
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HUMAN NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 01 April 2014
doi: 10.3389/fnhum.2014.00196

Studying the spatial distribution of physiological effects on
BOLD signals using ultrafast fMRI
YunjieTong1,2* and Blaise deB. Frederick 1,2

1 McLean Imaging Center, McLean Hospital, Belmont, MA, USA
2 Department of Psychiatry, Harvard University Medical School, Boston, MA, USA

Edited by:
Daniel S. Margulies, Max Planck
Institute for Human Cognitive and
Brain Sciences, Germany

Reviewed by:
Alexander Schaefer, Max Planck
Institute for Human Cognitive and
Brain Sciences, Germany
Maarten Mennes, Radboud
University Nijmegen Medical Centre,
Netherlands

*Correspondence:
Yunjie Tong, McLean Imaging Center,
McLean Hospital, 115 Mill Street,
Belmont, MA 02478, USA
e-mail: ytong@mclean.harvard.edu

The blood-oxygen-level dependent (BOLD) signal in functional MRI (fMRI) reflects both
neuronal activations and global physiological fluctuations. These physiological fluctuations
can be attributed to physiological low frequency oscillations (pLFOs), respiration, and car-
diac pulsation. With typical TR values, i.e., 2 s or longer, the high frequency physiological
signals (i.e., from respiration and cardiac pulsation) are aliased into the low frequency
band, making it hard to study the individual effect of these physiological processes on
BOLD. Recently developed multiband EPI sequences, which offer full brain coverage with
extremely shortTR values (400 ms or less) allow these physiological signals to be spectrally
separated. In this study, we applied multiband resting state scans on nine healthy partici-
pants withTR=0.4 s.The spatial distribution of each physiological process on BOLD fMRI
was explored using their spectral features and independent component analysis (ICA). We
found that the spatial distributions of different physiological processes are distinct. First,
cardiac pulsation affects mostly the base of the brain, where high density of arteries exists.
Second, respiration affects prefrontal and occipital areas, suggesting the motion associ-
ated with breathing might contribute to the noise. Finally, and most importantly, we found
that the effects of pLFOs dominated many prominent ICA components, which suggests
that, contrary to the popular belief that aliased cardiac and respiration signals are the main
physiological noise source in BOLD fMRI, pLFOs may be the most influential physiolog-
ical signals. Understanding and measuring these pLFOs are important for denoising and
accurately modeling BOLD signals.

Keywords: BOLD fMRI, multiband EPI, physiological noise, independent component analysis, low frequency
oscillations

INTRODUCTION
In blood-oxygen-level dependent (BOLD) functional MRI (fMRI),
the BOLD signal reflects temporal fluctuations in the blood,
including blood volume, blood oxygenation, and blood flow.
All of these factors are affected by regional neuronal activation,
which increases local metabolic rate and oxygen consumption,
and thereby leads to detectable BOLD signal changes. However,
other physiological processes also induce changes in BOLD and
are sometimes the dominant component in the BOLD signals
(Murphy et al., 2011). The main physiological processes seen in
BOLD data are physiological low frequency oscillations (pLFOs;
In this manuscript, we use pLFOs to represent the physiological
part of LFOs, nLFOs to represent neuronal part of LFOs, and LFOs
to represent the combination of both), respiration, and cardiac
pulsation. These different physiological processes confound the
BOLD signals in different ways. Understanding the mechanisms
and spatial distributions of their impacts on BOLD is critical in:
(1) revealing the real neuronal signal; (2) better understanding
and modeling the BOLD signal itself; and (3) extracting useful
physiological information from fMRI.

Among these processes, the most mysterious and understud-
ied are the pLFOs, which are intrinsic spontaneous oscillations
of roughly 0.1 Hz. Despite many hypotheses, their origins and

functions are not fully understood (Wise et al., 2004; Julien, 2006;
Shmueli et al., 2007; Birn et al., 2008; Chang et al., 2009; Aalk-
jaer et al., 2011; Murphy et al., 2011). We have recorded the time
courses of pLFOs in the periphery (e.g., fingertip and toes), and
found that they resemble concurrent BOLD signals in the brain
with certain time delays (Tong et al., 2012). This implies that the
pLFOs are systemic signals that travel with the blood. Because
the origin of these signals is unclear, there is no standard method
to measure the pLFOs. Moreover, the spectrum of pLFOs overlaps
that of the intrinsic neuronal signals (~0.1 Hz) in BOLD fMRI (i.e.,
nLFOs). These factors complicate the study of how pLFOs impact
the BOLD fMRI. Although respiration (~0.3 Hz) and cardiac pul-
sation (~1 Hz) (Tortora and Derrickson, 2008) signals have clear
origins and distinct spectral signatures, it is also difficult to directly
assess the effects of these processes in the BOLD signal because
the typical sampling period of fMRI is longer than 2 s. This only
allows us to fully sample fluctuations with a frequency of 0.25 Hz
(or 0.167 Hz in the case of a 3-s TR) and lower. Any signal with
higher frequency content will be aliased into the BOLD signal,
which is the case for cardiac pulsation (~1 Hz) and the majority of
the respiration signal (0.2 – 0.4 Hz). Despite some efforts to under-
stand the effects of these processes (Glover et al., 2000; Desjardins
et al., 2001; Beall and Lowe, 2007; Birn et al., 2008; Chang et al.,
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2009; Frederick et al., 2012), these aliased physiological signals are
hard to separate out and study individually. Furthermore, they are
mixed up with the pLFOs, which make it even harder to study
pLFOs’ effects.

Recently, a new fMRI acquisition sequence has been developed
that dramatically decreases the repetition time of fMRI to hun-
dreds of milliseconds (Feinberg et al., 2010; Moeller et al., 2010;
Setsompop et al., 2012; Xu et al., 2012) in full brain coverage. As a
result, the two main physiological signals (i.e., respiration and car-
diac pulsations) can be fully sampled. This allows us to explore the
impact of these physiological signals on the BOLD fMRI individ-
ually. In this study, we spectrally separated the BOLD fMRI from
a resting state acquisition into three bands: LFOs, respiration, and
cardiac pulsation. We then mapped the effects of each process on
BOLD fMRI with two approaches: (1) using their distinct spec-
tral signatures to separate their impacts on BOLD spatially, and
(2) applying independent component analysis (ICA) (Beckmann
and Smith, 2004; Beckmann et al., 2005), a data driven method
that is capable of separating the various “significant components”
of the BOLD signal automatically (i.e., “neuronal” and “physi-
ological” components in LFOs then can be identified by visual
inspection) (Tohka et al., 2008; Kelly et al., 2010). In this man-
uscript, we are more interested in the physiological components
calculated by ICA.

MATERIALS AND METHODS
PROTOCOLS
Functional MRI resting state studies were conducted in nine
healthy participants (five males, four females, average age± SD,
34± 12.7 years). In the resting state studies, participants were
asked to lie quietly in the scanner and view a gray screen
with a fixation point in the center. The resting state scans
lasted 360 s. The Institutional Review Board at McLean Hospi-
tal approved the protocol, and participants were compensated for
their participation.

All MR data was acquired on a Siemens TIM Trio 3 T scanner
(Siemens Medical Systems, Malvern, PA, USA) using a 32-channel
phased array head matrix coil. After acquiring a high resolu-
tion localizer image (ME-MPRAGE, TR/TI/TE= 2530/1100/3.31,
256× 256× 128 voxels over a 256 mm× 256 mm× 170 mm sagit-
tal slab, GRAPPA factor of 2), multiband EPI (University
of Minnesota sequence cmrr_mbep2d_bold R008) (Feinberg
et al., 2010) data were obtained with the following parame-
ters: TR/TE= 400/30 ms, flip angle 43°, matrix= 64× 64 on a
220 mm× 220 mm FOV, multiband factor= 6, 30 3.0 mm slices
with 0.5 mm gap parallel to the AC–PC line extending down from
the top of the brain.

For each participant, the standard FSL fMRI pre-processing
steps, including motion correction, high pass filter (>0.01 Hz),
slice time correction, and spatial smoothing (5 mm) were applied
to the original BOLD data [using FEAT v6.00 of FSL 5.04
(Jenkinson et al., 2012)] prior to further analysis.

DATA ANALYSIS
Spectral method
In order to understand the spectral signatures of different physio-
logical signals, the power spectrum of BOLD signal at each voxel

was calculated for each participant, and these subject-specific spec-
tral signatures were defined based on the participant’s own power
spectra. Figure 1 shows the spectra of six typical BOLD signals
from one participant. Three main signals were found (for this
participant) and marked as: (1) LFOs (<0.2 Hz); (2) respiration
(0.3–0.4 Hz); (3) cardiac pulsation (0.8–1.0 Hz). For the spatial
distribution of these signals in the brain, we first defined a base-
line in the spectra (i.e., the averaged power obtained from the range
where the stable and minimum power was observed). For example,
in Figure 1, the baseline was the averaged value of the spectrum
ranging from 0.4 to 0.7 Hz. If the peak power in the frequency
band of a certain process (i.e., LFOs, respiration, cardiac pulsa-
tion) exceeded twice the baseline level, the corresponding voxel
was considered as the voxel influenced by this process. Sometimes,
voxels can be affected by one, two, or three processes. The spatial
map of certain process (for each participant) is obtained by com-
bining all the corresponding voxels affected by this process. The
averaged result maps of nine participants were all projected onto
the standard brain.

ICA method
Independent component analysis was used to assess the impact of
different physiological signals on BOLD fMRI. First, we spectrally
separated resting state data sets of these nine participants. For
each participant, in addition to the original data set (unfiltered),
three more filtered data sets were generated from the original
multiband data using the zero delay Fourier domain filter (MAT-
LAB, The Mathworks, Natick, MA, USA). The filter’s ranges are:
(1) 0.01–0.2 Hz for LFOs; (2) roughly 0.2–0.4 Hz for respiration,
the band-pass filter range was chosen on subject-specific respira-
tion frequency that varies from participant to participant (e.g., for
participant in Figure 1, it is 0.3–0.4 Hz); (3) roughly 0.8–1.2 Hz
for cardiac signals, same as respiration signal, the band-pass filter
range was chosen on subject-specific cardiac frequency (e.g., for
participant in Figure 1, it is 0.8–1.0 Hz). The subject-specific res-
piration and cardiac pulsation ranges for all the participants can
be found in Figure S1 in Supplementary Material. As result, each
filtered data set corresponds to only one main process. This is pos-
sible due to the high sampling rate of the multiband EPI sequence
(TR= 0.4 s). We chose the upper limit of LFOs to be 0.2 Hz for the
two reasons; first, to maximize the low frequency band, based on
previous research (Niazy et al., 2011), which showed that the spec-
tral range of LFOs in BOLD is beyond the 0.1-Hz and can be as high
as 0.2 Hz (Boyacioglu et al., 2013); and secondly to exclude two
other physiological signals, namely respiration and cardiac pulsa-
tion. For most of the participants, 0.2 Hz is below the respiration
frequency (definitely below cardiac frequency). Figure 2 shows
the original temporal traces of one BOLD signal (TR= 0.4 s) in
red and its band-pass filtered versions in blue (same participant
as in Figure 1), which corresponded to LFOs, respiration, and
cardiac pulsation. We then used group multivariate exploratory
linear optimized decomposition into independent components
(MELODIC 3.10) ICA from FSL on the original and spectrally
separated resting state data sets (four data sets, each has nine par-
ticipants) independently. The dimensionality of MELODIC was
set to 35, a typical number of components for ICA studies (Beck-
mann and Smith, 2004). Within the 35 ICs found in the unfiltered
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Tong and Frederick Spatial distribution of physiological effects

FIGURE 1 | Power spectra of BOLD signals from six voxels, which were
selected from the resting state data (TR = 0.4 s) of one participant, and
their locations in the brain. Three distinct spectral ranges corresponding to

different physiological processes were marked. The two graphs on the right
indicate the locations of these voxels in the visual cortex (top) and bottom
slices (lower).

data set, seven commonly recognized ICs with physiological (non-
neuronal) origins were identified. They are classified into four
categories based on their main locations and characteristics of the
patterns: (1) ventricular system; (2) vascular system; (3) white mat-
ter, and (4) motion artifact. Then, we searched the corresponding
physiological ICs from the results of LFOs, respiration, and car-
diac pulsation. Different dimensionalities were also used to test the
generalization of the resulting spatial patterns. By associating each
data set with certain physiological patterns, we hope to understand
location and mechanism, by which, different physiological process
affect the BOLD signals.

RESULTS
SPECTRAL SIGNATURES OF DIFFERENT PHYSIOLOGICAL PROCESSES
The spectra of several typical voxels from a participant’s resting
state scan are plotted in Figure 1. Due to the high temporal res-
olution of the multiband sequence (TR= 0.4 s), the upper limit
of the spectrum is 1.25 Hz. The top three graphs (in blue) are
from the voxels located in the visual cortex (the region of visual
cortex was localized by a separate block-design checkerboard stim-
ulus on the same participant in the same imaging session). The
top graph on the right indicates the locations of these voxels
(blue arrows) in the visual cortex (marked by yellow patterns).
The last three graphs are from the voxels from the bottom slices
(axial) of the same data set, which, based on its extracerebral
location, are likely to present the physiological fluctuations from
incoming arteries, exiting veins, or mixture of both (voxels size:
3.5 mm× 3.5 mm× 3.5 mm). The bottom graph on the right indi-
cates the locations of these voxels (red arrows) in the bottom slices.
They were selected from the areas overlapping with the main vas-
culatures. The power of the signals mainly resides in three spectral
regions for all the participants: (1) the low frequency region; (2)
the respiration region; and (3) the cardiac region. This is clearly

FIGURE 2 | Original BOLD fMRI (TR = 0.4 s) data and its filtered
versions. Temporal trace of the original BOLD data (in red) from resting
state fMRI scan (TR=0.4 s) in (A) and its band-passed versions in
(B) 0.01–0.2 Hz; (C) 0.3–0.4 Hz; and (D) 0.8–1.0 Hz.

demonstrated in Figure 1 for one participant, where these three
spectral regions are <0.1, 0.3–0.4, and 0.8–1.0 Hz, respectively.
However, these components are not equally represented in all the
voxels, indicating different physiological processes influence the
voxels differently. For example, for the voxels from the lower voxels
around the incoming arteries, that are more prone to physiological
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fluctuations due to their locations, there are voxels with three dis-
tinct spectral components (voxel 6), with only the respiration and
low frequency components (voxel 5), and with only cardiac com-
ponent (voxel 4). Similar effects were observed for the voxels from
the visual cortex. Even though they all have the low frequency
component, cardiac and respiration signals were also sometimes
observable, to varying degrees. Lastly, among these signals, LFOs
and cardiac signals generally have more signal power than that
of respiration. These findings in Figure 1 are widely presented
in all the participants with subject-specific frequency ranges. The
spectra of representative voxels (all from the bottom slices) for
the rest of the participants were shown as Figure S1 in Supple-
mentary Material. In addition to showing the subject-specific
frequency ranges of these processes (especially for respiration
and cardiac pulsations), they also demonstrated that: (1) these
processes are not equally represented in all the voxels, as we dis-
cussed (for instance, there are no respiration signals observed in
the representative voxels from participant three and eight); (2)
LFOs and cardiac signals generally have more power than that of
respiration.

SPATIAL DISTRIBUTIONS OF DIFFERENT PHYSIOLOGICAL PROCESSES
(SPECTRAL ANALYSIS)
The spatial distributions of cardiac, respiration, and LFOs signals
calculated from nine participants are plotted in Figures 3A–C. For
each distribution map, a color was assigned to each voxel, indi-
cating the number of participants from which the physiological
process was observed in this voxel. Figures 3D–F are the same
maps displayed orthogonally. The spatial distributions of these
three physiological signals are different. Figures 3A,D indicate
the brain regions that have significant contribution from cardiac
pulsation. These regions are closely associated with cerebral vas-
culature, as demonstrated previously (Dagli et al., 1999; Beall and
Lowe, 2007), including the areas with high density of arteries at the
base of the brain (e.g., Circle of Willis, middle cerebral artery), and
the areas with big veins (superior sagittal sinus). This is because
that cardiac signal is carried by the blood vessels (as a pressure
wave), especially by the arteries. Similar pulsation patterns were
identified by Boubela et al. (2013) using temporal ICA on the ultra-
fast resting state fMRI. Respiration affected mainly the prefrontal
and occipital lobes, as well as the top of the brain, as shown in

FIGURE 3 | Spatial distribution of the voxels that have significant spectral content in the following bands: (A) cardiac pulsation, (B) respiration, and
(C) LFO. The orthogonal views of (A,B,C) are shown in (D,E,F).
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Tong and Frederick Spatial distribution of physiological effects

Figures 3B,E. Most voxels in the brain are affected by the LFOs. In
the spectral study, we could not separate the pLFOs from nLFOs.
However, ICA would allow us to separate these effects based on
their characteristic spatial distributions, which are independent
from other signals. The detail was discussed in next section.

SPATIAL DISTRIBUTIONS OF DIFFERENT PHYSIOLOGICAL PROCESSES
(ICA)
Figures 4 and 5 shows the most prominent physiological patterns
identified from unfiltered data (in top panels). They included
the patterns resembling main ventricles, main cerebral vascula-
ture (both veins and arteries), white matter (as in Figure 4), and
motion artifacts (as in Figure 5). The corresponding ICs from the
filtered data sets (i.e., pLFOs, respiration, and cardiac pulsation)
were identified and listed accordingly. From Figure 4, we can see
that not all the physiological processes produced the same physio-
logical ICs. For instance, the cerebral vascular pattern (marked
with the red box in Figure 4), can not be found in the ICA
results of respiration and cardiac pulsation; the same behavior

was observed for the white matter pattern (marked with the blue
box in Figure 4).

Figure 5 shows three typical motion artifacts selected by ICA
from each data set. On the contrary of Figure 4, similar patterns
were produced by ICA from each data set.

DISCUSSION
EFFECTS OF RESPIRATION ASSESSED BY SPECTRAL FEATURES
Respiration signals are distributed in the anterior, posterior, and
superior regions of the brain, primarily at the cortical surface,
and have no clear associations with the cerebral vasculature
(Figures 3B,E). The salient feature of the respiration distribution
is the circular and semi-circular pattern, which can be seen in the
axial images in Figures 3B,E. In these images, the patterns com-
prising full circles can be observed at the top of the head. Gradually
they become semi-circles, surrounding the prefrontal and occip-
ital lobes. These patterns are consistent with these signals being
the combination of several motion artifacts. For example, the cir-
cular pattern observed at the superior slices is likely to be caused

FIGURE 4 | Four prominent physiological ICs identified from the unfiltered data (in top panel) and their corresponding ICs selected from the ICA result
of the filtered data. The patterns associated with cerebral vascular and white matter are marked with red and blue boxed respectively.

FIGURE 5 |Three prominent motion-related physiological ICs identified from the unfiltered data (in top panel) and their corresponding ICs selected
from the ICA result of the filtered data.
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by translational motion along the vertical axis (Z -axis in scanner
coordinates), while the semi-circular pattern at the surface of the
frontal and occipital cortex might be caused by rotation around
the horizontal axis (Y -axis in scanner coordinates), i.e., a nod-
ding motion. These motions are breathing-related, as respiration
tends to move the head in these dimensions, a fact that is clearly
observed in the motion traces generated during pre-processing.
The data used here were motion-corrected by pre-processing in
FSL (Jenkinson et al., 2002), however, the simple rigid body motion
correction (six dimensions) is not enough to fully remove the
effects of motion caused by breathing (for example, spin history
effects). Therefore, using motion parameters generated in the pre-
processing as noise regressors in the fMRI analyses is strongly
suggested to covary out residual effects in the data. The respira-
tion process likely affects the BOLD signals in other ways, such
as by changing the oxygenation of the blood directly. For exam-
ple, Birn et al. (2008) has demonstrated that the respiration depth
affected BOLD fMRI signal.

EFFECTS OF PHYSIOLOGICAL PROCESSES ASSESSED BY ICA
The first panel of Figure 4 shows four prominent physiological
ICs from unfiltered data. They are clearly associated with the
ventricular system, cerebral vascular system (veins), cerebral vas-
cular system (arteries), and white matter. These ICs are widely
observed in ICA studies. Because ICs are derived from individ-
ual frequency bands, it is now possible to link them with different
physiological processes. First of all, even after filtering out the phys-
iological signals of respiration and cardiac pulsation completely,
we are still able to detect every physiological IC (as shown in the
second panel from the top in Figure 4) as seen with the unfil-
tered data (top panel). This demonstrates that LFOs are not 100%
neuronal signals; on the contrary, they are likely associated with
more than one physiological process that affects many regions of
the brain (i.e., cerebral vasculature, ventricles, and white matter).
Furthermore, in the ICs calculated from respiration and cardiac
pulsation, certain spatial patterns associated with physiological
ICs, including the cerebral vasculature (veins) and white matter
patterns described above, were not observed. This continued to
be the case even after we lowered the dimensionality in the ICA
to prevent the splitting effects. This finding shows that pLFOs in
BOLD are mostly – perhaps even solely – associated with the spa-
tial patterns that result from the cerebral blood circulation. The
present finding is consistent with our previous studies on BOLD
pLFOs. For example, we found that the BOLD pLFOs, together
with their temporal shifts, can be used to track cerebral blood flow

in the brain (Tong and Frederick, 2010). Figure 4 also shows that
respiration contributed to some brain regions, such as ventricles,
while cardiac pulsation contributed to signal fluctuations in the
arteries, as expected. However, the ICs from pLFOs matched the
result of unfiltered data the best, confirming that pLFOs alone
contribute significantly to some physiological noise components
in the BOLD. If this is the case, the immediate question is what
we gain by filtering out the respiration and cardiac signals (which
is possible when using the multiband sequence). To explore this,
we visually inspected and categorized all the ICs from unfiltered
and filtered (LFOs) data. The result is shown in Figure 6, in which
we can see the total number of physiological ICs identified from
these two data sets. For instance, three ICs associated with the ven-
tricular system were identified in the ICA results of the unfiltered
data, whereas only one was identified from the result of the fil-
tered data. There are five ICs associated with cerebral vasculature
from the unfiltered data compared to two from the filtered data.
In summary, out of 35 ICs, 15 were identified as physiological ICs
from unfiltered data and nine from the filtered data. This indi-
cates that by removing respiration and cardiac pulsation signals
(even with a simple band-pass filter), less physiological-related
ICs were produced, thus possibly increasing the sensitivity toward
detecting the more subtle neuronal-based resting state networks
(RSNs). Recently, there have been studies on spectral characteris-
tics of the RSNs using ultrafast fMRI in which the spectral range of
the RSNs were found to be much wider than is commonly believed
(Niazy et al., 2011; Boubela et al., 2013; Boyacioglu et al., 2013).
Moreover, ultrafast fMRI allowed people to use temporal ICA to
identify physiological ICs and RSNs (Smith et al., 2012; Boubela
et al., 2013).

Figure 5 shows the three prominent motion-related ICs
selected from unfiltered data (in the top panel) and their corre-
sponding ICs identified from the data of pLFOs, respiration, and
cardiac pulsation. In contrast to what was shown in Figure 4, these
motion ICs defined by circular patterns can be found indepen-
dently in every data set. One unlikely possibility is that these dif-
ferent physiological processes caused the same motion. As we know
from Figure 3, respiration causes visible global motion, whereas
cardiac pulsation and pLFOs do not (they may cause regional
motions). The other explanation is that any motion (regardless of
its causes) recorded by BOLD would affect the entire spectrum,
i.e., the spectrum of impulsive motions (spikes) is broad. This is
why, from these three spectra, the same motion artifact ICs were
detected individually. To validate this hypothesis, we applied ICA
on a data set with yet another spectral band (0.4–0.8 Hz). The

FIGURE 6 |Total number of physiological ICs identified from unfiltered vs. filtered data (0.01–0.2 Hz) is categorized and listed accordingly.
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same motion artifacts, as shown in Figure 5, were found in the
new ICA result.

CONCLUSION
Fast fMRI acquisition greatly expands the spectral range of the
BOLD fMRI (up to 1.25 Hz in this study). It has allowed us to
explore the impacts of physiological processes on the BOLD signal.
We have been able to map the spatial distributions of these different
physiological processes, demonstrating that the cardiac pulsation
is seen most prominently in the base of the brain where arteries
are concentrated, while respiration affects prefrontal and occip-
ital lobes through breathing-related motion. Most importantly,
we found that the effects of pLFOs dominated many physio-
logical patterns found in ICA, which suggests that, contrary to
the popular belief that aliased cardiac and respiration signals are
the main physiological noise in BOLD fMRI, pLFOs may be the
most influential physiological signals. Understanding and charac-
terizing these pLFOs are important in denoising and accurately
modeling BOLD signals.
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Figure S1 | Power spectra of representative BOLD signals from the rest
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Three frequency bands corresponding to LFOs (in black), respiration (blue), and
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