figure 2 shows the lung carcinoma (TSC and TAD) GCNs,
compared with their healthy counterpart (NSC and NAD). The
difference between both networks in terms of the component
sizes is remarkable. The giant component of the healthy
GCNs covers more than the half of the total size of the

networks. Meanwhile, for the tumor-derived GCNs, there is no
giant component; the larger one contains 123 genes and 336
edges (for TSC).

Aside from topological differences in network structure,
in the tumor GCNs, components are formed mostly
by genes from the same chromosome, which indicates
that the majority of interactions are intra-chromosome
or cis- interactions. Conversely, in the healthy networks
genes co-express with other genes with no particular
bias or trends in terms of the chromosomal location.
The difference in cis- and trans- interactions between
tumor and normal GCNs is observed in all chromosomes
(p−val < 10−8 in both cases). In Supplementary Material 1A,
we show all cis- interactions per chromosome for
the four GCNs.

Furthermore, in the TAD and TSCGCNs, genes are correlated
with other genes appearing in the same chromosome, but
co-expressed genes are also physically close (in terms of
chromosomal location) among them. This phenomenon can
be observed in Figure 3. There, we depicted all interactions
appearing in chromosome 19 for NAD and TAD GCNs. Genes
are placed according to its gene start position. Turquoise
interactions represent long-range cis- interactions, meanwhile
purple edges show close co-expression relationships (both genes
belong to the same cytoband).

Potential De-Differentiation of the Gene
Co-Expression Program in Lung Cancer
Since both healthy and both cancer networks at first sight seem
to be topologically similar, we decided to compare them in terms
of shared genes an interactions: NAD vs. NSC and TAD vs. TSC.
This was made out with the aims of observing the percentage of
similarity between phenotypes.

In Figure 4, we observe the intersection of interactions for
healthy and cancer GCNs. For the healthy networks, the number
of shared genes is high, but they only share 0.48% of their edges.
On the other hand, the TAD and TSC networks share 35% of
their interactions. The intersection between cancer GCNs is then
73-fold larger.

The organizational principles that determine the structure
in cancer GCNs are more similar than control networks.
The observed co-expression program may indicate that the
cancer cell suffers a process of de-differentiation, since cancer
networks become more alike than the different lung cell types
of origin.

The idea that TAD and TSC networks are suffering
a de-differentiation process, and can be appreciated from
the increase of intersected edges between cancer networks
with respect to the normal counterpart, is based on the
following premises:

• The gene co-expression program, in particular, the set of
higher co-expression interactions, represents a reliable and
significant example of the cellular state of a given phenotype.

• The gene co-expression program can be represented by a
network, where nodes correspond to genes, and the edges
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FIGURE 1 | Graphical pipeline followed in this work. In the figure, we show the main steps in which this methodology is divided.

connecting nodes represent a kind of interaction between any
couple of genes.

• A gene co-expression interaction can be defined by a certain
type of correlation observed between any two genes. In this
case, the measurement used to define an interaction is MI.

• The similarity between two networks can be used, to a certain
extent, as a proxy to assess the similarity between two gene
co-expression phenotypes.

• The TSC cancer network came from the same cells that
give form to the normal tissue-derived NSC network.
Analogously, the TAD network comes from normal tissue-
derived NAD network.

• NSC and NAD networks came from different cell types.

The similarity between tumor GCNs may be explained (at least
partially) by a process of cellular de-differentiation. The NSC
and NAD networks share little connectivity, but half of the genes
are shared. This implies that although they express at least half
of the same genes, they do not co-express in the same way;
this is probably because they are well-differentiated cells with
specialized tasks.

On the other hand, TSC and TAD networks share 76% of
genes and 35% of the co-expression pattern. Tumor cells have a
lower degree of differentiation and a higher proliferative power.
Two tumors of different origin may be more similar to each other
than two samples of specialized normal tissue.

trans- Clusters May Play a Crucial Role in
the Carcinogenic Process
Components With cis- Co-Expression Belong to

Neighboring Karyobands
Most of the components that form tumor GCNs contain genes
from the same chromosome. The genes from each component,
in addition to being from the same chromosome, are located
in neighboring regions of the chromosomes. Co-expressed
genes are usually within the same karyotype band in all
chromosomes (p-val< 10−8 for TAD, and p-val< 10−6 for TSC,
Supplementary Material 1B). In other words, the co-expression
of neighboring genes is stronger than between distant genes,
even within the same chromosome. These cis- components are
not, however, significantly associated with biological processes in
enrichment analysis.

A plausible explanation regarding the mechanisms for which
we observed such a decrease in long-range gene couples, and a
concomitant elevation of close gene co-expression interactions,
could be chromosomal aberrations or the aforementioned
copy number alterations (CNAs). This latter could be partially
answered by an analysis of copy number alteration data and
contrasted that with our network data. Preliminary results in
breast cancer have shown that copy number alteration events
are not highly correlated with clusters of physically close genes
with high co-expression interactions. The complete analysis of
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FIGURE 2 | Non-small cell lung cancer (NSCLC) and normal tissue-derived gene co-expression networks. (Top-left) Largest component of normal tissue-derived

network for NSC. (Top-right) Correspond to the giant component of NAD gene co-expression network (GCN). (Bottom-left) Squamous carcinoma-derived gene

co-expression network. (Bottom-right) Tumor adenocarcinoma network. In both tumor GCNs, components with more than 10 genes are depicted. Genes are

colored according to the chromosome location. In healthy GCNs, gene size is proportional to the gene connectivity.

CNAs implication in the lung cancer co-expression program is
under development.

Shared trans- Components Are Significantly

Associated With Biological Functions
Despite the fact that the large majority of gene co-expression
interactions in cancer GCNs are cis-, a small subset of trans-
edges appears in both cancer networks. In fact, some trans-
clusters are also shared between cancer phenotypes. Figure 5
shows the shared trans- clusters between the two lung cancer
GCNs. Additionally, two of those components are significantly
associated with biological processes.

One of them, composed of OAS1, or IFIT genes, resulted
enriched in 26 terms (Supplementary Material 2). They are
related to processes such as response to virus and response to
stimulus. The second enriched trans- component (with EGR,
FGR, FOSB, and JUNB genes) is associated with the regulation
of gene expression, regulation of transcription, and metabolic

processes. Thirty-four GO categories resulted enriched for this
geneset (Supplementary Material 3).

We previously reported (Alcalá-Corona et al., 2018) a gene
co-expression network for HER2+ subtype breast cancer, which
contained a component, very similar to the one with IFIT
and OAS genes. This component was also associated with viral
response. In Alcalá-Corona et al. (2018), additional to the
association with virus-related processes, these genes were mostly
overexpressed. Here, these genes in TSC network are mostly
underexpressed. Moreover, in TAD network, this gene subset
is not biased to a particular differential expression trend. The
differential expression of all genes in this analysis can be found
in Supplementary Material 4.

It is worth to notice that the HER2+ breast cancer network
considered there was constructed based on microarray data, and
this one is an RNA-Seq-based analysis. Despite technologies are
different and also the primary organ in which this gene subset was
found, the co-expression associations are the same in a very small
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FIGURE 3 | Chromosome 19 gene co-expression networks (GCNs) for NAD and TAD. In this figure, cis- interactions for NAD (top) and TAD (bottom) are depicted.

Genes are placed according to its starting base pair. Turquoise links join genes from different cytobands, meanwhile purple interactions take account for

intra-cytoband relationships.

FIGURE 4 | Intersections between normal (Left) and lung cancer (Right) gene co-expression networks (GCNs). The upper section of the figure shows (in the form of

Venn diagrams) the number of shared genes and interactions between NAD and NSC networks (blue diagrams); the right part represents the intersection between

TAD and TSC GCNs.

group of genes. It is more remarkable that both cases present
opposite differential expression trend. This could be another
instance in which co-expression features are more robust that
gene expression itself.

Cancer Networks Edges Are Biased to
Genes With the Same Differential
Expression Trend
Within the Top-10,000 GCN, we observed 5,783 genes for TAD

and 5,122 for TSC. Hence, the GCNs do not contain the sufficient

number of genes to analyze their whole genome differential
expression patterns. To overcome this, we decided to analyze

larger GCNs. For that purpose, we conserved gene interactions
with a p− value < 10−8 for both cancerous phenotypes.

In the case of TAD, the resulted GCN contains 170,190
interactions and 14,073 genes, which means that almost all genes
in the genome participate in the structure of that network.
By setting the Log2FC threshold in ±1.5, the number of
significant DEGs was 1,056 for overexpressed and 1,304 showed
underexpression.

In Figures 6A,B, only cis- interactions are depicted. Green
links join co-expressed genes with an opposite differential
expression trend, i.e., one gene presents positive Log2FC and
the other one has a negative Log2FC. Black interactions
join cis- genes that have the same differential expression
trend: both genes are over- or underexpressed. There are
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FIGURE 5 | Shared trans- components between TAD and TSC networks. trans- clusters that are found in both TAD and TSC are depicted. The shape of nodes

represents the transcriptional species of the nodes. Enriched processes that are associated with a particular component are presented. The FTH1 component

(bottom right) shows one only gene, that codifies for ferritin1, and all other nodes in the component are ferritin pseudogenes, showing that in this case, co-expression

favor sequence similarities over gene physical closeness.

more underexpressed genes than overexpressed ones (1,304 vs.
1,056, Figure 6C). Additionally, underexpressed genes are more
broadly differentially expressed than the overexpressed ones
(Supplementary Material 4).

Regarding interactions, there are more black edges
(joining same-expression-trend genes) than green ones
in all chromosomes (119,574 vs. 40,445, p-val< 10−8,
Supplementary Material 5). Moreover, the large majority
of same-trend interactions occurs between genes with
positiveLog2FC (110,714) than those with negative differential
expression (8,860) in all chromosomes (p − value < 10−10,
Supplementary Material 5).

In the case of interactions between negative Log2FC genes,
chromosomes 3, 8, and 18, have the majority of intra-trend
links. The p-arm of chromosome 3 has dense interactions
hotspots in both intra- and inter-trend genes. There is a
common deletion in Chr3p in lung cancer (Lerman et al., 2000;
Kou et al., 2020). It is known that several tumor suppressor
genes are located at 3p (Varella-Garcia, 2010). Partial deletion
of 3p occurs in almost all lung carcinomas (Kou et al.,
2020). This deletion includes tumor suppressor genes, such
as RASSF1 (3p21.3) or TUSC2 (FUS1, 3p21.3) (Kok et al.,
1997). These genes are found in the TAD network and both
are downregulated.

Another zone with a high number of intra-trend edges is the
q-arm of chromosome 10. A deletion in Chr10q24-26 in small
cell lung carcinoma has been reported (Petersen et al., 1997;
Kim et al., 1998). PTEN gene is located on 10q23.3 and it is
also present in the network, downregulated but non-significantly
underexpressed. Alterations in PTEN have been reported in
around 20% of SCLC (Yokomizo et al., 1998). Despite this
analysis was performed on nonsmall cell lung carcinomas, the
intra-trend interactions hotspot observed in Chr10 could be
associated with chromosomal-level events in NSCLC.

cis- interactions between genes that belong to different arms
are also scarce. In the top right part of Figure 6, the zoom in of
Chr3 shows that from almost 15,000 cis-Chr3 gene co-expression
relationships, only 14 appear between genes from different arms,
and none of them are between different expression trend genes.

All of these results appear to indicate that in NSCLC, the
co-expression landscape is dominated by physically close genes.
These genes, in turn, share other characteristics, such as the
differential expression pattern. At this point, we do not know the
functional causes behind this phenomenon.

In the case of TSC, the difference between same-arm co-
expression interactions as compared to those in different-arm
ones is even larger. The total number of significant interactions
for TSC is 232,355. Intra-arm cis- interactions are 222,839,
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FIGURE 6 | Differential expression trend influences the interactions of TAD network. (A) Genes are placed according to its starting base per chromosome. Color of

genes takes account for the differential expression trend: red for positive differential expression and turquoise for negative ones. Black vertical lines indicate the

threshold point for differential expression (±1.5). Black edges join genes with the same differential expression trend, meanwhile green links represent interactions

between different trend genes. (B) Zoom-in to Chr3. (C) volcano plot for TAD genes with the aforementioned threshold.

i.e., the 95.9% of all interactions. The trans- interactions cover

9,081, the 3.9% of all interactions. The inter-arm cis- interactions

are only 435. The fact that for TSC network, we observed 20

times fewer interactions between inter-arm cis- relationships than

trans- interactions, which was unexpected. The latter may suggest

that some trans- interactions are crucial to maintain certain

processes in the tumor cell. In Supplementary Material 6, we

provide the Cytoscape session .cys file containing all networks

used in this work.

Loss of trans- Co-Expression in Cancer
Does Not Depend on the Network Size or
the Number of Samples
As mentioned in section 2, we analyzed the GCNs with the top
10,000 interactions. To assess the validity of the results shown
here, we decided to carry out calculations for a broader range
of interactions, from the top 1,000 edges to the top 100,000,
i.e., three orders of magnitude, to evaluate whether or not, the
differences in the cis-/trans- proportion were maintained.
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Supplementary Material 7 shows the proportion of cis-
interactions of the total of edges at different cutoff values. As it is
noted, the proportion of this imbalance in lung cancer networks
is essentially preserved independent of the cutoff value. This
confirms our assertion that the fundamental phenomenon we
are observing, regarding structural features of GCNs, is indeed
maintained over a fairly wide range of interaction cutoffs.

We commented above that the number of cancer samples is
much larger than healthy ones (∼ 1,000 vs. 100). To assure that
the obtained results for cancer networks were not due to the
sample size, we generated 10 randomized expression matrices
with 100 samples for adenocarcinoma tumors and other 10
matrices for squamous cancer data. The GCNs obtained with
this method were pruned to 10,000 interactions and calculated
its cis/trans proportion.

Supplementary Material 8 contains a Cytoscape session file,
including the 20 different realizations of randomized networks,
10 for TAD and 10 for TSC. There it can be observed that with 100
random samples, the effect of loss of trans- co-expression prevails
in all instances.

CONCLUSIONS

As a summary of findings, in this work we have shown that:

• gene co-expression networks in lung cancer suffer a dramatic
loss of distant interactions;

• adenocarcinoma and squamous cell lung cancer GCNs are
much more alike (in terms of gene interactions) than the
networks formed by adjacent-to-tumor normal-derived tissue;

• the co-expression interactions in lung cancer are biased to
appear in genes that are in the same chromosome;

• in lung cancer, interactions occur preferably between genes
from the same cytoband;

• top gene interactions in lung cancer occur often between genes
with the same differential expression trends, in special between
upregulated genes;

• shared trans- (inter-chromosome) connected components are
strongly associated with important biological functions such
as immune response and regulation of gene transcription;

• these features has been observed for the first time in lung
tissue-derived GCNs.

We have observed an important intersection between genes and
links in lung cancer networks, which is opposed to the observed
in healthy lung tissue-derived networks. This finding leads us
to suggest that a de-differentiation mechanism appears during
lung carcinogenesis.

The networks used in this work were inferred from lung
cancer samples with no other filter than the type of lung cancer
(adenocarcinoma and squamous cells). Further investigation in
this line of research must be focused on constructing and infer
networks based on progression stages of these types of cancer
to observe whether or not later stages are more similar than the
early ones.

We strongly believe that the current knowledge regarding
gene co-expression and the concomitant functional regulation
of the transcriptional program in cancer phenotypes will be

improved and better understood by aggregating other omic layers
to these systems. Furthermore, the effect of loosing the long-
range co-expression observed in more than one cancer tissue
(breast, kidney, and now lung) may be an instance of a more
complicated phenomenon that could be behind of a novel—not
yet described—hallmark of cancer.

In any case, the present results contribute to advancing
our knowledge of the deep intricacies behind transcriptional
regulation in cancer. This, in turn, will be helpful not only to
establish better the basic foundations of cancer biology but also
to devise ways in which this knowledge may be translated into
diagnostics, prognostics, and therapies for lung cancer patients.
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