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Abstract: In this work, new information concerning the optical properties of black phosphorus (BP)
sheets chemically/electrochemically functionalized with diphenyl amine (DPA) and its macromolecu-
lar compound (poly(diphenylamine) (PDPA)) in the absence/presence of phosphotungstic acid (PTA)
is reported. Raman scattering and FTIR spectroscopy studies indicate that the interaction of BP with
PTA leads to the elimination of the PxOy layer onto the surface of the BP sheets. In the case of the
chemical interaction of BP with DPA, the reaction product corresponds to DPA chemically function-
alized BP sheets having an imino-phosphorane (IP) structure. The electrochemical oxidation of BP
sheets chemically functionalized with DPA in the presence of PTA leads to an increase in the weight
of P-N bonds as a consequence of the generation of PDPA doped with the PTA heteropolyanions, as
shown by FTIR spectroscopy and Raman scattering. This process is evidenced by a shift of the Raman
line from 362 cm−1 to 378 cm−1, assigned to the A1g mode. This change was explained by taking into
account the compression of the layers containing P atoms, which is induced by PDPA macromolecular
chains. The decrease in the intensity of the PL spectra of DPA as well as PDPA, in the presence of BP,
indicates that BP acts as a PL quenching agent for these compounds. A preferential orientation of
the PDPA doped with the PTA heteropolyanions on the surface of BP sheets is highlighted by the
variation of the binding angle of the PDPA on the surface of BP sheets from 44.7◦ to 39.9◦.

Keywords: diphenylamine; black phosphorus; Raman scattering; IR spectroscopy; photoluminescence

1. Introduction

Phosphorene (P) has been receiving the attention of researchers since 2014 [1]. The
main methods of synthesis of P are (i) the mechanical cleavage of black phosphorus
(BP) [1]; (ii) exfoliation by ultrasonic processes in the liquid phase [2,3]; (iii) plasma-
assisted synthesis [4]; and (iv) the passivation of BP with Nafion [5]. An issue with
using BP mono- and few-layer nanosheets is their instability in ambient oxygen, leading
to oxidative degradation, as reported in [6–10]. In order to avoid this problem, two
functionalization processes are often used, i.e., non-covalent functionalization with electron-
withdrawing molecules [11], such as ionic liquids [12,13] or 2D sheet polymers [14], and
covalent functionalization with monovalent hydrogen- or fluorine-type addends when in
the P lattice, with sp3-hybridization occurring in regions in which P atoms have undergone
sp2-hybridization [14]. The addition of the electrophiles carbenes, oxygen, Lewis acid or
nitrenes to BP has allowed the generation of the addition compounds phosphonium ylid,
phosphinoxide, Lewis acid adducts and imino-phosphorane [14].

A sustained effort has been made in recent years to prepare new composite materials
with both insulating polymers (e.g., polystyrene [15]) and conducting polymers (e.g.,
poly (3,4-ethylenedioxythiophene) [16]) as the host matrix and guest structures of BP or
phosphorene (P), which are reported to have a high stability. Other composites based
on P and conjugated polymers that have attracted attention have been poly (3-hexyl
thiophene) [17] and polyaniline [18]. Recent studies have demonstrated that the interaction
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of BP with PANI leads to p-π conjugated structures and π-π heterostructures [18]. Despite
these efforts, a less studied aspect is the interaction of the monomers of conjugated polymers
with BP sheets [19]. In order to exemplify the importance of knowing the nature of the
interactions between BP sheets and monomers, in this paper new information on the
interaction of BP sheets with poly(diphenylamine) (PDPA) monomers is reported.

The first study looking at the interaction of BP with compounds having amine func-
tional groups was reported by S. Li et al., who investigated BP surface functionalization
with amines (BP-NH2) (secondary alkylamine (diethylenetriamine), primary arylamine
(p-phenylenediamine) and cyclamine (4-amino-2,2,6,6-tetramethylpiperidine)) using FTIR
spectroscopy, Raman scattering and X-ray photoelectron spectroscopy (XPS) [20]. In con-
trast with Ref. [20], the attention in this work will be focused on the interaction of the
BP sheets with the secondary arylamine diphenylamine (DPA). According to the studies
presented below, the BP sheets functionalized with DPA will be used to obtain new BP-
functionalized composites with the polymer derived from DPA, i.e., PDPA. According to
the studies presented below, the BP sheets functionalized with DPA will be used to obtain
new BP-functionalized composites with the polymer derived from DPA, i.e., PDPA. As
shown in this paper, the synthesis method of these can be cyclic voltammetry, involving the
electrochemical oxidation of BP sheets chemically functionalized with DPA in the presence
of phosphotungstic acid (PTA).

The development of the synthesis methods of P or BP and their composites have
allowed new applications to be developed in the fields of: (i) information storage [21];
(ii) delaying flame ignition [22]; (iii) cancer therapy [23]; (iv) rechargeable Li and Na batter-
ies [24,25]; (v) photocatalysis [26]; (vi) gas sensors [27]; and (vii) field effect transistors [28].

Compared to this progress, in this work our attention will be focused on the chemical
interaction of BP with DPA and phosphotungstic acid (PTA), as well as the electrochemical
oxidation of DPA chemically functionalized BP sheets, highlighting their optical properties.

2. Materials and Methods

DPA (≥99%), H3PW12O40 x H2O (99.995% trace metals basis, PTA), HCl (37%) and
N, N-dimethylformamide (DMF, anhydrous, 99.8%) were purchased from Sigma-Aldrich,
St. Louis, MO, USA. BP crystal (99.995%) was purchased from NanoIntegris.

In the case of the chemical interaction of DPA with BP, the concentration of BP in the
mass of the DPA/BP mixture prepared in solid state was varied from 0 wt.% to 0.5 wt.%
and 1 wt.%.

The chemical interaction of BP with PTA was carried out when the concentration of
BP in the mass of the BT/PTA mixture was equal to 1.7 wt.%.

DPA electrochemical oxidation was performed using cyclic voltammetry, with the
synthesized solution consisting of 10−2 M DPA, 10−3 M PTA, and 1M HCl in the semi-
aqueous solution of dimethylformamide (DMF) and H2O, having a volumetric ratio of 1:1.
In order to obtain composites containing BP sheets and macromolecular compounds of
DPA, in the above reaction mixture BP sheets (0.1, 0.2 and 0.5 mg/mL) were added. In
the absence of BP, the electrochemical oxidation of DPA leads to the formation of a film of
poly(diphenylamine) (PDPA) doped with PTA heteropolyanions on the working electrode
surface [29]. Before DPA electrochemical oxidation, BP was exfoliated in DMF using an
ultrasonication process for 20 min. The potential range used for recording the first five
cyclic voltammograms was (+100; +960) mV vs. Ag/AgCl, with the scanning rate of the
potential being equal to 50 mV/s. The electrochemical cell was connected to a Voltalab
80 potentiostat/galvanostat from Radiometer Analytical.

The information about the products resulting from the interactions of BP with DPA
and PTA, as well as from the electrochemical oxidation of DPA in the presence of BP, PTA
and HCl was obtained by Raman scattering and FTIR spectroscopy.

The Raman spectra of BP, DPA, PTA, and the BP sheets chemically/electrochemically
functionalized with DPA or their macromolecular compounds were recorded with a FTRa-
man spectrophotometer, MultiRam model, from Bruker.
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The IR spectra of the samples prepared in this work were recorded with an FTIR
spectrophotometer, Vertex 80 model, from Bruker (Billerica, MA, USA).

The photoluminescence (PL) spectra of the DPA chemically/electrochemically func-
tionalized BP sheets were recorded with a Fluorolog spectrophotometer (3.2.2.1) from
Horiba Jobin Yvon with a right-angle geometry. All PL spectra were recorded at room
temperature, having slides of 3 nm both at excitation and emission. For the measurements
of the anisotropic PL, before recording the PL spectra in the polarized light of the PDPA
electrochemically functionalized BP sheets and PDPA, a checking polarizer alignment was
carried out using a Ludox sample.

The X-ray photoelectron spectroscopy (XPS) spectra of PDPA, BP and PDPA electro-
chemically functionalized BP sheets were recorded with a SPECS spectrometer having a
Phoibos 150 electrone energy analyzer, a monochromatic X-ray source of the type AlKa
1486.74 eV (SPECS Surface Nano Analysis GmbH, Berlin, Germany) and Spectral Data
Processor SDPv7.0 software (XPS International, Mountain View, CA, USA).

3. Results and Discussion
3.1. Optical Evidence for the Interaction of BP with PTA and DPA

According to Figure 1a, the Raman spectrum of PTA is characterized by an intense
line with a maximum at 1013 cm−1, having a shoulder at 989 cm−1, which accompanies
another two Raman lines of low intensity at 523 cm−1 and 218–237 cm−1. The Raman lines
of PTA peaked at 1013 cm−1 and 989 cm−1 and were assined to the vbirational modes of
the P-O bond in the PO4 sites and the W=O bond in PTA [30].
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Figure 1. Raman spectra of PTA (a), BP (b) and BP when interacting with PTA (c).

The Raman lines at 523 cm−1 and 218-237 cm−1 were attributed to the vibrational
mode of bending W-O-W and stretching W=O [31]. According to Figure 1b, the Raman
spectrum of BP shows three lines with maxima at 362 cm−1, 440 cm−1 and 467 cm−1, which
were attributed to the A1g, B2g and A2g vibrational modes, respectively [32]. The interaction
of BP with PTA led to the following changes shown in Figure 1c: (i) a downshift of the
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Raman lines of PTA from 1013 cm−1 and 989 cm−1 (Figure 1a) to 1009 cm−1 and 980 cm−1,
respectively (Figure 1c); (ii) a change in the ratio between the intensities of the Raman lines
of PTA in the spectral ranges 200–300 cm−1 and 900–1050 cm−1 from 0.35 (Figure 1a) to
0.45 (Figure 1c); and (iii) a downshift of the Raman line of BP from 362 cm−1, 440 cm−1

and 467 cm−1 (Figure 1b) to 360 cm−1, 434 cm−1 and 461 cm−1, respectively (Figure 1c),
accompanied by a change in the ratio between the intensities of the Raman line of BP, which
peaked at 362 cm−1 and 467 cm−1 from 1.38 (Figure 1b) to 0.63 (Figure 1c). At present, it
is well known that the A1g/A2g ratio provides information about the oxidation state of
BP [33]. The decrease in the A1g/A2g ratio up to the value 0.63 is a consequence of the
interaction of the oxidized BP from the interface the BP few-layer surface with the water
molecules existing in H3PW12O40 x H2O. Previous studies have demonstrated that the
interaction with the PxOy layer at the BP surface involves the transformation of PxOy into
H3PO4 and PH3 [34]. In our case, Scheme 1 describes the interaction of BP having a PxOy
layer with H3PW12O40 x H2O.
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Scheme 1. The reaction of BP having a PxOy layer (BP@ PxOy) with H3PW12O40 x H2O.

The adsorption of H3PW12O40 onto the BP surfaces induces a red-shift of the Raman
lines, assigned to the vibrational modes A1g, B2g and A2g with ~2 cm−1, 6 cm−1 and 6 cm−1,
respectively. An explanation of this must take into account the fact that there is a hindrance
of the oscillations of the P atoms belonging to BP. A consequence of this is the decrease in
energy of Raman scattering, which induces the red-shift of the Raman lines of the A1g, B2g
and A2g vibrational modes.

Additional information about the reaction of BP having a PxOy layer with H3PW12O40
x H2O is shown in Figure 2, obtained using FTIR spectroscopy. Figure 2a shows the main
IR bands of PTA situated at 523 cm−1, 594 cm−1, 797 cm−1, 891 cm−1, 982 cm−1, 1080 cm−1,
1605 cm−1 and 3383–3601 cm−1, being assigned to the vibrational modes of the deformation
of the O-P-O bond, symmetrical stretching of the W-O-W bond, W-Oc-W stretching mode
(Oc corresponds to corner oxygen atoms), W-Oe-W stretching mode (Oe corresponds to
edge oxygen atoms), anti-symmetrical stretching of the W=O bond, P-O-W stretching mode,
the deformation vibrational mode of water molecules and the stretching mode of hydroxyl
groups in water molecules, respectively [35,36].
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Figure 2. The IR spectra of PTA (a) and BP when interacting with PTA (b).
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The interaction of BP having a PxOy layer with PTA induces the following changes,
shown in Figure 2: (i) a shift of the IR band from 797 cm−1 to 800 cm−1, simultaneously
with an increase in its absorbance; (ii) a change in the ratio between the absorbance of the
IR bands, peaking at 982–984 cm−1 and 1080 cm−1 from 1.21 (Figure 2a) to 1.47 (Figure 2b);
(iii) the disappearance of the IR bands at 3383–3601 cm−1; and (iv) the decrease in the
absorbance of the IR band localized in the spectral range 1550–1650 cm−1, the variation of
which was accompanied by a shift from 1605 cm−1 (Figure 2a) to 1610 cm−1 (Figure 2b).
These results confirm once more that the changes reported in Figure 1 originate from the
interaction of PxOy with the water from PTA.

In order to illustrate the interaction of BP with DPA, Figure 3 shows the PL spectra of
DPA and the mixture of DPA:BP when the BP concentration is equal to 0.5 wt.%. and 1 wt.%.
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Figure 3. The PL spectra of DPA before (a) and after the interaction with BP 0.5 wt.% (b) and
1 wt.% (c), when the excitation wavelength is 275 nm.

In all three cases, the PL spectra are characterized by a band with maximums at
348 nm, 347 nm and 346 nm, and with intensities equal to 1.51 × 106 counts/sec (Figure 3a),
9.57× 105 counts/s (Figure 3b) and 6.68× 104 counts/s (Figure 3c), respectively. The lower
intensity of the PL spectra in Figure 3b,c in comparison with Figure 3a indicates a quenching
process of the DPA PL induced by BP sheets. According to Figure 4, the IR spectrum of DPA
is characterized by bands with maxima at ~691–744 cm−1, 876 cm−1, 1173 cm−1, 1242 cm−1,
1317 cm−1, 1415 cm−1, 1456–1493–1518 cm−1, 1595 cm−1 and 3383 cm−1, attributed to the
vibrational modes: the out-of-plane deformation of the benzene ring, deformation of the
benzene ring, C-H bond, stretching of the C-N bond, C-H bond, N-H bond + C-H bond,
C-C + C-H + N-H stretching, C-C bond stretching in the benzene ring and N-H bond,
respectively [37]. In the presence of BP, gradual decreases in the absorbance of the IR bands
localized at 691–744 cm−1 and 876 cm−1 were observed.
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Figure 4. The IR spectra of DPA before (black curve) and after the interaction with BP; the BP
concentration in the DPA:BP mixture is equal to 0.5 wt.% (red curve) and 1 wt.% (blue curve).

In our opinion, the decrease in the absorbance of the IR bands localized at 691–744 cm−1

and 876 cm−1 can be explained by the interaction of BP with DPA, when during the
chemical interaction a covalent functionalization of the BP layers with DPA takes place,
which leads to an intercalation of DPA between the BP layers, with a part of BP layers
thus being exfoliated. The reaction product corresponds to the iminophosphorene-type
structure [14], according to Scheme 2.
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Scheme 2. The interaction of DPA with BP.

Summarizing the above results, we conclude that: (i) the interaction of BP@PxOy with
PTA leads to a decrease in the oxidation state of BP and (ii) the interaction of BP with DPA
leads to the generation of the DPA chemically functionalized BP sheets, which have an
iminophosphorene-type structure.

3.2. Electrochemical Oxidation of the DPA Chemically Functionalized BP Sheets Determined by
Correlated Studies of Photoluminescence, Raman Scattering, FTIR Spectroscopy and X-ray
Photoelectron Spectroscopy

In order to show the vibrational properties of the composites resulting from the
electrochemical oxidation of the DPA chemically functionalized BP sheets, the studies of
Raman scattering and IR spectroscopy are shown here. The main Raman lines observed
in Figure 5a–c have maxima at ~415–498 cm−1, 621–825 cm−1, 906–1003 cm−1, 1184 cm−1,
1331 cm−1, 1367 cm−1, 1497 cm−1, 1581 cm−1 and 1614 cm−1, belonging to macromolecular
compound of DPA, i.e., PDPA doped with PTA heteropolyanions. These Raman lines
are attributed to the vibrational modes caused by the deformation of the benzene ring,
out-of-side of the benzene plane, P-O in the PO4 structures of the heteropolyanion, of C-H
bond in the benzene ring, C aromatic ring - N in the radical cation type structural units N,
N′-diphenyl benzidine, C-C stretching in the benzene ring + C-H bond in the benzene ring,
C=N stretching, C=C stretching in the quinoid ring and C-C stretching in the benzene ring,
respectively [37–40].
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Figure 5. Raman spectra of the composites resulting from the electrochemical oxidation of the DPA
chemically functionalized BP sheets when the concentration of BP in DMF in the synthesis mixture is
0.5 mg/mL (a), 0.2 mg/mL (b) and 0.1 mg/mL (c).

The decrease in the weight of the BP sheets in the reaction mixture induces: (i) a shift
in the Raman lines from 1184 and 1497 cm−1 to 1176 and 1491 cm−1, respectively; (ii) an
increase in the intensity of the Raman line from 1614 cm−1; and (iii) a change in the ratio
between the intensities of the Raman lines located in the spectral range 1300–1380 cm−1.
This fact suggests that: (i) the macromolecular compound contains a higher proportion
of quinoid rings, with the Raman spectrum being characterized in the spectral range
1550–1650 cm−1, only by the line at 1581 cm−1 (Figure 5a), and (ii) the electrochemical
oxidation of the DPA chemically functionalized BP sheets induces changes in the vibra-
tional mode of the C=N bonds as a consequence of the reactions at the electrode/electrolyte
interface when the C=N bonds are transformed into C-N bonds. This variation can explain
the change in the position of the Raman line from 1176 cm−1 (Figure 5c) to 1184 cm−1

(Figure 5a). In Figure 5a, one can see a Raman line at 378 cm−1, which does not belong to
DPA or its polymer. A puzzling fact is that a shift of the A1g vibrational mode of BP sheets
from 362 cm−1 to 378 cm−1 was reported when the sheets containing P atoms were com-
pressed [41]. In our case, the variation of the Raman line attributed to the A1g vibrational
mode from 362 cm−1 to 378 cm−1 can be explained by taking into account the compres-
sion of the layers containing P atoms, which is induced by PDPA. In Figure 6d, it can be
seen that the IR spectrum of PDPA doped with the PTA heteropolyanions is characterized
by the IR bands having maxima at 696 cm−1, 748 cm−1, 812 cm−1, 874 cm−1, 922 cm−1,
1022 cm−1, 1074 cm−1, 1176 cm−1, 1315 cm−1, 1454 cm−1, 1499 cm−1 and 1595 cm−1, at-
tributed to the vibrational modes of the inter-ring deformation, ring deformation, W-Oc-W
(Oc corresponds to oxygen from the corner of the heteropolyanion structure), W-Oe-W
(Oe corresponds to oxygen from the side of the heteropolyanion structure), W=O, the
deformation of the quinoid ring, the stretching of the P-O-W bond, the C-H bond in the
benzene (B) ring, C aromatic - N, the stretching of the C=N + C-H bond in the benzene ring,
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the stretching of the C-C bond in the benzene (B) ring + the stretching vibration of the C=C
bond in the quinoid ring (Q) and the stretching of the C=C bond in the -NH+=Q=Q=NH+-
structure, respectively [37–39].
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Figure 6. IR spectra of the composite resulting from the electrochemical oxidation of the DPA
chemically functionalized BP sheets when the concentration of BP in DMF in the synthesis mixture is
0.5 mg/mL (a), 0.2 mg/mL (b) and 0.1 mg/mL (c). Figure (d) shows the IR spectrum of PDPA doped
with the PTA heteropolyanions.

Figure 6a–c highlight the following changes in the case of the composite resulting
from the electrochemical oxidation of the DPA chemically functionalized BP sheets: (i) a
shift of the maximum of the IR band from 812 cm−1 to 823 cm−1; (ii) an increase in the
absorbance of the IR bands located at 1022 cm−1 and 1072–1076 cm−1; and (iii) a shift of
the IR band from 1454 cm−1 to 1470 cm−1 simultaneously with the change in the ratio
between the absorbances of the IR bands from 1454 to 1470 cm−1 and 1499 cm−1. These
variations can be explained by taking into account the increase in the number of covalent
bonds between the BP sheets and DPA-type structural units, when steric hindrance affects
both the quinoid rings and the PTA heteropolyanions, which compensates the existing
positive charges on the PDPA macromolecular chain. In order to understand the chemical
structures of composites resulting from the electrochemical oxidation of DPA chemically
functionalized BP sheets, Scheme 3 shows the reactions that allow the macromolecular
chain growth, i.e., of dimers, tetramers and PDPA.
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Scheme 3. The reactions describing the electrochemical oxidation reactions of the DPA chemically
functionalized BP sheets, which leads to composites with BP sheets electrochemically functionalized
with macromolecular compounds having repeating units made through doping DPA with PTA
heteropolyanions (X- corresponds to the PTA heteropolyanion).

According to Scheme 3, reaction (1) leads to a radical of the DPA chemically function-
alized BP sheets, which is instable and this will interact with another radical, leading to a
dimer (reaction (2)). Next, the oxidation reaction of the dimer will lead to a diradical (reac-
tion (2)) which, being unstable, will interact with another dimer, leading to the compound
shown in reaction (3). Reaction (4) shows the oxidation reaction of the tetramer, when a
composite of the type of BP layers functionalized with DPA tetramers doped with PTA
heteropolyanions results. Further growth of the macromolecular chain through oxidation
reactions leads to a composite made of PDPA electrochemically functionalized BP sheets.

In order to show additional experimental evidence for the PDPA electrochemically
functionalized BP sheets, in Figures 7–9 the XPS spectra of PDPA, BP and the PDPA
electrochemically functionalized BP sheets are shown.
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spectra of PDPA doped with TPA heteropolyanions. Red and blue curves correspond to experimental
results and their deconvolution.
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Figure 7 shows the case of PDPA doped with PTA heteropolyanions in: (i) the XPS
C1s spectrum, a peak of high intensity at 284.37 eV, accompanied by another four peaks
at 284.9 eV, 285.6 eV, 286.3 eV and 291.35 eV, which were assigned to sp2 C atoms in the
benzene ring, the C-C and C-H bonds, C-N bond, the C-O and C-N+ bonds and π-π*
transitions of sp2 C atoms [42]; (ii) the XPS N1s-Mo3p3/2 spectrum, with three peaks at
398.09 eV, 399.56 eV and 401.65 eV assigned to Mo3 p3/2 (where the Mo oxidized state is
Mo6+), N1s of the amine groups and NH+ [43,44]; (iii) the XPS P2p spectrum, with a peak of
low intensity corresponding to the TPA heteropolyanions [43,44]; and (iv) XPS O1s, which
reveals an intense peak at 530.71 eV accompanied of two peaks at 531.86 eV and 533.05 eV,
attributed to the O-Mo bond, adsorbed O and the C-O bonds [43,44].

The deconvolution of Figure 8 illustrates six peaks at 129.99 eV–130.83 eV,
130.86 eV–131.73 eV and 133.67 eV–134.5 eV, which were assigned the P2p doublet of
BP, doublet P2p of P very low oxidized having the oxidation state P3+ and P2p doublet of P
strong oxidized having the oxidized state P5+ [45]. The ratio between the intensities of the
peaks at 129.99 eV and 133.63 eV is equal to 1.57.

Figure 9 shows the case of PDPA electrochemically functionalized BP sheets in: (i) XPS
C1s, with the four peaks at 284.37 eV, 284.91 eV, 285.57 eV and 286.36 eV assigned to sp2 C
atoms, the C-C and C-H bonds, the C-N bond and the C-O and C-N+ [42]; (ii) XPS N1s, with
two peaks at 399.94 eV and 402.14 eV, assigned to the P=N bond [46–48] and protonated
N (C-N+) [42]; (iii) XPS O1s, with two peaks at 532.04 eV and 533.38 eV, attributed to
adsorbed molecular oxygen and the C-O bond; and (iv) XPS P2p, with four peaks at
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134.06 eV–134.93 eV and 129.85 eV–130.71 eV, assigned to P=N bond and the P-P bond in
BP [46–48]. The ratio between the intensities of the peaks at 129.99 eV and 133.63 eV is
equal to 0.92. The smaller value of the ratio between the intensity of the peaks at 129.99 eV
and 133.63 eV in the case of the PDPA electrochemically functionalized BP sheets in contrast
with BP clearly confirms the decrease in the weight of P-P bonds and the increase in the
weight of P=N bonds.

The electrochemical oxidation of DPA in the absence of the BP sheets, when the record-
ing of the first five cyclic voltammograms on the Au electrode surface took place, led to
films that are characterized by spectra of photoluminescence (PL (Figure 10(a1))) and pho-
toluminescence excitation (PLE, Figure 10(a2)), having the following characteristics: (i) the
PL spectrum of the sample of PDPA shows four emission bands with maxima at ~416 nm,
432 nm, 462 nm and 504 nm and (ii) the PLE spectrum highlights a band with the maximum
at 368 nm. As the concentration of the BP sheets in the synthesis mixture increases, a grad-
ual decrease in the intensity of the PL spectra of the macromolecular compound resulting
from the electrochemical oxidation of the DPA chemically functionalized BP sheets was
observed from 9.62 × 105 counts/s (Figure 10(a2)) to 5.16 × 105 counts/s (Figure 10(b2)),
1 × 105 counts/s (Figure 10(c2)) and 5.5 × 104 counts/sec (Figure 10(d2)). A decrease in
the intensity of the PLE spectra was also observed in the case of Figure 10(a1–10d1). These
variations are due to the electrochemical oxidation of the DPA chemically functionalized BP
sheets, when are generated dimers, tetramers, oligomers and macromolecular compound.
Taking into account the behavior of PL spectra, shown in Figure 10, these highlight the role
of the BP sheets as a PL quenching agent of macromolecular compounds of DPA doped
with PTA heteropolyanions.

In order to understand the adsorption mode of macromolecular compounds of DPA
doped with PTA heteropolyanions on the surface of the BP sheets, in Figure 11 are shown
the PL spectra in polarized light of PDPA doped with the PTA heteropolyanions and
of its composites based on macromolecular compounds of DPA and the BP sheets. To
calculate the PL anisotropy, the following equation was used: r = (IVV − (IHV/IHH) × IVH)/
(IVV + 2(IHV/IHH) × IVH) [39,49]. IVV and IHH correspond to the PL intensity when the
excitation and emission polarizers are in the vertical and horizontal positions, respectively;
IVH and IHV correspond to the PL intensity when the excitation and emission polarizers
are in the vertical and horizontal positions and vice versa, respectively. The r values in
the case of PDPA doped with PTA heteropolyanions and the composites of the type of the
BP sheets electrochemically functionalized in the presence of DPA, when in the reaction
mixture the concentrations of BP sheets are 0.1, 0.2 and 0.5 mg/mL, equal to 0.109, 0.103,
0.153 and 0.127, respectively. The wrapping angle of the BP sheets with macromolecular
compounds of DPA—in other words, the adsorption angle of the polymer on the surface
of the BP layers ((θPL)—was calculated with the relation r = 0.4[3cos2θPL − 1)/2] [39,49],
having values in the case of PDPA and the composites containing BP sheets equal to 44.1◦,
44.7◦, 42.4◦ and 39.9◦ when the concentrations of BP layers in the reaction mixture are 0,
0.1, 0.2 and 0.5 mg/mL, respectively. These values of the adsorption angle of the polymer
on the surface of the BP layers indicate that the excitation and emission transition dipoles
of macromolecular compounds are not parallel to the basal plane of the BP sheets.
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Figure 10. PLE and PL spectra of PDPA (a1,a2) and the DPA chemically functionalized and electro-
chemically oxidized BP sheets, with the synthesis mixture containing 0.1 mg/mL (b1,b2), 0.2 mg/mL
(c1,c2) and 0.5 mg/mL (d1,d2) BP in DMF. PL spectra were recorded using an excitation wavelength
equal to 350 nm. PLE spectra were recorded under an emission wavelength equal to 490 nm.
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Figure 11. Anisotropic photoluminescence of PDPA (a) and composites resulting from the electrochemi-
cal oxidation of DPA chemically functionalized BP sheets, when the synthesis mixture contains the BP
sheets in DMF having a concentration equal to 0.1 mg/mL (b), 0.2 mg/mL (c) and 0.5 mg/mL (d).

4. Conclusions

In this work, new results are reported regarding the optical properties of the com-
posite materials resulting from the electrochemical oxidation of the BP sheets chemically
functionalized with DPA. The following conclusions can be drawn:

(i) The chemical interaction of the BP sheets with DPA involves a process of covalent
functionalization that takes place with the formation of an iminophosphorene-type struc-
ture, which induces a decrease in the absorbance of the IR bands localized at 691–744 cm−1

and 876 cm−1. The formation of iminophosphorane groups on the BP surface was also
reported through the interaction of black phosphorus with 4-benzoic acid azide [50].

(ii) The chemical interaction of the BP sheets having a PxOy layer with PTA leads to a
decrease in the oxidation state of the BP sheets, as a consequence of the interaction of PxOy
with water from H3PW12O40 x H2O.

(iii) The electrochemical oxidation of the DPA chemically functionalized BP sheets
leads to the generation of dimers, tetramers and polymers when steric hindrance effects are
highlighted by the increase in the absorbance of the IR bands peaking at 1022 cm−1 and
1072–1076 cm−1, attributed to vibrational modes of the deformation of the quinoid rings and
stretching of the P-O-W bond; according to Raman spectroscopy studies, the composites
resulting from the electrochemical oxidation of the DPA chemically functionalized BP
sheets are characterized by an intense line at 1581 cm−1, which indicates a greater weight
of quinoid rings compared to benzene rings in the macromolecular compound. The smaller
ratio between the intensity of the XPS peaks at 129.99 eV and 133.63 eV in the case of the
PDPA electrochemically functionalized BP sheets in contrast with BP clearly confirms the
decrease in the weight of P-P bonds and the increase in the weight of P=N bonds.

(iv) The decrease in the intensity of the PL spectrum of DPA in the presence of the
BP sheets highlights the role of the quenching agent of BP in the case of the PL spectra of
DPA; the BP sheets play the role of a quenching agent of the PL spectra of the composites
resulting from the electrochemical oxidation of the DPA chemically functionalized BP
sheets in the presence of PTA.
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(v) The value of the wrapping angle of the BP sheets with macromolecular compounds
of DPA, when the concentrations of the BP layers in the reaction mixture are 0, 0.1, 0.2 and
0.5 mg/mL, ranging from 44.1◦ to 44.7◦, 42.4◦ and 39.9◦, respectively.

This study provides new opportunities for the use of BP sheets functionalized with
PDPA doped with PTA heteropolyanions as an electrode active material in supercapacitor
cells and rechargeable Li batteries as well as a flame-retardant agent. In this context,
we point out that PDPA is one of the CPs that have been used for both supercapacitors
and batteries (e.g., [51,52]), while in the case of BP, the applications in the field of energy
storage have exploited the large size of the interlayer channel of 3.08 Å, which ensured a
fast diffusion of ions [53]. Concerning the applications of BP as well as their composites
as a flame-retardant agent, a recently study focused on BP functionalized with amine
compounds for epoxy resin [20]. Risks that can lead to the fires and explosions of batteries
as well as safety strategies have been reported in various reviews (e.g., [54]). One of the
strategies adopted in it takes into account preventive measures by adding flame retardants
in order to increase the thermal stability of the batteries. Considering this progress, in the
particular case of PDPA-functionalized BP sheets, we anticipate that (i) the presence of BP
sheets will facilitate an increase in ion diffusion, improving the discharge capacity of the
supercapacitors and the specific capacity of the rechargeable Li batteries and (ii) an increase
in the fire stability of rechargeable Li batteries, which use PDPA-functionalized BP sheets
as the active electrode material, will occur.
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