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A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a
time-dependent box potential. The resulting state is free from spurious excitations associated with the
breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor.
The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar
scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive
potential. The method is extended to a broad family of interacting many-body systems. As illustrative
examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in
different dimensions, where the method exhibits an excellent robustness against different regimes of
interactions and the features of an experimentally realizable box potential.

‘‘F
ast good’’ is a new culinary concept envisioned by the chef F. Adrià aimed at creating a diet enjoying of
two apparently mutually-exclusive features: fast-service and high-quality. When similar ideas are
invoked in the quantum realm, one faces the adiabatic theorem which imposes a price. The preparation

of a given target state with high-fidelity, free from spurious excitations, generally demands a long time of
evolution and the implementation of an adiabatic dynamics. As a result, it comes as no surprise that the recent
development of shortcuts to adiabaticity (STA)1, has led to a surge of theoretical2–10 and experimental activity11–13.

It is the purpose of this work to show that STA can be implemented in a time-dependent box, the paradigmatic
model of a quantum piston14. The relevance of this confinement is enhanced by the development of experimental
techniques to create optical billiards for ultracold gases15,16, paint arbitrary potential shapes for Bose-Einstein
condensates17, and realize all-optical boxes18 and analogous traps in atom chips19. It has the potential to greatly
advance the field of quantum simulation, facilitating the connection between ultracold atom experiments and
condensed matter systems.

The prospects of finding STA for box confinement seem challenging at the very least, based on the following
considerations. Since the early insight by M. Moshinsky in 1952, it is known that the rapid expansion of matter-
waves initially localized in a region of space exhibits quantum transients and excitations in the form of density
ripples, a phenomenon referred to as diffraction in time20–22. Moreover, reflections from the walls of the trap
generally lead to Talbot oscillations and the formation of a quantum carpet in the time evolution of the density
profile23,24. On top of that, a series of work during the last decades have shown that the suppression of excitations
in an expanding box is inevitably constrained by the adiabatic theorem both in the non-interacting25–28 and mean-
field regime29.

In spite of these results preventing ultrafast excitation-free dynamics in box traps, we show that fast non-
adiabatic expansion or compression is in fact possible, allowing preparation in a predetermined finite time of the
same target state than the adiabatic evolution. The key to this shortcut to adiabaticity is the use of an auxiliary
potential term superimposed on the box trap.

We shall start by introducing a dynamical invariant in a time-dependent box trap at the single-particle level,
and use it to derive a scaling law that governs the time evolution. The inversion of this scaling law will be the key to
engineer the STA. This result will be extended to many-body systems with a broad family of interactions. Finally,
we shall illustrate the method with some examples relevant to experiments with ultracold gases, showing that the
STA is robust in the presence of interactions and experimental imperfections.

Results
Dynamical invariants and self-similar dynamics. For a time-dependent box of width j(t), the scaling laws
governing the dynamics of the expanding eigenstates reported to date are associated with trajectories of the form
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j tð Þ~ at2zbtzc½ �
1
2 (with a, b, c real constants)25–28, which turn out

to be unsuited for engineering a STA (see below). Nonetheless, given
a time-dependent Hamiltonian Ĥ tð Þ, it is possible to build a
dynamical invariant30, Î tð Þ such that

dÎ tð Þ
dt

~
LÎ tð Þ

Lt
z

1
i
Î tð Þ,Ĥ tð Þ
� �

~0, ð1Þ

with spectral decomposition Î tð Þ~
P

n ln wn tð Þj i wn tð Þh j in terms
of the set of eigenmodes jwn(t)æ with eigenvalues ln. This is a
particularly useful basis to describe the time evolution of an initial
state Y, by the superposition Y(x,t) 5

P
nexp(ian)jwn(t)æ, where

the Lewis-Riesenfeld phase is given by an~
Ð t

0 wn t’ð Þh ji Lt’{Ĥ t’ð Þj
wn t’ð Þidt’= , and can be understood as the sum of the dynamical
phase and the Aharanov-Anandan phase28. For a time-dependent
box of width j(t) and initial width j(0) 5 j0, a dynamical in-
variant exists31,

Î~ 1
2m

j2 tð Þ
j2

0

p{m
_j tð Þ
j tð Þ x

 !2

ð2Þ

with eigenvectors x wn tð Þjh i~ 2=j tð Þ½ �
1
2exp i

m _j tð Þ
2 j tð Þ x2

" #
sin npx=j tð Þ½ �

and eigenvalues ln~
2k2

n

2m
, with kn 5 np/j0. The Lewis-Riesenfeld

phase can be computed to be an tð Þ~{
n2p2

2mj2
0

g tð Þ with

g tð Þ~
Ð t

0 dt’j2
0

�
j2 t’ð Þ. The condition in Eq. (1) for Î to be an

invariant requires the box potential to be supplemented with an
auxiliary harmonic term

Uaux x,tð Þ~{
1
2

m
€j tð Þ
j tð Þ x2, ð3Þ

whose frequency V tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{

€j tð Þ
j tð Þ

s
is dictated by the ratio of the

acceleration of the trajectory j(t), and the trajectory itself. Note
that j(t) . 0, so that for €j tð Þw0, V(t) is purely imaginary, and
the auxiliary term Uaux is a repulsive harmonic potential. If _j 0ð Þ~0,

Ĥ 0ð Þ, Î 0ð Þ
� �

~0 so Ĥ 0ð Þ and Î 0ð Þ have common eigenstates. Fur-

ther, if €j 0ð Þ~0 holds as well, then Uaux(x, 0) 5 0 and an eigenstate
Yn(x, 0) of the box at t 5 0 evolves into Yn(x, t) 5 exp[ian(t)]wn(t),
a key observation to engineer a STA as we shall see. We note that
the experimental implementation of Uaux(x, t) can be assisted by the
same techniques used to create the box potential: the use of a blue-
detuned laser32 or direct painting of the required trap15–17.

Shortcuts to adiabaticity: inverting the dynamical scaling law. We
next discuss how to implement a non-adiabatic expansion of the
box by a factor c(t) 5 j(t)/j0 in a given finite-time t suppressing
excitations in the final state. We shall impose the condition Uaux(x, 0)
5 Uaux(x,t) 5 0. As in the adiabatic case, in a STA the time evolution
of an eigenmode of the initial box should reproduce an eigenmode of
the final trap. As at t 5 0, this can be enforced by imposing the
condition _j tð Þ~€j tð Þ~0. The set of boundary con-
ditions at t 5 0, t excludes the possibility of a linear ramp, as well
as the family of trajectories, j tð Þ~ at2zbtzc½ �

1
2, considered so far in

the literature25–28. However, it suffices to determine a polynomial
ansatz for the trajectory j tð Þ~

P
‘ a‘t‘, i.e. a scaling factor of the

form c tð Þ~ j tð Þ
j0

~1z c tð Þ{1½ �s3 10z3s 2s{5ð Þ½ �, with s 5 t/t.

This further determines the required time-dependent frequency of
the auxiliary harmonic potential Uaux(x, t) according to Eq. (3),

V2 tð Þ~{
€j tð Þ
j tð Þ~{

c tð Þ{1
t2c tð Þ 60s 1zs 2s{3ð Þ½ �: ð4Þ

The trajectory, displayed in Fig. 1 shows that during an expansion
Uaux(x,t) becomes an expulsive potential in an early stage (t , t/2),
providing the speed-up required to achieve the STA in an arbitrary
finite time t (bounds in the presence of perturbations will be discussed
below). In a subsequent stage, t . t/2, V2(t) changes sign and Uaux(x, t)
becomes a trapping potential, slowing down the expanding mode and
reducing it to an eigenstate of the final Hamiltonian at t 5 t. Pre-
cisely the opposite behavior is exhibited during a fast nonadiabatic
compression. Provided that an arbitrary V2(t) dependence can be
implemented, a STA has no lower bound for t (notice however that
V(t) , t–1). By contrast, the adiabatic condition

max
t

max
n,k

wn tð Þ Ltj jwk tð Þh i
En tð Þ{Ek tð Þð Þ

����
����=1, ð5Þ

leads to the requirement mnkj tð Þ _j tð Þ= =1.
Note that the energy of the expanding mode

Ĥ tð Þ
� �

n~En tð Þz m _j
2

tð Þ
12

2{
3

n2p2

	 

, ð6Þ

has two contributions, the first one being the adiabatic energy En(t)
5 En(0)j(0)2/j(t)2, and the second one depending explicitly on _j, so
that Ĥ tð Þ

� �
n~En tð Þ given that a STA demands _j tð Þ~0. This rela-

tion illustrates the fact that a STA is associated with a non-adiabatic
evolution, which reproduces the adiabatic result at the end of the
process. Moreover, STA work as well for excited states: the time
evolution of the n-th eigenstate of the initial trap leads to the n-th
eigenstate of the final trap at t 5 t. As a result, STA in boxes pave the
way for fast population-preserving cooling in the following sense.
Given a system described by the canonical ensemble with a density

matrix e{bĤ
.

Tr e{bĤ
h i

, where b 5 1/kBT, kB is the Boltzmann

constant and T is the temperature, the final temperature reads

T tð Þ~ T 0ð Þ
c tð Þ2

: ð7Þ

These results strictly hold for a box with infinite walls at x g [0,
j(t)]. However, in the all-optical trap reported in18, the end-cap lasers
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Figure 1 | Time-modulation of the potential trap along a shortcut to
adiabaticity. (A) Evolution of the width j(t) of a time-dependent box

during a shortcut to different adiabatic expansions and a compression in a

finite time t. (B) Frequency of the auxiliary external harmonic potential

required to assist the self-similar dynamics, changing character from

expulsive to attractive along the expansion process. The opposite sequence

is required for a compression. The transient expulsive potential is

responsible for the speed-up of the process.
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providing the box walls have a Gaussian profile which smooths the
potential in a length scale s, i.e. a box trap of the form

Ubox xð Þ~V0 exp {
x2

2s2

	 

z exp {

x{j tð Þð Þ2

2s2

	 
� �
: ð8Þ

A similar smoothing occurs in other physical realizations17. Since this
smoothing is expected to be the most significant deviation of labor-
atory potentials from the ideal infinite box, it is important to consider
its effect on the self-similar dynamics required for a STA. This can be
quantified by the overlap between the states resulting from the
expansion in an idealized and realistic box trap, jYn(t)æ and
jYns(t)æ respectively. Clearly the role of s decreases (increases) dur-
ing a expansion (contraction) of the box. The numerical solution of
the time-dependent Schrödinger equation for this box potential is
shown in Fig. 2, where the STA is compared with both the poly-
nomial and linear expansion of the box in the absence of Uaux(x,t).
It is seen that the STA is the only successful strategy and that the
process is robust even for a substantial smoothing of the potential
barriers, where the target states deviate from those of an idealized
box.

We have further explored numerically the dynamics under ‘‘con-
catenated STA’’, in which the overall expansion is splitted into a
sequence of k STA with either constant expansion factor c or con-
stant box size increment between consecutive steps. The efficiency of
the process exhibits a non-monotonic improvement with increasing
k, suggesting a natural scenario where STA techniques could be
combined with optimal quantum control8,9.

Beyond adiabatic invariants: Shortcuts to adiabaticity in inte-
racting many-body systems. Knowledge of the adiabatic invariants
for a single particle in a time-dependent box has provided us with the
insight of assisting the dynamics with an auxiliary potential to design
STA for expansions and compressions in a finite time, without in-
ducing quantum transients associated with diffraction in time, which
are ubiquitous in this type of scenario22. The technique can be directly
applied to non-interacting gases and other many-body quantum fluids
which can be mapped to non-interacting systems. It further suppresses
the Talbot dynamics associated with quantum carpets woven by the
density profile typically observed in boxes23, and the question naturally
arises as to its applicability to interacting systems24. The presence of
interactions, e.g. a two-body potential, hinders the exploitation of the
superposition principle in terms of the eigenmodes of the Lewis-
Riesenfeld invariant. However, we note that to design a STA it suf-
fices to enforce a self-similar dynamics and ultimately no knowledge
of adiabatic invariants is required. As a result, we next consider a
broader family of many-body systems, confined in a box, defined by
the Hamiltonian

Ĥ~
XN

i~1

{
2

2m
DqizUaux qi,tð Þ

� �
z
X
ivj

V qi{qj

 �
ð9Þ

where qi [ RD, Dqi is the Laplace operator in dimension D, the
auxiliary term is now given by

Uaux q,tð Þ~{
1
2

m
€j tð Þ
j tð Þ qj j2, ð10Þ

and the two-body interaction potential obeys V(lq) 5 l–aV(q), e.g. for
the Fermi-Huang pseudopotential describing s-wave scattering in
ultracold gases, a 5 D. For a hard-wall box, ri 5 jqji g [0,j(t)]; we
shall relax below this approximation and consider realistic potential
boxes as those created in all-optical setups. The case D 5 1
corresponds to a box with one-wall moving (the symmetric case in
which both walls move in opposite directions can be obtained by a
Duru transformation33). For D 5 2,3 cylindrical and spherical
symmetry is assumed respectively. Without loss of generality, we
choose the dimensionless time-dependent coupling constant 5 (t)
to satisfy (0) 5 1. A stationary state Y(t) 5 Y(q1, …, qN;t) of N
particles and chemical potential m follows for t . 0 the evolution

Y tð Þ~c{N D
2 exp i

XN

j~1

m qj j2j _c

2c
{i

mg tð Þ
" #

Y
q1

c tð Þ , . . . ,
qN

c tð Þ ; 0

� �
,ð11Þ

with the boundary conditions Y(t) 5 0 for jqji 5 j(t) (i 5 1,…,N, in
addition to Y(t) 5 0 for jqji 5 0 in D 5 1), as long as

tð Þ~c tð Þa{2
, ð12Þ

which can be implemented exploiting a Feshbach resonance or
modulating the transverse confinement in anisotropic systems4,34.

The self-similar dynamics in a STA leads to a scaling of all local
correlation functions. In particular the density of a given many-body
state follows the law n q,tð Þ~

Ð
dq2 . . . dqN Y q,q2, . . . ,qN ; tð Þj j2~

n q=c tð Þ,0½ �
�

c tð ÞD. By contrast, non-local correlation functions
exhibit a non-trivial dynamics. The one-body reduced density matrix
%1 q,q’; tð Þ~N

Ð
dq2 . . . dqNY q,q2 . . . ,qN ; tð ÞY� q’,q2 . . . ,qN ; tð Þ of

a state obeying Eq. (11), follows the scaling law %1 q,q’; tð Þ~

exp i
m qj j2{ q’j j2
� �

_c

2c

" #
%1 q=c,q’=c; 0ð Þ, analogous to that observed

under harmonic confinement43. The additional phase factor induces
a major distortion of the momentum distribution, n k,tð Þ~Ð

dqdq’%1 q,q’; tð Þ exp ik: q{q’ð Þ½ �
�

2pð ÞD. However, a STA ensures
that at t 5 t the Lewis-Riesenfeld phase factor vanishes, so that the
final state exhibits the same correlations of the initial state scaled by a
factor c(t),

Figure 2 | Space-time density plot of the scaled density profile n(x,t)c(t) during a shortcut to an adiabatic expansion for the ground-state mode of a box
with smooth boundaries. A high fidelity-state results from the STA (left) in a box created with Gaussian barriers of height V0~104 2

�
mj2

0 and s 5 j0/20

(c 5 10). In the absence of Uaux(x) (center), and for a linear ramp box width j(t) (right) the cloud is excited and exhibits fringes associated with the

reflections of the boundary. The color coding varies from purple to red as the function value increases. The dashed line follows the trajectory of the moving

wall j(t).
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%1 q,q’; tð Þ~ 1

c tð ÞD
%1

q
c tð Þ ,

q’
c tð Þ ; 0

	 

,

n k,tð Þ~c tð ÞDn c tð Þk,0ð Þ:
ð13Þ

Examples. In the following we shall illustrate different aspects of
shortcuts to adiabaticity in some paradigmatic models.

We shall first consider the evolution of correlations in a one-
dimensional cloud of ultracold bosons in the limit of hard-core con-
tact interactions, this is, in the Tonks-Girardeau (TG) regime35.
This system, as well as its lattice-version, has become a favorite
test-bed to study the breakdown of thermalization and adiabaticity36.
Its many-body ground state is given by the Bose-Fermi mapping35,

YTG q1, . . . qNð Þ~ 1ffiffiffiffiffi
N!
p P 1ƒjvkƒN qk{qj

� �
det

N

j,k~1
Yj qkð Þ
� �

, where

(q) 5 1 (–1) if x . 0 (, 0) and (0) 5 0. In a STA, the self-similar
dynamics is inherited from the single-particle orbitals Yj(qk, t)
whence it follows that no tuning of interactions is required. Its den-
sity exhibits a scaling law for all t. The same holds true for the
entanglement entropy with respect to a bipartition [0, aj(t)] (a ,

1)37. The self-similar dynamics breaks down for the momentum
distribution, which can be computed efficiently38, and we shall focus
on its evolution along a STA. Different snapshots are depicted in
Fig. 3A, and confirm that during an expansion the cloud is acceler-
ated during the interval [0, t/2] and slowed down during [t/2, t]. The
reverse sequence, is observed in a fast frictionless compression. The
axis are scaled up by the expansion factor c(t) in such a way that for
an adiabatic dynamics, curves at different times would collapse into a
single curve. Along a STA, the width and mean of the momentum
distribution do not remain constant and change along the process.

A similar distortion of correlations, known as dynamical fer-
mionization, occurs in the dynamics of a cloud suddenly released
from an arbitrary trap39. Under ballistic dynamics the asymptotic
momentum distribution in a 1D expansion evolves to that of the
dual system, a spin polarized Fermi gas. In particular for a cloud
released from a box the exact time evolution is not self-similar40

but dynamical fermionization is observed41,42. However, under a
self-similar scaling law, the asymptotic n(k) maps to the density
profile of the initial state43 and no dynamical fermionization
occurs. This is the case of relevance to STA, where the dynamical
scaling law in Eq. (11) holds. (We note that the case of the initial
harmonic confinement is singular in that the free expansion is self-
similar and that the the single-particle eigenstates can be written in
terms of Hermite polynomials, which are eigenfunctions of the
continuous Fourier transform. As a result the asymptotic
momentum distribution can be related to both the initial density
profile and the momentum distrubtion of non-interacting fer-
mions. See [5] for a discussion of STA in harmonic traps.)
Moreover, this distortion of correlations is not restricted to expan-
sion processes. Along a STA, this is shown in Fig. 3 for both
expansions (A) and compressions (B). This is a spurious effect
for the purpose of STA, which is to reproduce the adiabatic result
in a finite short time. Indeed, the distortion induced during the
first half of the STA associated with the accelerated expansion or
compression, is compensated in the second half of the dynamics,
in such a way that the correlations of the initial state are recon-
structed at t 5 t and scaled by a factor c(t).

We next turn our attention to the design of STA for a BEC in time-
dependent box trap, where different strategies can be adopted
depending on the dimensionality and the regime of interactions.
The time-dependent Gross-Pitaevski equation (TDGPE) governs
the evolution of the normalized condensate wavefunction W(q, t),

i LtW q, tð Þ~ {
2

2m DqzUaux q, tð ÞzgD W q, tð Þj j2
h i

W q, tð Þ,
qj j [ 0,j tð Þ½ �,

ð14Þ

for which adiabaticity conditions have been reported29. The ansatz

W tð Þ~c{D
2 exp i

m qj j2 _c

2c
{i

mg tð Þ
� �

W q=c tð Þ; 0½ �, ð15Þ

satisfies the TDGPE provided that

g tð Þ~
ðt dt’

c t’ð Þ2
, V2 tð Þ~{

€j

j
, gD tð Þ~ gD 0ð Þ

c2{D
: ð16Þ

These relations constitute the box analogue of the well-known
Castin-Dum-Kagan-Surkov-Shlyapnikov relations in harmonic
traps44,45. The two-dimensional case is special since the scaling law
holds when g2D(t) is kept constant.
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Figure 3 | Time evolution of the momentum distribution of a Tonks-
Girardeau gas confined in box during an ultrafast expansion and
compression providing a shortcut to adiabaticity. In a shortcut to an

adiabatic expansion (A), due to the auxiliary external potential in Eq. (3),

the cloud is accelerated in the first half of the process. At s 5 1/2 there is a

partial mapping of the momentum distribution to the density profile of the

initial state of the cloud. In the second half of the process, the cloud is

slowed down and at t 5 t it matches the result from an adiabatic dynamics:

the state exhibits exactly the same correlations of the initial state, scaled up

by the expansion factor c(t) 5 10 (N 5 10). The reverse sequence is

observed in a shortcut to an adiabatic compression (B), where the target

state is reached with high-fidelity already for s 5 t/t 5 0.75, after which the

dynamics is actually adiabatic (c(t) 5 1/10).
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Figure 4 is a set of numerical solutions of the time-dependent
Gross-Pitaeveskii equation that illustrate the robustness of the STA
for realistic BEC experiments. We consider a box trap with Gaussian
barriers and in all numerical simulations interactions are kept con-
stant, i.e. gD(t) 5 gD(0), deviating from the ideal prescription in Eq.
(16). The top row illustrates the dynamics for a quasi-1D BEC. The
(one-body) fidelity between the resulting state W(t) and the ground

state of the final boxWf
gs isF c~10~ W tð ÞjWf

gs

D E��� ���2~0:911. For smal-

ler values of c, the fidelity is even higher F c~3~0:999 as expected,
given that implementation of the exact STA requires a smaller tuning
of g1. The bottom row shows the dynamics of a quasi-2D cloud,
which requires no interaction tuning in a STA, but is more sensitive
to the smoothness of the box boundaries, F c~10~0:988.

It is noteworthy that in the Thomas-Fermi regime, the kinetic term
contribution can be neglected and it is possible to induce an exact
self-similar dynamics (and a STA) exclusively with the help of an
external field. Then, the scaling ansatz is a solution of the TDGPE
provided that

g tð Þ~
ðt dt’

c t’ð ÞD
, V2 tð Þ~{

€j

j
, gD tð Þ~gD 0ð Þ: ð17Þ

This regime is particularly robust against the smooth boundaries of
physically realizable box potentials. The simulations correspond to
the most delicate regime with moderate mean-field interactions, both
far from the non-interacting and Thomas-Fermi limits.

Discussion
In conclusion, we have presented a method to drive an ultrafast
dynamics in a time-dependent box trap which reproduces the adia-
batic result at the end of the evolution. The method is assisted by an
auxiliary external harmonic potential which provides the speed-up
and is applicable to a large family of both non-interacting and inter-
acting many-body systems supporting dynamical scaling laws, where
it not only leads to a robust expansion of the density but also pre-
serves the non-local correlation functions of the initial state, up to an
expansion factor. The proposal is applicable to realistic box poten-
tials and can be implemented in the laboratory with well-established
technology. Its applications range over all scenarios requiring a

shortcut to adiabaticity, i.e., probing strongly correlated phases, pre-
venting decoherence, the effect of perturbations and atomic losses.
The method can be directly applied as well to ultrafast population-
preserving cooling methods, quantum heat engines and refrigera-
tors46 providing an alternative to the paradigmatic model of a
quantum piston14.

1. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D. & Muga,
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of Bose-Einstein condensates under fast trap variations. J. Phys. B: At. Mol. Opt.
Phys. 42, 241001 (2009).

4. del Campo, A. Fast frictionless dynamics as a toolbox for low-dimensional Bose-
Einstein condensates. EPL 96, 60005 (2011).

5. del Campo, A. Frictionless quantum quenches in ultracold gases: a quantum
dynamical microscope. Phys. Rev. A 84, 031606(R) (2011).
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