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Background: Deep learning has utility in predicting differential antidepressant treatment

response among patients with major depressive disorder, yet there remains a paucity of

research describing how to interpret deep learning models in a clinically or etiologically

meaningful way. In this paper, we describe methods for analyzing deep learning models

of clinical and demographic psychiatric data, using our recent work on a deep learning

model of STAR∗D and CO-MED remission prediction.

Methods: Our deep learning analysis with STAR∗D and CO-MED yielded four models

that predicted response to the four treatments used across the two datasets. Here, we

use classical statistics and simple data representations to improve interpretability of the

features output by our deep learning model and provide finer grained understanding

of their clinical and etiological significance. Specifically, we use representations derived

from our model to yield features predicting both treatment non-response and differential

treatment response to four standard antidepressants, and use linear regression and

t-tests to address questions about the contribution of trauma, education, and somatic

symptoms to our models.

Results: Traditional statistics were able to probe the input features of our deep

learning models, reproducing results from previous research, while providing novel

insights into depression causes and treatments. We found that specific features were

predictive of treatment response, and were able to break these down by treatment and

non-response categories; that specific trauma indices were differentially predictive of

baseline depression severity; that somatic symptoms were significantly different between

males and females, and that education and low income proved important psycho-social

stressors associated with depression.

Conclusion: Traditional statistics can augment interpretation of deep learning models.

Such interpretation can lend us new hypotheses about depression and contribute to

building causal models of etiology and prognosis. We discuss dataset-specific effects

and ideal clinical samples for machine learning analysis aimed at improving tools to assist

in optimizing treatment.
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INTRODUCTION

The heterogeneity of depression constitutes a major barrier to
successful treatment (Perna et al., 2018). Clinicians and patients
are faced with a plethora of treatment options, with over 20
commonly prescribed antidepressants, augmentation therapies,
psychotherapies, neuromodulation, and lifestyle interventions,
but a paucity of evidence-based information to inform treatment
selection and personalization. The resultant trial and error
approach to treatment selection prescription is ineffective: a
third of patients fail to remit to a first-line antidepressant, with
remission rates decreasing with subsequent treatments (Rush
et al., 2006). Researchers have strived to identify predictors
of treatment outcome across clinical profile, sociodemographic,
physiological, neuroimaging, genomic, and other possible
predictor types (Williams et al., 2011), yet few, if any, predictors
have translated into common clinical practice. Machine learning
(ML) is capable of tackling the challenges of interpreting large,
multidimensional, interrelated datasets found in psychiatric
research and may help us create clinically useful models for
treatment selection.

Two objectives in the study of biological systems are
inference and prediction. Inference creates a model of data-
generation to test a hypothesis about how a particular
system behaves, whereas prediction forecasts possible outcome
or behavior without necessarily understanding underlying
biological mechanisms (Bzdok et al., 2018). Classical statistical
methods, such as regression and t-tests, focus on inference and
have been a dominant method for analyzing psychiatric data and
offering insight into causal associations. For instance, logistic
regression models assessing the association of demographic and
clinical characteristics on treatment outcome in the Sequenced
Treatment Alternatives to Relieve Depression (STAR∗D) trial, a
large multicenter sequenced treatment trial for depression, have
shown that race, low education, post-traumatic stress disorder
(PTSD), and hypochondriasis are independently associated
with worsened depression (Friedman et al., 2009), as well
as depression severity, energy/fatigue, race, education, and
PTSD occurrence (Perlis, 2013); in addition, having witnessed
or experienced trauma has been used to estimate risk for
treatment-resistance among major depressive disorder (MDD)
outpatients (Perlis, 2013). These results are bolstered with
receiver operating characteristic (ROC) analyses also showing
income and education to be predictors of response in STAR∗D
(Jakubovski and Bloch, 2014). However, in recent years, classical
statistics and null hypothesis significance testing frameworks
have been increasingly scrutinized due to the emphasis on p-
value testing and difficulties with reproducibility (Wagenmakers,

2007). In contrast, machine learning allows for individualized
prediction through the implementation of learning algorithms,

which make fewer assumptions about data-generation, to find

patterns in large, heterogeneous datasets. Advances in machine
learning have highlighted its utility in identifying patterns in
complex data for psychiatric research (Iniesta et al., 2016;
Passos et al., 2016) and specifically for outcomes of depression
treatments (Lee et al., 2018). Recent studies have leveraged

machine learning methods to predict antidepressant treatment
response for individuals with depression, identifying 25 features
most predictive of whether a patient will respond to citalopram
(Chekroud et al., 2016), predicting persistence, chronicity, and
severity of depression from self-report questionnaires (Kessler
et al., 2016), predicting treatment response to electroconvulsive
therapy (ECT) using baseline hippocampal subfield volumes
(Cao et al., 2018), predicting treatment resistance before
initiation of a second antidepressant (Nie et al., 2018), using
deep learning to predict response to SSRIs (Lin et al., 2018),
and using Random Forests to predict outcome in treatment-
resistant depression (Kautzky et al., 2018). However, the non-
linearity of relationships that ML techniques capture in models
make it difficult to integrate ML with existing biological
knowledge and clinical practice, where researchers, clinicians,
and patients often seek to understand causal relationships.
We suggest that deep learning and traditional statistics can
be used in a complementary fashion to interpret clinically
meaningful associations.

One goal of personalized psychiatry is to predict a given
patient’s pre-treatment likelihood of response to an array of
treatments in order to aid in selecting the treatment with the
highest likelihood of response before therapy is administered.
In recent work (Mehltretter et al., 2019), we performed a deep
learning analysis on the Combining medications to enhance
depression outcomes (CO-MED) clinical trial and Level 1 of
STAR∗D. Of all machine learning techniques, deep learning is
considered one of the most effective, but also the most difficult
to interpret (Zhang et al., 2018). We produced an algorithm
that predicts response to four antidepressant treatments and
is theoretically capable of increasing population remission
rates via differential treatment benefit prediction (Mehltretter
et al., 2019). Our study yielded four models, described below.
As we examined each model’s features found to be most
predictive of remission, we identified striking consistencies
in the features across models, and between our work and
that of Chekroud et al. (2016) and others, as well as some
surprising inconsistencies. Improving interpretability of deep
learning models is important for translational research and
for increasing their clinical utility. In our previous paper, we
produced “interpretability reports” that helped understand the
key features for predictions for individual patients. In this paper,
we use regression and classical statistics to help interpret our
results in order to better understand what complex ML outputs
can tell us about themechanisms driving remission to depression,
and the relationships between predictive features. Based on these
observations, we ask clinically- and mechanistically-relevant
questions concerning general vs. specific predictors of response
to antidepressants, trauma-related features, dataset differences
in education, somatic symptoms and gender, using simple data
representations andmanipulations and traditional statistics, such
as regression and t-tests. We evaluate our findings in the context
of existing hypotheses concerning the etiology and prognosis of
major depression and use what we learn to offer new directions
for depression research and the use of ML in psychiatric
data science.
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TABLE 1 | Optimal features selected by the deep learning algorithm for remission prediction.

Model (number of features)

Category Combined (17) STAR*D optimal (21) STAR*D tested on

CO-MED (14)

CO-MED alone (26) Chekroud et al.

(2016) (25)

Sociodemographic Number of years in

formal education

Number of years in

formal education

Number of years in

formal education

Years of education

Monthly household

income

Monthly household

income

Monthly household

income

Black or African

American

White

Current marital status

Months lived at

residence

Has private insurance

Patient history Patient has a history of

psychotropic meds

Previously taken

zoloft sertraline

Ever taken

sertraline

Previously taken

Prozac fluoxetine

Child history of

depression

Number of

previous major

depressive

episodes

Symptom profile

(depression)

Depression

severity

Initial QIDS total

severity

Initial QIDS total

severity

Initial QIDS total

severity

Initial QIDS total

severity

Initial HAM-D

depression severity

Initial HAM-D

depression

severity

HAM-D suicide QIDS suicidal ideation QIDS suicidal ideation QIDS suicidal ideation HAM-D suicide

Past 2 weeks:

Considered hurting

self or wished they

were dead

QIDS mood (sad) QIDS mood (sad) QIDS mood (sad) QIDS mood (sad)

Depressed mood

most of the day,

nearly every day

Somatic HAM-D somatic

energy

HAM-D somatic

energy

HAM-D somatic

energy

HAM-D somatic

anxiety

Have you ever been

bothered by aches

and pains in many

different parts of your

body?

Have you ever been

bothered by aches and

pains in many different

parts of your body?

Have you ever been

bothered by aches

and pains in many

different parts of your

body?

Have you ever been

bothered by aches

and pains in many

different parts of your

body?

Have you ever

been bothered by

aches and pains in

many different

parts of your

body?

QIDS weight (increase)

last 2 weeks

QIDS weight (increase)

last 2 weeks

Dysthymic

disorder/major

depressive episode.

Weight loss or weight

gain or appetite

change

Eat a lot when not

hungry

Feel disgusted after

overeating

Sleep QIDS sleep onset

insomnia

Sleep onset insomnia QIDS sleep onset

insomnia

I have been having

more trouble sleeping

than usual

HAM-D delayed

insomnia

(Continued)
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TABLE 1 | Continued

Model (number of features)

Category Combined (17) STAR*D optimal (21) STAR*D tested on

CO-MED (14)

CO-MED alone (26) Chekroud et al.

(2016) (25)

QIDS energy or

fatigability

QIDS energy or

fatigability

Cognitive or

behavioral

QIDS

psychomotor

agitation

QIDS

concentration/decision

making

Dysthymic

disorder/major

depressive episode:

Poor concentration or

difficulty making

decisions

HAM-D loss of

insight

Feelings of

worthlessness or guilt

Comorbidity: Trauma Have you ever

witnessed a traumatic

event such as rape,

assault, someone

dying in an accident,

or any other extremely

upsetting event?

Have you ever

witnessed a traumatic

event such as rape,

assault, someone dying

in an accident, or any

other extremely

upsetting event?

Have you ever

witnessed a traumatic

event such as rape,

assault, someone

dying in an accident,

or any other extremely

upsetting event?

Have you ever

witnessed a

traumatic event

such as rape,

assault, someone

dying in an

accident, or any

other extremely

upsetting event?

Avoid activities that

remind you of trauma

Did you try to

avoid activities,

places, or people

that reminded you

of a traumatic

event?

Jumpy because of

a trauma

Jumpy because of a

trauma

Jumpy because of a

trauma

Did reminders of a

traumatic event make

you shake, break out

into a sweat, or have a

racing heart?

Did reminders of a

traumatic event

make you shake,

break out into a

sweat, or have a

racing heart?

Axis I: Post-traumatic

stress disorder

Feel distant because

of trauma

Comorbidity: Anxiety Anxiety being in

crowded places

Anxiety being in

crowded places

Anxiety being in

crowded places

Did any of the following

make you feel fearful,

anxious, or nervous

because you were

afraid you’d have an

anxiety attack in the

situation? Standing in

long lines

Did any of the

following make you

feel fearful, anxious, or

nervous because you

were afraid you’d have

an anxiety attack in

the situation?

Standing in long lines

Did any of the

following make

you feel fearful,

anxious, or

nervous because

you were afraid

you’d have an

anxiety attack in

the situation?

Standing in long

lines

(Continued)
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TABLE 1 | Continued

Model (number of features)

Category Combined (17) STAR*D optimal (21) STAR*D tested on

CO-MED (14)

CO-MED alone (26) Chekroud et al.

(2016) (25)

Did any of the

following make

you feel fearful,

anxious, or

nervous because

you were afraid

you’d have an

anxiety attack in

the situation?

Driving or riding in

a car

Avoid situation

because afraid of

anxiety attack

Did you have

attacks of anxiety

that caused you to

avoid

certain situations

or to change your

behavior or normal

routine?

Anxiety attacks for no

reason

Function Current employment

status

Currently

employed

How many hours

did you actually

work

How many hours did

you actually work

How many hours did

you actually work

Symptom profile:

Other

Neurological

Lower gastrointestinal

(GI)

I talk more than usual

I suddenly feel very

confident

I can feel my heart

racing

Worry about saying

something stupid

Worry about

embarrassing self

Worry something you

forgot

Guilt feelings and

delusions

Hallucinations

Sleep disturbance

Miscellaneous Drug assigned Assigned to

randomization arm

This table demonstrates the features composing each studied model. Note: for trauma, the following features were found to be predictive in STAR*D and CO-MED: “jumpy because of

a trauma,” “ever witnessed a traumatic event,” and “Did reminders of a traumatic event make you shake, break out into a sweat, or have a racing heart?”.

MATERIALS AND METHODS

Here we discuss the data and models produced as part of our
previous analysis (Mehltretter et al., 2019). We provide detailed
methods in the Supplementary Methods section.

Datasets
Data from CO-MED [Combining Medications to Enhance
Depression Outcomes (COMED); ClinicalTrials.gov,
NCT00590863] and STAR∗D Level 1 (STAR∗D;
ClinicalTrials.gov, NCT00021528) were used for these analyses.
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TABLE 2 | Ten-fold cross validated model accuracy metrics.

Model (Number of features) AUC NPV PPV Sensitivity Specificity

Combined STAR*D + CO-MED (17) 0.69 0.64 0.64 0.60 0.60

STAR*D Optimal (21) 0.71 0.68 0.68 0.69 0.69

STAR*D Model that was then tested on

CO-MED (14)

0.70 0.64 0.64 0.60 0.60

CO-MED Alone (26) 0.80 0.64 0.64 0.60 0.60

Chekroud et al. (2016) (STAR*D only) (25) 0.70 0.65 0.64 0.63 0.66

AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; STAR*D, sequenced treatment alternatives to relieve depression; CO-MED, combining

medications to enhance depression outcomes.

CO-MED enrolled 665 outpatients who were randomly assigned
three possible treatments: escitalopram and placebo, bupropion
and escitalopram, or mirtazapine and venlafaxine. STAR∗D
Level 1 enrolled 2,757 subjects, all of whom were treated
with citalopram.

Feature Selection
A feature selection and analysis pipeline was used that consisted
of variance thresholding, recursive feature elimination with
cross validation, and feature importance extraction using a
randomized lasso algorithm. The parameters for each method
were optimized by analyzing the accuracy of the neural network’s
predictions about remission. Full details can be found in
Mehltretter et al. (2019).

Neural Network
A dense neural network was built with Vulcan (https://
github.com/Aifred-Health/Vulcan) to train and evaluate our
remission prediction capabilities. Since our data were limited in
dimensionality we configured our neural networks to prevent
over fitting by using a more shallow network. Each node within
the network used scaled exponential linear unit function for
activation, and softmax was used on the final layer for predicting
the probability of remission.

Models
We produced four models from different combinations of
features from STAR∗D and CO-MED, and compared these to a
previously published model, and they are as follows:

(1) Combined model: The combined model was developed by
merging the STAR∗D dataset (2,757 subjects, 1 treatment
group) with the CO-MED dataset (665 subjects, 3 treatment
groups) and removing features that were not common
to both datasets, resulting in 3,222 patients, 4 treatment
groups, and 213 features. We used variance thresholding
and recursive feature elimination with cross validation to
determine the features most salient for differential treatment
prediction. This procedure identified 17 features.

(2) STAR∗D Optimal model: This remission-prediction model
was trained on the citalopram data from level 1 of
STAR∗D, including all possible features in STAR∗D without
eliminating those not found in CO-MED, and was then
validated using internal cross-validation.

(3) STAR∗D Tested on CO-MED: This model predicted
remission with citalopram using features common to
STAR∗D and CO-MED, and generalized to the three
branches of CO-MED to ensure our model wasn’t biased
toward citalopram.

(4) CO-MED Alone: This model predicts remission for within
the CO-MED dataset alone across all drug categories,
including all the features present in CO-MED before
feature selection. Six hundred and sixty five subjects were
included and 25 features were used after feature selection for
predicting remission.

(5) Chekroud et al. (2016) model: We include results from
the model detailed in Chekroud et al. (2016) to allow for
direct comparison to our models. Chekroud et al. (2016)
trained a gradient-boosting model on the citalopram data
from level 1 of the STAR∗D dataset and tested it on the
three treatment groups of the CO-MED dataset, producing
25 features.

Table 1 demonstrates the features selected by the deep learning
algorithm. Model performance metrics are reported in Table 2.

Interpretation of Model Features
We set out to understand the features in these models and
how they might relate to mechanisms of response in depression
treatment and determination of initial depression severity, as
this is an important predictor of response to treatment. We
outline key observations from Table 1 that motivated five
specific questions:

(1) Predictors of remission vs. predictors of response to

specific antidepressants

By combining data from the STAR∗D and CO-MED
clinical trials for a pooled dataset across 4 treatments,
we present a model that is able to perform differential
treatment prediction. A benefit of this contribution is that
we can begin to disentangle features that are predictive of
remission regardless of drug category from features that
are predictive of remission to specific drugs. We observed
that two features were predictive of remission across all 5
models (Table 1): “Have you ever been bothered by aches
and pains in many different parts of your body?” and
suicidal ideation score. Their commonality across all models
suggests that these are general predictors of response to
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antidepressant treatment, which reproduces some results from
extant literature, in which suicidal ideation and somatic
symptoms are robust contributors to more severe course of
illness, increased rates of relapse, higher risk of suicide, and
greater burden of care (Papakostas et al., 2003; Kapfhammer,
2006; Bohman et al., 2012). Four features—Number of
years of formal education (beginning at grade 1), having
witnessed a traumatic event initial depression severity [as
assessed by Quick Inventory for Depressive Symptomatology
(QIDS)], and sad mood (QIDS)—were common to all
models except for the COMED-alone model. This suggests
two non-mutually exclusive possibilities: that these represent
citalopram-specific predictors of response, or that there were
differences between the STAR∗D and COMED samples,
despite their large size and fairly broad inclusion criteria
aimed at generating representative MDD samples. Given the
possibility of antidepressant-specific vs. general predictors of
response, we asked:

“Can we identify features predictive of response to each
of the four antidepressants within our model (escitalopram,
bupropion, venlafaxine-mirtazapine, citalopram) individually,
as well as to the subgroup of patients with a low probability of
responding to any of the drugs?”

(2) Trauma-related features

Specific indices of trauma emerged from the deep learning
model as predictive of treatment response for both the
STAR∗D and COMED datasets. Since trauma is also a strong
risk factor for depression onset and severity (Nelson et al.,
2017), this led us to question:

“Are specific aspects of trauma predictive of
baseline depression?”

(3) Differences in education level between datasets

While level of education was a feature that was relevant for
predicting remission in STAR∗D alone and in the combined
dataset, it was not predictive in the CO-MED dataset alone.
Since the combined dataset is biased toward STAR∗D due
to its larger sample size, this could explain the presence of
the education feature the STAR∗D and CO-MED combined
dataset. We therefore analyzed the difference between levels
of education for the two separate datasets to answer
the question:

“Do the participants in STAR∗D and CO-MED come from
the same population, or are these populations different in key
variables that are predictive of outcomes?”

(4) Somatic symptoms and gender

Each of the four deep learning models retained somatic
symptoms of depression, such as feeling aches and pains, as
being important predictors of remission (Table 1). Gender,
however, was not selected as an optimal feature predictive
of remission. This could indicate that our model was not
concerned with gender because it was able to extract specific
features that differed between genders and therefore did not
need to use gender as a proxy. Given that somatic symptoms
have previously been shown to differ by gender (Silverstein
et al., 2013), we asked:

“Do somatic symptoms of depression differ by gender?”

Statistics
The data were analyzed at a Bonferroni-corrected significance
level of p < 0.005 with the statistical software RStudio
version 1.0.136. Statistical tests used were student’s t-tests and
linear regression.

RESULTS

Can We Identify Features Predictive of
Response to Each of the Four
Antidepressants Within Our Model
(Escitalopram, Bupropion,
Venlafaxine-Mirtazapin, Citalopram)
Individually, and Features Suggestive of a
Low Probability of Responding to Any of
the Drugs?
Given the four possible medications within our model, we
assessed which features were important for predicting remission
[as defined by a score of 5 or less on the Quick Inventory of
Depressive Symptomatology (QIDS)] for each individual drug,
as well as which features were predictive of a low probability
of remission with any drug. We first defined a low probability
of remission to any of the drugs as being a patient whose
remission probability for each drug was less than the baseline
population remission rate. This resulted in five sub-groups: one
group for each of the four treatments, and a fifth group with a
low probability of remission to any treatment. We created a set
of 750 subjects: 500 randomly selected from the STAR∗D study
and 250 subjects randomly selected from the CO-MED trial.
We assigned subjects to a sub-group by running our test set of
subjects through our trained model four times, each time with
a new medication storing the probability of remission for that
given subject with that medication. We were, in effect, generating
potential outcomes under each of four different treatments to see
whether a patient would be predicted to experience remission
under any or none of drugs. We then assigned each subject
in a group based on the medication that produced the highest
probability of remission. If no drug had a remission probability
of greater than the baseline remission rate (34%), the patient
was assigned to the non-remission group. This produced the
following group sizes (Table 3).

We then used saliency maps to identify the importance of
each individual feature with regards to producing the given
probability of remission, and took the top five for each subject.
Tables 4–8 show how often a feature was found to be in the top

TABLE 3 | Number of subjects in each subgroup.

Group Number of subjects

Non-remission 373

Escitalopram 28

Escitalopram-bupropion 28

Venlafaxine-mirtazapine 53

Citalopram 268

Frontiers in Artificial Intelligence | www.frontiersin.org 7 January 2020 | Volume 2 | Article 31

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mehltretter et al. Deep Learning Features Analysis

TABLE 4 | Non-remission subgroup feature information.

Feature % occurrence in top five

Initial QIDS total severity 13.19

Have you ever been bothered by aches and pains in

many different parts of your body?

13

Number of years in formal education 11.84

HAM-D somatic energy 9.71

QIDS energy or fatigability 9.33

Eat a lot when not hungry 7.27

QIDS sleep onset insomnia 6.1

Monthly household income 5.68

QIDS mood (sad) 5.68

Have you ever witnessed a traumatic event such as

rape, assault, someone dying in an accident, or any

other extremely upsetting event?

3.97

Jumpy because of a trauma 2.63

Anxiety being in crowded places 1.82

How many hours did you actually work 0.97

QIDS weight (increase) last 2 weeks 0.86

HAM-D suicide 0.75

HAM-D, Hamilton Depression Rating Scale; QIDS, Quick Inventory of Depressive

Symptomatology.

TABLE 5 | Escitalopram subgroup feature information.

Feature % occurrence in top five

QIDS sleep onset insomnia 14.28

HAM-D somatic energy 13.57

Monthly household income 13.57

QIDS mood (sad) 13.57

Number of years in formal education 5.7

Jumpy because of a trauma 5

HAM-D suicide 5

How many hours did you actually work 5

Eat a lot when not hungry 1.43

QIDS energy or fatigability 1.43

Have you ever been bothered by aches and

pains in many different parts of your body?

0.71

QIDS weight (increase) last 2 weeks 0.71

Initial QIDS total severity 0.71

HAM-D, Hamilton Depression Rating Scale; QIDS, Quick Inventory of Depressive

Symptomatology.

TABLE 6 | Escitalopram bupropion subgroup feature information.

Feature % occurrence in top five

HAM-D somatic energy 14.29

Monthly household income 14.29

QIDS sleep onset insomnia 14.29

QIDS mood (sad) 14.29

Number of years in formal education 5.7

Jumpy because of a trauma 4.29

HAM-D suicide 4.29

How many hours did you actually work 4.29

Eat a lot when not hungry 1.43

QIDS energy or fatigability 1.43

Have you ever been bothered by aches and

pains in many different parts of your body?

1.43

Initial QIDS total severity 1.43

HAM-D, Hamilton Depression Rating Scale; QIDS, Quick Inventory of Depressive

Symptomatology.

TABLE 7 | Venlafaxine-mirtazapine subgroup feature information.

Feature % occurrence in top five

HAM-D somatic energy 14.33

Monthly household income 10.94

QIDS mood (sad) 10.94

QIDS sleep onset insomnia 10.57

Number of years in formal education 8.68

Initial QIDS total severity 6.8

Have you ever been bothered by aches and

pains in many different parts of your body?

6.41

Have you ever witnessed a traumatic event

such as rape, assault, someone dying in an

accident, or any other extremely upsetting

event?

3.77

Jumpy because of a trauma 3.01

How many hours did you actually work 3.01

QIDS energy or fatigability 2.64

HAM-D suicide 2.64

Eat a lot when not hungry 2.26

Anxiety being in crowded places 0.75

HAM-D, Hamilton Depression Rating Scale; QIDS, Quick Inventory of Depressive

Symptomatology.

TABLE 8 | Citalopram subgroup feature information.

Feature % occurrence

in top five

HAM-D somatic energy 14.25

QIDS mood (sad) 10.15

Monthly household income 10.15

Number of years in formal education 9.6

Initial QIDS total severity 8.28

Have you ever been bothered by aches and pains in many

different parts of your body?

8.21

Have you ever witnessed a traumatic event such as rape,

assault, someone dying in an accident, or any other

extremely upsetting event?

4.2

QIDS energy or fatigability 4.2

Eat a lot when not hungry 4.1

Jumpy because of a trauma 1.72

How many hours did you actually work 1.57

HAM-D suicide 1.5

Anxiety being in crowded places 0.22

QIDS weight (increase) last 2 weeks 0.15

Did reminders of a traumatic event make you shake, break

out into a sweat, or have a racing heart?

0.07

HAM-D, Hamilton Depression Rating Scale; QIDS, Quick Inventory of Depressive

Symptomatology.

five features for each sub-group, indicating the frequency, at the
individual patient level, that this feature figured as one of the
most influential features in the probability calculation.

Are Specific Aspects of Trauma Predictive
of Baseline Depression?
We performed multiple linear regression analyses inputting the
three trauma features deemed important by our deep learning
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model as predictors to explore the relationship between trauma
and baseline QIDS score. One model included “jumpy because
of traumatic event,” “witnessed traumatic event,” “shaky because
of trauma,”; a second model also included gender and years of
education as covariates. The linear regression models showed
that only “Did reminders of a traumatic event make you shake,
break out into a sweat, or have a racing heart?” was significantly
associated with baseline depression severity, an association that
remained after controlling for gender and years of education.
Gender and years of education were also significantly predictive
of baseline QIDS score (Table 9).

TABLE 9 | Results of linear regression analyses examining the contribution of

trauma indices to baseline depression severity in STAR*D.

Model 1 Model 2

Beta estimate (S.E.)

[95% CI]

Beta estimate (S.E.)

[95% CI]

Have you ever witnessed a

traumatic event such as rape,

assault, someone dying in an

accident, or any other extremely

upsetting event

0.246 (0.148)

[−0.04, 0.54]

0.309 (0.171)

[−0.03, 0.65]

Jumpy because of trauma 0.415 (0.177)

[0.07, 0.76]

0.288 (0.20)

[−0.108, 0.69]

Did reminders of a traumatic event

make you shake, break out into a

sweat, or have a racing heart?

1.027 (0.177)

[0.68, 1.37]*

0.813 (0.202)

[0.42–1.21]*

Gender −0.794 (0.178)

[−1.144, −0.44]*

Years of education −0.098 (0.024)

[−0.15, −0.05]*

F-statistic 30.00 17.97

N 2,696 1,951

R2 0.032 0.042

*p < 0.005, the cut-off determined via a Bonferroni correction.

Do the Participants in STAR∗D and
CO-MED Come From the Same Population,
or Are These Populations Different in Key
Variables That Are Predictive of Outcomes?
As education is more predictive of outcome in the STAR∗D
as compared to the CO-MED data, we performed independent
t-tests to identify whether the distribution of education itself
varied between participant samples, since education is unlikely
to be a drug-specific predictor. As observed in Figure 1, a
t-test showed there was no appreciable difference between
the years of education in the CO-MED (orange bars) and
STAR∗D (blue bars) participants (mean difference = 0.06,
p= 0.678).

Do Somatic Symptoms of Depression
Differ by Gender?
We used t-tests to see if somatic symptoms of depression
differed between the genders. Table 10 details the difference
in somatic symptoms between males and females, finding
significant differences for the following features: somatic energy
as measured by the Hamilton Depression Rating Scale (HAM-D),
being bothered by aches/pains, and energy/fatigability,
as measured by the Quick Inventory of Depressive
Symptomatology (QIDS).

TABLE 10 | Significant differences in somatic symptoms of depression between

males and females.

Somatic

energy

Bothered by

aches/pains

Weight

(increase)

last 2 weeks

Energy/

fatigability

Male to Female

Difference

−0.14* −0.07* −0.13 −0.21*

p-value 0.000 0.0001 0.027 0.000

*p < 0.005, the cut-off determined via a Bonferroni correction.

FIGURE 1 | Number of years of education for the STAR*D and CO-MED datasets.

Frontiers in Artificial Intelligence | www.frontiersin.org 9 January 2020 | Volume 2 | Article 31

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mehltretter et al. Deep Learning Features Analysis

DISCUSSION

In this manuscript we analyzed the features retained by four
deep learning models of depression treatment response. We
show that traditional statistics can augment the interpretation
of machine learning models, while informing the nature of
the underlying datasets. In addition, we offer suggestions
for optimizing future data collection to improve machine-
learning analyses.

Applying Insights From Machine Learning
Features Toward Building Causal
Mechanisms for Depression Pathology and
Prognosis
Can We Identify Features Predictive of Response to

Each of the Four Antidepressants Within Our Model

(Escitalopram, Bupropion, Venlafaxine-Mirtazapine,

Citalopram) Individually, as Well as to the Subgroup

of Patients With a Low Probability of Responding to

Any of the Drugs?
Across all four antidepressant subgroups, somatic energy was
one of the most frequently observed features found to be
in the top five features for each subject of that subgroup,
consistent with previous machine learning approaches to predict
response to antidepressant treatment (Chekroud et al., 2016).
This may suggest that escitalopram, bupropion-escitalopram,
venlafaxine-mirtazapine, and citalopram help alleviate energy
symptoms (fatigue, heaviness in the body) more effectively
than other symptoms. Indeed, a return of energy is often
clinically observed early in treatment, and a similar effect can be
observed for sad mood. Sleep-onset insomnia was also a strong
predictor of response to escitalopram, bupropion-escitalopram,
venlafaxine-mirtazapine, but not citalopram, suggesting that
these antidepressants show some benefit in treating insomnia.
However, insomnia has previously been associated with poorer
treatment outcomes in some antidepressant trials (Sung et al.,
2015), complicating our finding. Sleep interacts with stress to
impact brain-derived neurotrophic factor levels (Giese et al.,
2013), which are affected by certain antidepressants, and is also
associated with other risk factors for depression, highlighting
the complex interactions between depression symptomatology,
risk factors like sleep, and the action of specific antidepressants.
Household income was higher in the feature list of responders
to each of the four antidepressant subgroups compared to
the non-remission subgroup, suggesting that household income
helps determine an individual’s remission to any drug. This
could reflect that lower income acts as a difficult-to-modify
psychosocial stressor.

It should be noted that, between antidepressant categories,
there were few striking differences in the symptoms more
predictive of response to one treatment over another. This is
consistent with the finding from the CO-MED study that there
was equal efficacy of all three treatment arms. However, the
model used in this analysis, detailed in Mehltretter et al. (2019),
did find that differential treatment selection based on these
features would be expected to improve population remission

rates. That is, the study found that using a model trained on these
features could usefully assign patients to different treatments, in
a manner that suggests these treatments are not equally effective
for all patients. This may be because of complex interactions
between different levels of the different features. We may not
be able to recover simple patient subtypes with the methods
employed thus far. Instead, it may be the case that the subtypes
that do exist include complex associations between multiple
features. As a speculative example, the severity of sad mood
and anxious symptoms, when combined with somatic symptoms,
may have some value in determining which treatment may be
most effective, over and above an analysis of the symptoms
individually. We did not explore this here, but will address
this question in future work. Another possibility for the lack
of considerable differences in features reported in the different
treatment subgroups (Tables 4–8) was the overall low number of
features selected by the model. Though a low number of features
was an efficient use of information when predicting remission, it
was perhaps at the expense of losing some richness of explanation
because it was mostly concerned with predicting remission with
citalopram, the dominant drug class in the data.

We also identified features indicating a low probability
of response to any of the drugs. Across all subjects with
a low probability of response, initial depression severity
most frequently emerged as the strongest predictor of non-
response. This is consistent with extant research demonstrating
increased depression severity is associated with non-response
and treatment resistance (Berlim et al., 2008; De Carlo et al.,
2016; Kautzky et al., 2017; Perlman et al., 2019). It suggests
that the more severe the depression, the harder it will
be to treat, regardless of the antidepressant. Number years
education emerged as a drug-agnostic predictor of non-response.
Considering its association with lack of remission (Perlman
et al., 2019), low education appears an important psychosocial
stressor that maintains depression, perhaps reflecting that, like
low income, it is difficult to modify and therefore remains an
ongoing factor that keeps people depressed for longer. Being
bothered by aches and pains was also a general predictor
of non-response, converging with current research on the
alteration of somatic and interoceptive signaling in depression
(Harshaw, 2015).

The identification of predictors of drug-specific response and
general predictors of non-response to all types of treatment holds
high clinical utility. Knowledge of which patients are unlikely to
respond to any medication, and which will respond differentially
to available first-line options will improve the treatment
decision process. For instance, patients unlikely to respond
to an antidepressant may consider adjunct psychotherapy,
electroconvulsive therapy or intensive Day Hospital treatment
earlier on in treatment, reducing prolonged symptoms of
depression from ineffective treatments, potential side effects from
medication, and wasted resources.

Are Specific Aspects of Trauma Predictive of

Baseline Depression?
The regression analyses assessing the contribution of trauma
measures to baseline depressive symptomatology found that
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trauma accounts for a significant proportion of the variance in
baseline depression scores, with shakiness, sweating, or heart
racing from trauma reminders, an indicator of a current physical
reaction related to a past trauma, presenting as a stronger
contributor to baseline depression than other trauma indices,
such as ever having witnessed a trauma. This indicates that
while experiencing trauma does confer some vulnerability, it
is those who continue to manifest symptoms—those who may
have some biological or other vulnerability to the prolonged
effects of trauma—who have the most depressive symptoms,
and therefore a lower chance to respond to treatment.
Indeed, depression is highly comorbid with post-traumatic
stress disorder (PTSD) (Flory and Yehuda, 2015), suggesting
a trauma-related phenotype. However, neither STAR∗D nor
CO-MED excluded patients with PTSD, posing the limitation
that our results might be driven by patients with concomitant
PTSD. Further work is needed to explore our findings and
potential links with the stress-diathesis model of depression
(Monroe and Simons, 1991; Colodro-Conde et al., 2018). Gender
was significantly associated with baseline depression severity,
consistent with higher rates of depression in females, as was the
number of years of education, suggesting that low education may
be an important psychosocial stressor that contributes to and, as
seen in the treatment resistance modeling of question (1) above,
perpetuates depression.

Do Participants in STAR∗D and CO-MED Come From

the Same Population, or Are These Populations

Different in Key Variables That Are Predictive of

Outcomes?
Education was a significant predictor in the STAR∗D trial, but
not in COMED. We therefore assessed whether education levels
differed between the datasets, but found no significant difference.
Since education is unlikely to be a drug-specific predictor, we
propose that even datasets that have broad inclusion criteria
and that are traditionally considered “big data” by psychiatric
standards, might not be large or diverse enough to capture all of
the relationships of interest between sociodemographic variables
and treatment outcome.

Do Somatic Symptoms of Depression Differ by

Gender?
Our analysis of somatic symptoms showed that in comparison
to males, females had lower somatic energy, were more bothered
by aches and pains, and had increased fatigability. This reflects
current research hypothesizing that gender differences in the
prevalence of depression are due to increased somatic depression
among females (Silverstein et al., 2013, 2017). This points
toward not only the existence of specific subtypes of depression,
but also toward testable hypotheses of mechanisms for such
subtypes, such as increased susceptibility to inflammation in
women (Derry et al., 2015). Our results equally converge
with research on the hypothalamo-pituitary-adrenal (HPA)-axis
response explaining the association between stress (trauma), pain
(i.e., somatic symptoms), and fatigue (McEwen, 2007).

Capturing Heterogeneity in Psychiatric
Disorders: The Shift Toward “Big Diversity”
in Patient Population Characteristics
Diagnostic entities in psychiatry are heterogeneous in nature,
encompassing opposite ends of symptom dimensions. For
major depressive disorder (MDD), diagnostic criteria can
include weight gain or weight loss, increase or decrease in
appetite, insomnia or hypersomnia, and psychomotor agitation
or retardation (American Psychiatric Association, 2013). With
227 possible symptom combinations to meet a diagnosis of
MDD (Zimmerman et al., 2015), two patients diagnosed with
MDD may share no overlapping symptoms. This heterogeneity
restricts the usefulness of psychiatric diagnoses for researching
their etiology or prognosis, as different subtypes within a
disorder might have different biological underpinnings and
benefit from different types of treatment. Heterogeneity has
not only hindered research, but may contribute to limited
replication success in clinical trials (Dwyer et al., 2018).
Traditional attempts to minimize or decompose heterogeneity
include restricting inclusion criteria to focus on particular
subgroups of patients (i.e., melancholic depression, treatment
resistant depression, adolescent, or geriatric depression), either
by imposing constraints on symptoms or limiting comorbidities,
age, severity or chronicity of illness, in order to get obtain a
“pure” or ideal sample of a certain subgroup to evaluate a priori
hypotheses about that group. The problem with this approach is
that it has not produced consistent subgroups (Marquand et al.,
2016), the results may not generalize to independent samples,
and such “ideal” patients are not representative of real-world
heterogeneity. More optimal strategies for tackling heterogeneity
may instead be data-driven approaches that capitalize on
maximal heterogeneity in order to enhance generalizability of
the model’s predictions and mitigate bias. “Big data” requires
not only large sample sizes, but “big diversity” in its samples,
includingmultiple levels of data for each participant and variance
in and across each type of data collected. Increasing data
diversity will improve the generalizability and translatability of
models and ensure that clinical decision aid tools might be
more applicable to a broader range of individuals. Contrary
to traditional approaches to experimental design in clinical
populations, future research should explicitly capture variability,
by including multiple study sites, ethnicities, socioeconomic
levels, age, among others, to capture real-world variability and
produce an ideal dataset for ML. This approach has been echoed
by others and elaborated in the context of autism (Lombardo
et al., 2019), but extends to all domains of mental health research.
An important outcome of our deep learning model was that
similar, but not identical feature sets were produced based on
the sample used for training (STAR∗Dor COMED). For example,
education, which is unlikely to be a treatment-specific predictor
of response, was present in the STAR∗D-dominated models,
but not in the model that predicted remission in CO-MED
alone, despite the average education level and the distribution of
educational attainment not being significantly different between
the two studies. While STAR∗D was significantly larger than
CO-MED, both of these datasets are considered to be large by
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psychiatric research standards. The fact that one of the most
key features for predicting treatment response in one dataset
was not predictive of treatment response in the other provides
empirical support for advocating for larger and more diverse
datasets. To optimize patient outcomes with precision psychiatry,
the advent of “big data” necessitates a new focus on data with “big
diversity.” The complexities of such data may be leveraged with
ML approaches, and reinvestigated and understood with simpler,
more interpretable models.

Our analyses exemplify how interpreting ML features can
generate new hypotheses about disease pathology, contribute
toward existing hypotheses, and help elucidate causal models
which may have value in the development of new treatments
or in treatment selection. Other efforts using a similar approach
have proved equally fruitful: A recent study using a convolutional
neural network to extract and quantify the relationship between
features of the built environment and obesity prevalence showed
that features of the built environment (i.e., greenery, different
housing types, neighborhood density) were able to explain
64.8% of variation in obesity prevalence (Maharana and Nsoesie,
2018), demonstrating the utility of machine learning toward
unpacking the association between the built environment and
obesity prevalence. Through modeling complex interactions
in “big data” samples, machine learning can uncover features
associated with disease that can advance our understanding of
psychiatric illnesses.

CONCLUSION

The analytical power of machine learning is accompanied by
limitations in its interpretability. In this paper we demonstrate
the benefit of using traditional statistics to improve post-hoc
interpretation of the features selected by deep learning models
trained to predict remission in depression, and can provide
a more meaningful clinical interpretation to understand
interrelationships between important patient demographic
and clinical characteristics and depression pathology. These
approaches should be viewed as hypothesis generating and not

confirmatory, as the “statistical significance” (p-values) associated
with analyses performed on variables selected via ML or indeed
any variable selection approach do not retain the standard
interpretation. We emphasize the advantages of investing in “big
diversity”—creating large and heterogeneous datasets, instead

of the homogenous datasets favored by traditional large clinical
studies—in order to produce datasets that are maximally useful
for addressing important clinical questions.
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