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Abstract

Background: Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent
mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression
protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat
shock. We hypothesized that the BAG3 protein is regulated by proteolysis.

Methodology/Principal Findings: Staurosporine (STS) was used as a tool to test for caspase involvement in BAG3
degradation. MDA435 and HeLa human cancer cell lines exposed to STS underwent apoptosis with a concomitant time and
dose-dependent loss of BAG3, suggesting the survival role of BAG3 was subject to STS regulation. zVAD-fmk or caspase 3
and 9 inhibitors provided a strong but incomplete protection of both cells and BAG3 protein. Two putative caspase
cleavage sites were tested: KEVD (BAG3E345A/D347A) within the proline-rich center of BAG3 (PXXP) and the C-terminal LEAD
site (BAG3E516A/D518A). PXXP deletion mutant and BAG3E345A/D347A, or BAG3E516A/D518A respectively slowed or stalled STS-
mediated BAG3 loss. BAG3, ubiquitinated under basal growth conditions, underwent augmented ubiquitination upon STS
treatment, while there was no increase in ubiquitination of the BAG3E516A/D518A caspase-resistant mutant. Caspase and
proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3
degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with
cytoprotection.

Conclusions/Significance: BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS
injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual
regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis.
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Introduction

Apoptosis following unrecoverable stress results from the

activation of proteolytic pathways, which orchestrate the loss of

survival proteins. Survival proteins can be degraded directly by

activated caspases responding to intrinsic or extrinsic stimuli [1,2]

or targeted by the ubiquitin proteasome pathway [3]. Interruption

of either or both proteolytic pathways can revert the apoptotic

process and result in cytoprotection.

BAG3 (NM_004281) was reported initially as a protein-

refolding cochaperone of the bcl2 binding protein BAG family

[4,5] and as upregulated in response to persistent stress of cellular

calcium balance dysregulation [6]. It has been shown to diminish

stress-induced apoptosis [5,7]. BAG family of proteins contains a

conserved BAG domain that binds the ATPase of heat shock

protein (Hsp70) [4,8,9]. At least two members of the mammalian

BAG family are also involved in cytoprotection, BAG1 [8] and

BAG4 [10,11]. This functional redundancy suggests selective

targets for the different family members, allowing the family broad

potential to protect against varied stresses in different cellular

contexts.

We have demonstrated that BAG3, through its interaction with

Hsp70, overcame geldanamycin-driven proteasomal protein

degradation [7]. Overexpression of BAG3 prevented or reduced

destruction of polyubiquitinated Hsp90/hsp70 client proteins such

as cyclin D1, AKT, glycogen synthase kinase 3b, and p70S6 kinase,

and facilitated cell survival [7]. The protective effect of BAG3 was

also observed when cells were exposed to heat shock. We also

analyzed whether BAG3 provided cytoprotection under intrinsic

apoptotic pathway stimulation by staurosporine (STS). By

comparison with those other cellular stresses, limited protection

was observed with BAG3 overexpression, leading to our current

hypothesis that BAG3 is itself lost under selected apoptotic stimuli.

We now report that BAG3 falls victim to STS-induced

apoptosis. Loss of BAG3 through RNA silencing augmented

STS-mediated apoptosis, whereas, preventing BAG3 proteotoxi-

city was associated with cytoprotection. We demonstrate a

requirement for sequential caspase cleavage followed by ubiqui-
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tination and proteasomal degradation under STS stress. Interrup-

tion of both pathways is required to restore BAG3 and overcome

the apoptotic drive. The need for this dual and sequential

regulation of BAG3 suggests a selective survival role of BAG3 in

the cancer cells.

Results

STS treatment results in degradation of BAG proteins
STS caused dose- and time-dependent apoptosis in MDA435

human breast cancer cells (Figure 1A). Concomitant with nuclear

condensation and cell death due to STS was progressive activation

of caspases 3, 7, 8, 9, and 10 (Figure 1B). Caspases 3, 9 and 7 were

cleaved earlier and at lower STS doses than caspases 8 or 10,

confirming the expected predominant activation of the intrinsic

apoptotic pathway. A similar effect was observed in HeLa cells.

Apoptosis, demonstrated by the presence of apoptotic bodies,

occurred earlier, at 4 and 8 hours (Figure 1C, D and Figure S2B,

DMSO control). Cells lacked normal nuclear morphology at later

time points, consistent with progressive injury (Fig 1C, arrow

head). In BAG3 overexpressing HeLa and MDA435 cells, BAG3

colocalized with active mitochondria early in STS-mediated injury

(Figure S1, arrows). Higher concentrations of, or longer exposure

to, STS resulted in a generalized uptake of Mito-Tracker into the

nucleus, indicating the lack of mitochondrial membrane integrity

seen in apoptosis (Figure S1). The dose and time course of

activation of caspases 3, 9 and 7 (Figure 1B) paralleled the

progressive loss of BAG3 (Figure 1E). Family members BAGs 4,

and 6 were similarly lost with STS treatment (Figure 1E, F) as

were the commonly used ‘housekeeping proteins’ GAPDH and b-

tubulin (Figure S5), while the four isotypes of BAG1, p50BAG1L,
p46BAG1M, p34BAG1, and p29BAG1S, were unaffected, arguing

against a global toxic effect of STS. Both endogenous and forced

BAG3 were susceptible to this proteotoxicity. HeLa cells stably

expressing EGFP-BAG3 displayed time-dependent loss of the

fusion protein, as well as endogenous BAG3 (Figure 1G). The

parallel between caspase activation and loss of BAGs 3, 4, and 6

suggested that intrinsic pathway caspases might be involved in

BAG3 degradation.

Silencing BAG3 sensitizes cells to STS-induced apoptosis
Cells with greater expression of BAG3 were less likely to

succumb to STS apoptosis. BAG3 signal was lost first in cells that

had nuclear evidence of apoptosis (Figure 2A arrows) yet remained

detectable in their morphologically normal neighbors (Figure 2A

arrow head). This suggested that loss of BAG3 might be required

for STS-mediated cell death. The green BAG3 cytoplasmic signal

disappeared at higher STS dose or with longer treatment time in

MDA435 cells with forced expression of BAG3 than in wild type

HeLa cells with less endogenous BAG3. Direct fluorescence

comparison between apoptototic and non-apoptotic cells is

difficult due to their different cytosolic volume, thus we followed

on this observation by investigating whether silencing BAG3 had

an effect on apoptosis. Silencing BAG3 (Fig 2B, top panel and

Figure S4) sensitized cells to STS-induced apoptosis, as demon-

strated by progressive PARP cleavage under increasing STS

exposure and silenced BAG3 (Figure 2B, bottom panel and

quantitation in Fig 2C). We observed a consistent but transient

induction of BAG3 around 4 hours into STS exposure (Figure S2),

suggesting an attempt by the cells to resist injury. However, these

levels, even with the brief induction, are not sufficient to overcome

cellular commitment to apoptosis. These data indicate loss of

BAG3 is necessary but may not be sufficient for STS induced

apoptosis.

BAG3 is a caspase substrate
BAGs 3, 4, and 6, all susceptible to STS-mediated degradation,

have structural similarities not present in BAG1. Conversely, the

STS-resistant BAG1 lacks domains present in BAGs 3, 4 and 6,

such as the proline rich region PXXP. We examined whether

deletion of the PXXP domain in BAG3 would affect STS-induced

loss of BAG3 protein. Stable single cell MDA435 clones

overexpressing full length (FL) or deleted (d)PXXP BAG3 [7,12]

were exposed to STS. Progressive degradation of BAG3 was

observed beginning as early as 4 hr in FL cells (Figure 3A). In

contrast, loss of dPXXP-BAG3 was delayed beyond 12 hr. We

obtained similar results in HeLa cells with forced expression of

EGFP-dPXXP-BAG3 (Figure 3B). This indicates that the effect is

neither cell line nor construct-specific, and suggests that the PXXP

domain may contain a target site for BAG3 degradation.

The loss of BAG3 upon activation of the intrinsic apoptosis

pathway infers BAG3 may be a target of caspases 3, 9 or 7. In silico

analysis (ExPASy; http://us.expasy.org/tools/peptidecutter/) did

not identify canonical caspase cleavage sites in BAG3. However,

two non-canonical putative caspase-cleavage sites were suggested

by sequence inspection, 344KEVD in the PXXP domain and the

C-terminal 515LEAD (Figure 3C). KEVD is homologous to the

caspase 3 DEVD substrate recognition and cleavage site, and

LEAD to the caspase 9 site LEHD [13]. These sites are present in

BAG6 (998DEQD [14]) and BAG4 (421LELD), respectively, but

not in BAG1. The BAG3 KEVD/LEAD sites are conserved in

upper mammals (Figure 3C, table inset). The importance of these

sites is suggested by the conservation of potential caspase 3

(268SEVD) and caspase 9 (508LKLD) sites in the Drosophila BAG

ortholog EVIL/starvin (svn, CG32130, FBgn00867) [15].

Alanine mutagenesis was used to neutralize the putative caspase

sites, and stable bulk clones of BAG3KAVA, BAG3LAAA, and wild

type (B3) expressing MDA435 cells were generated. STS

treatment resulted in loss of BAG3 in the B3 cells, whereas loss

was limited in BAG3KAVA cells and minimal in BAG3LAAA

(Figure 3D). These data argue that 344KEVD and 515LEAD are

functional caspase recognition and cleavage sites in BAG3. We

further examined caspase involvement in BAG3 proteolysis using

selective and pan-caspase inhibition. The broad caspase inhibitor

Z-Val-Ala-Asp(OMe) fluoromethyl ketone (zVAD) abrogated

caspase activation and loss of BAG3 in the presence of STS

(Figure 3E). Selective inhibition of caspases 3, 10, or both partially

prevented BAG3 proteolysis consistent with caspase3 involvement.

Notice that the antibody against caspase 3 is selective to the

cleaved forms and detects two active cleaved species with apparent

mobility of 19 and 14 kDa; the antibody to caspase 10 detects only

the uncleaved, total caspase 10, which disappears upon cleavage

stimulated by STS treatment. Caspase 10 activation is only partly

protected by individual caspase inhibitors and maximally protect-

ed by zVAD. Taken together, these results indicate a caspase-

dependent cleavage of BAG3 but suggest that additional steps may

be needed for complete BAG3 loss.

BAG3 is ubiquitinated and degraded by the proteasome
Proteasomal degradation is a major protein regulatory mech-

anism [16,17]. Chemical inhibitors of the 20S subunit of the

proteasome, such as lactacystin and MG-132, prevent degradation

of polyubiquitinated proteins [18]. Neither mutation of the KEVD

caspase-recognition site, nor pharmacological inhibition of select-

ed caspases afforded complete protection of BAG3 in the face of

intrinsic apoptosis pathway activation, suggesting complementary

proteolytic mechanisms. Addition of MG-132 to STS resulted in

near complete BAG3 retention (Figure 4A). MG-132 pretreatment

in the absence of STS caused accumulation of poly-ubiquitinated
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BAG3, indicating that some BAG3 ubiquitination occurs basally

(Figure 4B, lane 1). Augmented ubiquitination of BAG3 was

demonstrated with the combination of STS and MG-132 arguing

that BAG3 is targeted to the proteasome under STS stress

(Figure 4B, lane 4 v. lane 1). We next investigated the

complementarity of pharmacological inhibition of both caspases

and the proteasome on BAG3 rescue. Some protection of BAG3

was seen with proteasome inhibition alone (Figure 4C), while there

was no BAG3 degradation when zVAD and MG-132 were used in

combination. A plot of these data demonstrates progressive loss of

BAG3 in the presence of MG-132. This is attenuated with the

combination of zVAD and MG-132. These results were

Figure 1. STS induced apoptosis and degradation of BAG3. A. STS induces cellular injury in a dose and time-dependent fashion. DAPI-stained
STS-treated MDA435 cells show chromatin condensation consistent with apoptotic injury. Apoptotic bodies were observed with 2 and 4 mM STS at
4 hr (arrows) and there was a net loss of cells at 16 hrs. B. STS-mediated degradation of BAG3 occurs concomitant to activation of caspases 3, 7 and 9.
Cleavage of caspases 3 and 9 were observed as early as 4 hrs into STS treatment. In comparison activation of caspases 8 and 10 was delayed,
occurring after BAG protein loss was initiated. C, D. STS induces apoptosis in HeLa cells. Apoptotic bodies were observed in DAPI stained cells. Data
points are the mean and SEM of five independent fields (n = 2). E, F. BAGs 3, 4, and 6 are lost progressively with STS treatment. Floating and adherent
MDA435 cells were collected, lysed, and subjected to immunoblot. BAGs 3 and 4 (E), and 6 (F) were lost with STS exposures of 3–16 hrs. No reduction
in the p50, p46, p34, or p29 BAG1 isoforms was observed (E). G. STS-mediated BAG3 degradation is neither cell line nor construct-specific. EGFP-BAG3
or EGFP-C1 empty vector were stably expressed in HeLa cells. Cells were exposed to 2 mM STS and both endogenous BAG3 and EGFP-BAG3 fusion
proteins were lost over time, as early as 6 h.
doi:10.1371/journal.pone.0005136.g001
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recapitulated when lactacystin was used as a proteasomal

inhibitor. Disappearance of BAG3 signal caused by STS was

prevented by pre-treatment with lactacystin (Figure S3A). The

combination zVAD and lactacystin prevented loss of BAG3 in FL

and dPXXP cells, while minimally affecting the already resistant

dPXXP form (Figure S3B). Taken together these data suggest that

both caspase cleavage and proteasomal degradation are required

for the degradation of BAG3 in STS-driven apoptosis and that the

role of caspase cleavage may be primary.

Noncleavable BAG3 is protected from STS-induced
ubiquitination and degradation

Our data implicate both caspase cleavage and ubiquitination in

the regulation of BAG3 quantity. The suggestion that caspase

cleavage has a primary role in BAG3 degradation led us to

propose that the process is sequential, with one mechanism as a

prerequisite for the other. We thus tested whether caspase site

mutants, BAG3KAVA and BAG3LAAA, are prone to ubiquitination.

BAG3LAAA was minimally ubiquitinated. Ubiquitination changed

little over the time course of STS exposure, remaining commen-

surable with that seen during basal turnover of BAG3 (Figure 5).

Progressive ubiquitination of BAG3KAVA was observed, maximal

at 20 hr, as more of the BAG3 substrate became available due to

impaired caspase cleavage. These data demonstrate that caspase

cleavage of BAG3 is necessary for stimulated ubiquitination and

degradation.

Noncleavable BAG3 protects cells from STS-induced
apoptosis

Our data showing silencing of BAG3 increased susceptibility to

STS-mediated apoptosis led us to ask if the caspase-resistant

mutants conferred cytoprotection. Apoptotic bodies in DAPI-

stained STS-treated cells were counted in wild type MDA435 and

MDA_FL overexpressors. A progressive reduction in apoptotic

bodies was observed upon STS treatment with added zVAD, or

zVAD plus MG-132, supporting a role for the loss of BAG3

augmenting STS cell injury (Figure 6A,B). Similarly, dPXXP cells

lacking the KEVD sequence underwent significantly less apoptosis

than wild type cells or FL-BAG3 (Figure 6C). This decrease in

apoptosis is also demonstrated by delayed and reduced PARP

cleavage and total PARP loss under the same conditions

(Figure 6D). PARP cleavage was reduced and delayed in

BAG3KAVA and total PARP was only minimally reduced in

BAG3LAAA cells, consistent with cellular protection. The interme-

diate resistance to STS apoptosis of BAG3KAVA is also

demonstrated by reduced caspase 3 activation, which decreased

progressively from B3 to BAG3KAVA to BAG3LAAA cells

(Figure 6F). Collectively these results indicate dose-dependent

cytoprotection from apoptosis is afforded by BAG3. When over

expressed BAG3 delays, but does not abrogate, cellular commit-

ment to apoptosis. Prevention of BAG3 degradation through

blockade of caspase cleavage and subsequent ubiquitination results

in cellular protection from STS-mediated apoptosis.

Discussion

Survival is controlled by the balance of information within the

cell in response to gene expression, protein translation, and protein

and message stability as a function of the cellular microenviron-

ment. Cellular and environmental stresses can lead to apoptosis.

The two most common mechanisms for protein loss in apoptosis

are direct caspase cleavage, and proteasomal degradation of

ubiquitinated proteins [3,19,20]. The prosurvival protein, BAG3,

protects cells from apoptosis caused by heat [5,7]. We hypothe-

sized that decreased cellular survival in response to STS was due to

destruction of BAG3 protein through STS-stimulated caspase

activation. This was confirmed through demonstration that BAG3

was lost in response to STS, in a time- and dose-dependent

fashion, temporally correlated with activation of caspases 3, 9, and

7. The involvement of caspases in BAG3 degradation was

established by protection of BAG3 in the presence of the pan-

caspase inhibitor zVAD and by mutagenesis of putative caspase

recognition sites. However, BAG3 was not completely protected

by individual caspase inhibitors or by mutation of the caspase 3

site KEVD (BAG3KAVA). This led to the conclusion that other

proteolytic events were required. Inclusion of proteasome

inhibitors provided partial protection of BAG3 protein that was

complementary with zVAD. BAG3 was polyubiquitinated in

MDA435 cells in the absence of stress, consistent with proteasome

involvement in basal BAG3 turnover; progressive ubiquitination

and subsequent BAG3 loss was observed with STS. Little or no

ubiquitination of caspase-resistant BAG3LAAA was observed, while

increased ubiquitination was seen in BAG3KAVA as expected

because of its partial protection from caspase cleavage and loss.

Since absence of BAG3 cleavage precluded ubiquitination, these

data argue a requirement for sequential caspase cleavage followed

by ubiquitination. Protection of BAG3 translated into cellular

protection against STS-induced apoptosis. In forced BAG3

expression experiments, cytoprotection correlated with the

molecular construct most resistant to degradation. In contrast,

silencing BAG3 augmented STS-mediated apoptosis. Together

these data confirm that BAG3 functions as a pro-survival protein,

the presence of which is regulated by caspase cleavage followed by

ubiqutination and proteasomal degradation. It further suggests

that impaired BAG3 degradation is central in the protection of

cancer cells against intrinsic apoptotic pathway stress.

Many important signaling proteins are controlled by poly-

ubiquitination, including p53 [21], p21cip1[22], c-Jun [23], and c-

fos [24]. These proteins are targeted for polyubiquitination and

chaperoned to the proteasome by heat shock proteins [25,26] for

subsequent de-ubiqutination and cleavage [3,7]. Other proteins,

such as APAF-1 [27] or MDM2 [28], are regulated by caspase

cleavage. Relatively few proteins, such as the small heat shock co-

chaperone p23 [17], are regulated by both caspases and the

proteasome. Many other important survival proteins are regulated

by either caspases or the proteasome (but not both) in different

cellular contexts. Examples among this group are AKT [1,7], Bcl2

and BclXL [2]. However, it remains unclear whether regulation of

Figure 2. Loss or silencing of BAG3 sensitizes cells to apoptosis. A. Cells with intact nuclear morphology retain BAG3 signal. In HeLa with
basal expression of BAG3, the appearance of apoptotic bodies (arrows) correlates with the loss of BAG3 green signal (arrowhead) in individual cells. In
MDA_FL with forced expression of BAG3 the same phenomenon occurs although at higher STS dose and exposure time. B. PARP cleavage is
augmented with BAG3 silencing and progressive STS dose. Adhered and floating MDA435 cells were stained with FITC-conjugated anti-cleaved PARP
and anti BAG3 antibodies. Top graph shows BAG3 silencing by the leftward shift of the BAG3 positive population (dark blue line). Bottom graph
shows the PARP+ population with BAG3 silencing and 18 h STS exposure (si 18S, dark blue line), compared with 18 h STS exposure but no silencing
(NS 18STS, light blue line) along with controls (NS DMSO, si DMSO). C. Quantitation of percent apoptosis after 3.5 or 18 h of STS exposure from the
cleaved PARP population (median FL-1) in response to BAG3 silencing combined with STS exposure (3.5 h and 18 h); data represent mean and SEM
(n = 3).
doi:10.1371/journal.pone.0005136.g002
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Figure 3. BAG3 is a direct caspase substrate. A, B. Deletion of the BAG3 PXXP domain delays loss of BAG3. Clonal FL-BAG3 and (d)PXXP-BAG3
MDA435 cells were treated with 2 mM STS as indicated. Cells were lysed and subjected to immunoanalysis with anti-BAG3. Delayed loss of dPXXP-
BAG3, which contains putative caspase recognition sequence KEVD, is demonstrated compared with wild type protein. The delayed loss of dPXXP-
BAG3 is confirmed in HeLa cells engineered to stably express EGFP-dPXXP-BAG3 by anti-EGFP (B). C. Location and alignment of putative caspase
cleavage sites in BAGs 3, 4 and 6. KEVD (caspase 3 recognition site in the PXXP domain; arrow) and LEAD (caspase 9 recognition site; arrow head).
Similar sites, represented to approximate scale, are found in BAGs 4 (421LELD) and 6 (998DEQD) [14,37], but not in BAG1. These putative caspase
cleavage sites are conserved in mammalian BAG proteins and in a Drosophila homolog (inset table). D. Mutation of either putative caspase cleavage
site reduced loss of BAG3. Alanine mutagenesis of 344KEVD or 515LEAD was followed by stable transfection and expression. BAG3 was markedly
decreased in B3 cells in response to 2 mM STS at the indicated times. BAG3KAVA cells retained much of their BAG3 protein up to 18 hr STS exposure
and little or no BAG3 was lost in BAG3LAAA cells. E. Inhibition of caspases resulted in incomplete loss of BAG3. One hour pretreatment with 85 mM
zVAD, followed by 2 mM STS up to 20 h, protected BAG3 as did the combination of caspase3 and 10 inhibitors; specific inhibitors concentrations were
40 mM for caspases 3 and 9, and 50 mM for caspase 10. The antibody against cleaved caspase 3 is selective to the cleaved forms and detects two
active cleaved species with apparent mobility of 19 and 14 kDa. This latter species is described a further cleavage product. The antibody to caspase
10 detects only the uncleaved, total caspase 10. Arrows indicate target protein bands.
doi:10.1371/journal.pone.0005136.g003
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these proteins requires involvement of both the caspase and

proteasome pathways as is shown herein for regulation of BAG3.

The evidence for caspase cleavage of BAG3 is strong, even in

the absence of canonical caspase binding and cleavage sites. Two

putative caspase recognition and cleavage sites, each containing

the ExD sequence [13,29–31], were identified in silico and then

confirmed functionally in human BAG3. These sites were

relatively well conserved in mammalian BAG3 and in BAGs 4

and 6, the latter having been reported to be functional [14]. The

caspase 3-like motif K/RexD and the caspase 9-like LexD are

conserved in BAG3 in higher mammals. The caspase 3 motif is

also present in the Drosophila Evil/Starvin [15] as SEVD,

although the caspase 9-like peptide LKLD, more important to

hBAG3 stability per our studies, may not be functional.

Drosophila Starvin was initially identified by Coulson and

colleagues in a search for binding proteins to Polycomblike protein

[15] but when further analyzed was found to have similarity to

human BAGs 3, 4 and 5. We had reported the same Drosophila

protein, identified as Evil (Frueauf et al. (2005) Cloning of evil:

Characterization of Drosophila melanogaster BAG-family homo-

logues. AACR Meeting Abstracts 2005: 825-a), as the Drosophila

BAG3/4 homolog and demonstrated conservation of Hsp70

binding. Further, we have shown that when expressed ectopically

in human cancer cells, Evil/Starvin is also a stress response

survival protein (Frueauf, Virador, Kohn, manuscript in prepara-

tion). Starvin functions as a stress response and survival protein in

flies with a phenotype that has similarity to two different BAG3

knockout mice [32,33]. These findings confirm the conserved

importance of BAG3/Evil/Starvin protection for selected cell

survival.

We and others showed that BAG3 overexpression provided

cytoprotection from a variety of stresses. Overexpression of BAG3,

but not BAG domain deletion mutants, protected from heat shock

[7]. BAG3 overexpression, alone or in combination with ectopic

Figure 4. Sequential inhibition of caspases and proteasome provides collaborative protection of BAG3. A. Proteasome inhibition
provides dose-dependent partial protection of BAG3. FL-BAG3 cells were pretreated with 20 mM MG-132 for 1 or 4 hrs prior to exposure to 2 mM STS.
Inhibition of proteasomal degradation by pretreatment with MG-132 prior to STS exposure reduced BAG3 degradation. B. BAG3 is ubiquitinated in
response to STS treatment. FL-BAG3 cells were treated with 2 mM STS alone or following 4 hr preincubation with 20 mM MG-132. Lysates were
immunoprecipitated with anti-BAG3 and the immunoblots were probed for ubiquitin. BAG3 was ubiquitinated and degraded in the absence of
proteasome inhibition. C. STS-induced loss of BAG3 is minimized by the combination of caspase and proteasomal inhibition. FL-BAG3 cells were
preincubated with 0.05% DMSO vehicle or 20 mM MG-132 for 4 hours with or without 1 additional hour of zVAD preincubation (85 mM). Treatments
were followed by a total STS exposure of up to 20 hrs. A progressive retention of BAG3 was seen with inclusion of each inhibitor. Relative levels of
BAG3, determined using ImageJTM, are indicated below the respective blots and plotted as percent remaining BAG3 with increasing STS time.
doi:10.1371/journal.pone.0005136.g004
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expression of bcl2, overcame bax-mediated apoptosis [5]. The

bax/bcl2 apoptotic machinery is linked to the intrinsic apoptotic

pathway and the overexpression of BAG3 in those experiments

may have been sufficient to overcome that degree of caspase

activation. This is similar to our findings that overexpression of

BAG3 yields some reduction in apoptotic bodies in response to

STS, even more prominently in the practically protected dPXXP

BAG3 (Figure 6). Loss of BAG3 by silencing also augmented cell

death in response to STS. This same increased apoptosis was

reported when BAG3 was silenced in acute and chronic

lymphocytic leukemia cells [34,35]. Thus, protection of BAG3

from proteolysis has a selective anti-apoptotic outcome, interacting

with chaperone and non-chaperone pro-survival pathways in

stressed cancer cells.

Materials and Methods

Cell culture and transfectants
The MDA435 human breast cancer cell line and stable

transfectant single cell clones containing full length BAG3 (FL)

and PXXP domain-deleted BAG3 (d)PXXP-BAG3 have been

reported [7,12]. These constructs were subcloned into pEGFP-C1

(BD Biosciences, Palo Alto, CA) for transfection into HeLa

cells. EGFP transfectants were sorted by FACS to enrich for

GFP-positive cells. Site-directed mutagenesis was used to

generate BAG3E345A/D347A (BAG3KAVA) and BAG3E516A/D518A

(BAG3LAAA; Bio S&T Inc, Montreal, CAN). Unless otherwise

indicated all transfectants were selected in bulk. Cells were

cultured in maintenance concentrations of G418 until one passage

prior to experiments. All experiments were performed in triplicate.

Cell lysates, immunoblotting and immunoprecipitation
All experiments were done with subconfluent cells. STS or

0.05% DMSO vehicle control were added for the times and

concentrations noted. Floating and attached cells were pooled for

all analyses. Cell lysis and immunoblotting were performed as

reported [7]. Iodoacetamide 10 mM was added to the modified

RIPA lysis buffer for studies of ubiquitination [7]. Urea 4 M was

added to the sample buffer for PARP immunoanalysis and samples

were heated at 95uC for 7 min prior to loading. Anti-ubiquitin

(Ub) and -PARP antibodies were from StressGen (Victoria BC,

Canada); antibodies against caspase 10, cleaved (cl) caspase-3

(Asp175), cl caspase-7 (Asp198), cl caspase-8 (Asp384), and cl

caspase-9 (Asp330) were from Cell Signaling (Beverly, MA).

Antibodies to GAPDH and b-tubulin were from Abcam (Cam-

bridge, MA). (Antibodies to BAG1 and BAG4 were from Santa

Cruz Biotechnology, Inc (Santa Cruz, CA); anti-peptide BAG3

and BAG6 antibodies have been reported [7,36]. Specific caspase

inhibitors were from Calbiochem (San Diego, CA), all other

chemicals from Sigma (St. Louis, MO).

Immunofluorescence microscopy
Cells were plated on uncoated glass coverslips and allowed to

secrete and adhere to their own extracellular matrix for 2–3 days.

After treatment, cells were fixed in 4% formaldehyde, rinsed in

PBS and blocked for 1 hr in PBS containing 3% BSA. Cells were

stained with antibodies to BAG3 (1:500 dilution) and counter-

stained with DAPI (Vector laboratories, Burlingame, CA). Where

indicated, cells were loaded with MitoTracker Red CMXRos

(Invitrogen, CA), following manufacturer’s recommendations.

Fluorescence was examined with a Zeiss LSM 510 Confocal

Microscope (Carl Zeiss Inc, Thornwood, NY, USA) using a 406
1.3 NA Plan Neofluar objective. To assess apoptosis the number of

cells containing apoptotic bodies was expressed as a percent of the

total cells visualized.

Flow cytometry
Intracellular protein expression was assessed according to

manufacturer’s protocol (Cell Signaling, Inc). Permeabilized cells

were incubated with antibodies against cl caspase-3 1:200 or

BAG3 (1:500 dilution) followed by Alexa 488-conjugated second-

ary (1:200 dilution). The same protocol was used for cl-PARP with

a FITC mouse anti cl PARP (Asp214) added according to

manufacturers instructions (BD-Pharmingen, San Jose, CA).

Analysis was carried out on a FACS Calibur flow cytometer (BD

Biosciences, San Jose, CA). Data were analyzed using FlowJo

(TreeStar Inc, Palo Alto, CA).

Gene silencing
BAG3 and control (non-silencing) siRNA were purchased from

Qiagen, Inc. (Valencia, CA). siBAG3 40 nM or molar equivalent

non-silencing siRNA were introduced to cells in siLentFectTM

lipid reagent (Bio-Rad, Hercules, CA) as described [12]. Reagents

were added to the cells after up to 96-hour siRNA incubation and

maintained until collection.

Statistical analysis
Numerical values are expressed as mean6SEM of replicate

experiments unless otherwise indicated. Comparisons between two

Figure 5. BAG3 degradation requires sequential caspase
cleavage followed by ubiquitination. Mutation of the LEAD
caspase cleavage site precludes ubiquitination and loss. B3, BAG3KAVA

and BAG3LAAA cells were exposed to 2 mM STS as indicated.
Iodoacetamide-treated lysates were immunoprecipitated with anti-
BAG3 and immunoblots probed for ubiquitin. The partial protection of
BAG3KAVA results in a greater quantity of polyubiquitinated BAG3.
Minimal ubiquitination of BAG3LAAA is demonstrated, consistent with a
requirement for cleavage prior to ubiquitination. Quantity of poly-
ubiquitinated BAG3 protein was estimated by densitometry.
doi:10.1371/journal.pone.0005136.g005
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Figure 6. Absence of caspase cleavage of BAG3 confers cellular protection against STS-mediated apoptosis. A, B. STS-induced
apoptosis was reduced with caspase and proteasome inhibition. Cells were pretreated with MG-132 for 4 hrs and treated with 2 mM STS and 85 mM
zVAD-fmk for an additional 8 hrs. Wild type MDA435 (A) and FL-BAG3 overexpressors were fixed and stained with DAPI and apoptotic bodies scored
from 3–5 independent fields; data represent mean and SEM (n = 2). C. Apoptosis is delayed in dPXXP-BAG3 lacking 344KEVD. At 8 hours of STS
exposure, reduction in apoptotic bodies is seen in FL-BAG3 overexpressing cells and in dPXXP-BAG3 cells; 11–14 random fields were scored, data
represent mean and SEM. D. PARP cleavage and loss of total PARP is reduced in dPXXP-BAG3 cells. STS exposure resulted in reduced PARP cleavage in
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groups were made by unpaired Student’s t-test using GraphPad

Prism software (San Diego, CA). Two-sided p values are reported.

Supporting Information

Figure S1 A fraction of BAG3 co-localizes with mitochondria in

early STS-mediated stress. BAG3 stained cells (green) loaded with

Mito Tracker (red) and counterstained with DAPI (blue). Arrows

show colocalization in yellow. At higher STS doses, there is loss of

the BAG3 green signal and a generalized uptake of Mito Tracker

in cell nuclei (arrow head) indicating loss of both nuclear and

mitochondrial membrane integrity.

Found at: doi:10.1371/journal.pone.0005136.s001 (5.22 MB TIF)

Figure S2 BAG3 is transiently induced in early STS-mediated

stress. A. Flow cytometry of MDA435 cells stained for BAG3

(secondary Alexa 666 anti Rabbit) and subject to increasing STS

doses. B. MDA435 cells stained for BAG3 after 4 h STS exposure

(secondary Alexa 594 anti Rabbit).

Found at: doi:10.1371/journal.pone.0005136.s002 (3.57 MB TIF)

Figure S3 Inhibition of caspases and proteasome provides

collaborative protection of BAG3. A. Proteasome inhibition with

lactacystyin (1 mM, 4 hr preincubation) in MDA-435 cells

overexpressing BAG3 or BAG3-dPXXP provides partial protec-

tion of BAG3. B. Lactacystin in combination with zVAD provides

near full protection of BAG3, similar to MG-132.

Found at: doi:10.1371/journal.pone.0005136.s003 (0.29 MB TIF)

Figure S4 Disappearance of the BAG3 signal by siRNA.

MDA435-Neo cells were exposed to 200 nM BAG3 siRNA or

scramble control for 72 hours followed by addition of vehicle

control or 2mM STS for additional 6 hrs. Immunoblot demon-

strates silencing of BAG3.

Found at: doi:10.1371/journal.pone.0005136.s004 (0.17 MB TIF)

Figure S5 Commonly used ‘housekeeping proteins’ are degrad-

ed by STS in HeLa and MDA 435 cells. A. HeLa cells

overexpressing BAG3. BAG3 signal disappears with increasing

time of exposure to 2 mM STS. GAPDH (re-blot) likewise

disappears with STS exposure. B. MDA435 cells. BAG3 signal

disappears with STS and is protected by addition of MG-132 or

MG-132 and zVAD in combination. The signal for b-tubulin (re-

blot) diminishes with STS exposure.

Found at: doi:10.1371/journal.pone.0005136.s005 (0.39 MB TIF)
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