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Abstract: Staphylococcus xylosus forms biofilm embedded in an extracellular polymeric matrix. As ex-
tracellular DNA (eDNA) resulting from cell lysis has been found in several staphylococcal biofilms,
we investigated S. xylosus biofilm in vitro by a microscopic approach and identified the mechanisms
involved in cell lysis by a transcriptomic approach. Confocal laser scanning microscopy (CLSM)
analyses of the biofilms, together with DNA staining and DNase treatment, revealed that eDNA
constituted an important component of the matrix. This eDNA resulted from cell lysis by two
mechanisms, overexpression of phage-related genes and of cidABC encoding a holin protein that is
an effector of murein hydrolase activity. This lysis might furnish nutrients for the remaining cells
as highlighted by genes overexpressed in nucleotide salvage, in amino sugar catabolism and in
inorganic ion transports. Several genes involved in DNA/RNA repair and genes encoding proteases
and chaperones involved in protein turnover were up-regulated. Furthermore, S. xylosus perceived
osmotic and oxidative stresses and responded by up-regulating genes involved in osmoprotectant
synthesis and in detoxification. This study provides new insight into the physiology of S. xylosus
in biofilm.

Keywords: Staphylococcus xylosus; biofilm; eDNA; cell lysis; amino sugar catabolism; DNA/RNA
repair; protein turnover

1. Introduction

Staphylococcus xylosus is a commensal species of the epithelium and mucous mem-
branes of warm-blooded animals. It is frequently isolated from the skin of farm ani-
mals [1,2], hence its prevalence in foods of animal origin such as milk and milk products
and fermented meat products [3,4]. Furthermore, S. xylosus colonizes the manufacturing
environment of dry fermented sausage plants in relation to its ability to form biofilm [4,5].
Indeed, S. xylosus forms multilayered biofilm where cells are embedded in an extracellular
polymeric matrix [5], which is a common trait in bacterial biofilms [6–8]. In Staphylo-
coccus epidermidis and Staphylococcus aureus, one component of the matrix is designated
as poly-N-acetylglucosamine polysaccharide (PNAG) whose production is governed by
the ica operon [9,10]. In S. xylosus, however, exopolymer biosynthesis appears to be
ica-independent and the composition of the polymer remains unknown [5,11]. Other
surface components have been described as required for biofilm cohesion in S. aureus
and S. epidermidis, namely, teichoic acids, the accumulation associated protein (Aap), and
the biofilm-associated protein (Bap) [6,12–15]. In addition, the observation that certain
strains of S. epidermidis and S. aureus form ica-independent biofilms has shown that extra-
cellular DNA (eDNA) can serve as a natural glue connecting neighboring cells to each
other [9,16–18]. In fact, eDNA is a component of the biofilm matrix of many bacterial
species [19–21].
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eDNA released from cells could result from autolysis. In S. epidermidis and S. aureus,
eDNA in biofilm was released through the activity of the prominent murein hydrolase
Atl [22,23]. In these two species, a two-component regulatory system LytSR affects murein
hydrolase activity and autolysis [24]. LytSR regulates the expression of the lrgAB operon,
which, together with the cidABC operon, has been shown to be a regulator in the control of
cell death and lysis during biofilm development [25,26]. The cidA gene encodes a putative
holin protein that is an effector of murein hydrolase activity and cell lysis [27], while lrgA
encodes a putative antiholin that is an inhibitor of these processes [25]. Furthermore, in
S. aureus CidR enhances cidABC, lrgAB, and alsSD (encoding proteins involved in acetoin
production) expression in response to carbohydrate metabolism [28].

Other known mechanisms of eDNA release include phage-mediated cell death. Phage
release has been observed in biofilms of both Gram-negative and Gram-positive bacte-
ria [29–31]. In Pseudomonas aeruginosa, the phage Pf4 mediates the formation of small-colony
variants in biofilms [29]. Lysogenic S. aureus cells in planktonic and biofilm cultures release
phages into their surroundings; two morphologically distinct phages are observed [31].
The resulting lysis of cells in biofilm might promote the persistence of the remaining cells
by furnishing nutrients.

In S. xylosus, genes encoding the holin/antiholin system and genes encoding phage
proteins are highly overexpressed during growth in a meat model [32]. Moreover, a phage
capsid protein is overexpressed in S. xylosus cultivated in biofilm compared to planktonic
culture [11]. These results highlight that cell lysis could result in the release of DNA. Thus,
the aim of this study was first to check if eDNA is released during biofilm formation by
a microscopic approach and then to identify the mechanisms involved in cell lysis by a
transcriptomic approach.

2. Materials and Methods
2.1. Bacterial Strain and Biofilm Formation

S. xylosus strain C2a expressing cyan fluorescent (C2a-B2) was used [33]. This strain
contains the erythromycin-resistance plasmid pJEBAN2. The strain C2a-B2 was pre-
cultivated in Brain Heart Infusion (BHI, Becton, Dickinson and Company, Le Pont de Claix,
France) with 10 µg/mL erythromycin at 30 ◦C, with stirring at 170 rpm for 24 h. Bacterial
concentration was then measured by determining the optical density at 600 nm (OD600)
and appropriate dilution was prepared. The strain was then inoculated at 106 CFU/mL
in BHI in the Lab-Tek chamber slide system (1 chamber borosilicate cover glass system,
NUNC 15536, 8.6 cm2) and incubated at 30 ◦C for 9, 24 and 48 h in a humid chamber. After
incubation, the supernatant in the Lab-Tek chambers was removed, the adhered cells were
washed twice with tryptone salt and then were detached by scratching in tryptone salt.
The bacterial population of biofilm after 9, 24 and 48 h were determined by 10-fold serial
dilutions on BHI agar plates and enumerated after 24-h culture at 30 ◦C. In parallel, the
cells detached by scratching in tryptone salt were pelleted by centrifugation for 2 min at
4500× g and at 4 ◦C and the pellet was immediately frozen in liquid nitrogen and stored at
−80 ◦C before extraction of RNA. Three independent experiments were performed.

2.2. Confocal Laser Scanning Microscopy Analyses of the Biofilms

S. xylosus C2a-B2 biofilms in the Lab-Tek chamber slide system were analyzed by
confocal laser scanning microscopy (CLSM) at the three times of incubation: 9, 24 and 48 h.
To test for the presence of eDNA in the biofilm, DNase was used under two conditions.
First, after incubation at 9, 24 and 48 h and removal of the supernatants, the biofilms were
overlaid with DNase solution (100 U, Roche, Mannheim, Germany) for 15 min. Second,
DNase (25 U, Roche) was added at the same time as inoculation of the biofilm and the
incubation lasted 9, 24 and 48 h. eDNA was stained with 1 µM TOTO-3-iodide (Thermo
Fisher Scientific, Molecular probes, IllKirch-Graffenstaden, France) at all incubation times
and in all conditions (treated or not with DNase).
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After incubation of the biofilms treated or not by DNase, the supernatants in the
Lab-Tek chambers were removed and the adhered cells, after washing, were treated with
CitiFluor™ (75% AF1 + 25% AF3, UKC Chem. Lab Canterbury, UK) as previously de-
scribed [33]. The biofilms were observed with a LEICA SP5 CLSM (Leica Microsystems,
Nanterre, France, objective x63) at λex = 458 nm to observe the fluorescence of the strain
C2a-B2 and at λex = 633 nm to observe DNA stained by TOTO-3. Horizontal cross-sections
were acquired consecutively along the z-axis using a scanning step size of 1 µm, defining
the so-called stacks, to cover the whole biofilm height of one randomly chosen (x, y) coor-
dinate as described [33]. Images were acquired for three biofilm replicates per sampling
time. Three-dimensional projections of biofilm structure were reconstructed using the
Easy 3D function of the IMARIS 7.0 software (Bitplane, Zurich, Switzerland). Quantitative
structural parameters of the biofilms, such as biovolume, substratum coverage, roughness
and thickness were calculated using the software COMSTAT 1 [34] under MATLAB.

2.3. Phage Induction and Transmission Electron Microscopy

S. xylosus C2a-B2 strain was grown for 6 h in BHI up to OD600: 0.3–0.4 and was then
treated with mitomycin C (2µg/mL, Sigma-Aldrich, Saint-Quentin-Fallavier, France) to
induce prophages. The culture was incubated at 37 ◦C and 70 rpm for 6 h. Cells were
harvested by centrifugation for 10 min at 4500× g. The resulting supernatant was filtered
through a 0.45 µm membrane and was centrifuged for 30 min at 25,000× g and 4 ◦C. The
pellet was used for transmission electron microscopy. The phages were pre-fixed in 0.5%
(w/v) glutaraldehyde, stained with 0.5% (w/v) uranyl acetate, and examined with a Hitachi
H-7650 at a magnification of 120,000-fold.

2.4. RNA Extraction, Labeling and Microarray Analyses

For RNA extraction from S. xylosus biofilms after 9, 24 or 48 h of incubation, cell pellets
were thawed on ice and resuspended in 500 µL of ice-cold Tris-EDTA buffer. Samples
were transferred to tubes containing 600 mg of zirconia-silica beads (0.1 mm diameter,
BioSpec Products, Bartlesville, OK, USA), 500 µL of acid phenol, 50 µL of sodium dodecyl
sulfate (10%) and 3.5 µL of β-Mercaptoethanol. Cells were disrupted using a FastPrep®

(MP Biomedicals, Illkirch-Graffenstaden, France). After the addition of 200 µL of chloro-
form and centrifugation, the aqueous phase containing RNA was collected and purified
with the Nucleospin RNA II kit (Macherey Nagel, Hoerdt, France) according to the man-
ufacturer’s instructions. A supplementary treatment was performed with Turbo DNase
(Ambion, Austin, TX, USA) to remove residual DNA. The absence of DNA contamination
was checked by PCR targeting the tuf gene. Total RNA was quantified using a Nan-
oDrop 1000 and RNA quality was analyzed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) according to the manufacturer’s instructions. RNA
samples were stored at −80 ◦C. They were reverse-transcribed to cDNA and labeled as
previously described [35]. A complete description of the array developed for S. xylosus
C2a is available at the NCBI Gene Expression Omnibus (GEO) database under platform
accession number GPL19201 and the complete genome of S. xylosus C2a is available under
accession number LN554884. Significant differences in the probe set intensities between the
different conditions were identified using a linear model with an empirical Bayes method
using all information probes to moderate the standard errors of the estimated log-fold
changes [36]. The probabilities were corrected by the Benjamini–Hochberg procedure to
control the false-discovery rate (FDR) with a p value cut-off of 0.05. All probes with an
FDR ≤ 0.05 are considered to be differentially expressed. Finally, a gene was considered to
be differentially expressed if more than 50% of the corresponding probes were differentially
expressed and if the ratio of expression was ≥2 or ≤0.5.

The targeted genes for qPCR and primer sequences used to validate microarray
data are listed in Supplementary Table S1. The analyses were performed on the same
samples of RNA as used for the microarray experiments. The relative fold change of gene
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expression, using measured tuf housekeeping gene expression, was determined by the
2−∆∆Ct method [37].

3. Results and Discussion
3.1. Evidence of Extracellular DNA by CLSM Analyses

After 9 h, the population in biofilm was 7.2 ± 0.3 log CFU/cm2, a small increase to
7.9 ± 0.2 log CFU/cm2 was observed at 24 h and then the population remained stable at
8.2 ± 0.5 log CFU/cm2 at 48 h.

CLSM coupled with cell-impermeant DNA binding fluorescent stain such as TOTO-3
is a powerful tool to study biofilm matrices as it allows real-time visualization of living
microorganisms [38]. Using this approach, we observed the architecture of the S. xylosus
biofilm by recording the fluorescence of the labeled strain S. xylosus C2a-B2 (green) and the
stained eDNA by TOTO-3 (red) during the 48 h of incubation (Figure 1A). The structural
parameters, biovolume, average thickness, roughness and coverage were extracted from
confocal images and are represented in Figure 2. S. xylosus-B2 produced a rough biofilm
composed of aggregates covering 37% of the surface with a maximum thickness of 10.8 µm
and an average one of 4.4 µm at 9 h of incubation. Then, a flat thick biofilm was observed
from 24 h of incubation up to 48 h. The biovolume and the average thickness of the biofilm
increased strongly after 9 h of incubation, while the roughness decreased (Figure 2, C2a
control). An increasing amount of eDNA was measured in the S. xylosus biofilm during
the incubation period, this increase being particularly noticeable between 24 and 48 h, as
evidenced by high values of biovolume, thickness and coverage (Figures 1A and 2, eDNA
control). Such release of eDNA has been seen in numerous bacteria grown in biofilms such
as S. aureus, S. epidermidis, Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus cereus, and
Burkholderia pseudomallei [18–21,39–41]. CLSM images revealed eDNA particularly at the
base of the biofilm of S. xylosus as indicated by the red fluorescence on the bottom while the
upper layer displayed green cells (Figure 1A). For B. pseudomallei, eDNA was also visualized
essentially at the base of the biofilm [41]. For the latter species, as well as for S. aureus,
eDNA was observed at the beginning of biofilm formation facilitating their adhesion to the
support [16,41]. In our study, the first time of observation was 9 h and already a significant
amount of eDNA was observed in the S. xylosus biofilm (Figure 1A). A previous study has
shown that eDNA promoted adhesion of S. xylosus cells to hydrophobic surfaces [42].

CLSM images revealed that DNase treatments of S. xylosus biofilm decreased eDNA,
biovolume and average thickness of the biofilms during the incubation time (Figure 1B,C
and, DNase t, DNase t0). The heterogeneity of the biofilms was increased in the presence
of DNase as shown by higher roughness coefficient at 24 h of incubation. The use of DNase
for biofilm removal is effective, but dependent on the age of the biofilm [21]. Under our
conditions, a greater efficiency of DNase was observed on the biofilm of S. xylosus at 9 h
compared to the following times of 24 and 48 h (Figure 1B,C). Similarly, young biofilms were
easily removed, but DNase treatment was less effective on mature biofilm of S. epidermidis,
P. aeruginosa and B. pseudomallei [19,22,41]. The addition of DNase at the start of the
experiment did not inhibit biofilm formation by S. xylosus, but affected its biovolume and
average thickness during incubation (Figures 1C and 2, DNase t0). In fact, this treatment
at t0 was more effective than that carried out at 48 h, in particular on the thickness of
the biofilm at 48 h (Figure 2). DNase inhibited S. aureus biofilm formation, detached
preformed biofilm and rendered preformed biofilm sensitive to detergent killing [9]. The
release of DNA depends on the growing conditions. Under our conditions, the release of
DNA by S. xylosus was observed during growth in BHI, a nutritionally rich medium. For
L. monocytogenes, the DNase-sensitive biofilm was only observed in diluted medium with
low ionic strength [40]. While for S. epidermidis, DNA release has been evidenced in the
biofilm formed in whole blood-derived platelet concentrates [18].
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Figure 2. Quantitative structural parameters of the biofilms of S. xylosus C2a-B2 and eDNA stained by TOTO-3 at three 
sampling times. (A) Biovolume, (B) Coverage, (C) Average thickness and (D) roughness coefficient. Biovolume C (µm3) 
represented the overall volume of cells in the observation field. Coverage (%) reflected the efficiency of substratum colo-
nization by bacteria. The average thickness (µm) of biofilms was determined from the confocal stack images. Roughness 
coefficient provided a measure of variations in biofilm thickness and was an indicator of the superficial biofilm interface 
heterogeneity. Three independent experiments were performed per sampling time. C2a-B2 control (continuous blue 
curve) and eDNA control (continuous red curve): no treatment; C2a-B2 + DNase t (dashed blue curve) and eDNA + DNase 
t (dashed red curve): DNase treatment at the end of each incubation time; C2a-B2 + DNase to (dotted blue curve) and 
eDNA + DNase to (dotted red curve): after incubation in the presence of DNase from the start. 

3.2. Cell Lysis 
A transcriptomic approach was used to determine the mechanism involved in the 

release of DNA. It revealed that 833 (338 down- and 495 up-regulated) genes were differ-
entially expressed at 24 and 48 h, by comparison with 9 h used as reference (Supplemen-
tary Table S2). Notably, 458 genes were differentially expressed at the two times of incu-
bation. These genes were classified into different functional categories: the most repre-
sented being metabolism (30%) followed by information storage and processing (10%), 
cellular processes (8%) and phage (7%). This analysis was validated by qPCR on selected 
genes and a good correlation was noted for the two times of incubation (24 h: r2 = 0.91, y 
= 1.205x − 0.0656; 48 h: r2 = 0.93, y = 1.1209x − 0.1745) (Supplementary Table S1). 

The transcriptomic data revealed the overexpression of two mechanisms that could 
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(Table 1). Many prophage genes located in two distinct chromosomal loci were overex-
pressed (Table 1). The first region of about 15 kb (SXYL_01051-66) is poorly characterized 

Figure 2. Quantitative structural parameters of the biofilms of S. xylosus C2a-B2 and eDNA stained by TOTO-3 at three
sampling times. (A) Biovolume, (B) Coverage, (C) Average thickness and (D) roughness coefficient. Biovolume C (µm3)
represented the overall volume of cells in the observation field. Coverage (%) reflected the efficiency of substratum
colonization by bacteria. The average thickness (µm) of biofilms was determined from the confocal stack images. Roughness
coefficient provided a measure of variations in biofilm thickness and was an indicator of the superficial biofilm interface
heterogeneity. Three independent experiments were performed per sampling time. C2a-B2 control (continuous blue curve)
and eDNA control (continuous red curve): no treatment; C2a-B2 + DNase t (dashed blue curve) and eDNA + DNase t
(dashed red curve): DNase treatment at the end of each incubation time; C2a-B2 + DNase to (dotted blue curve) and
eDNA + DNase to (dotted red curve): after incubation in the presence of DNase from the start.

3.2. Cell Lysis

A transcriptomic approach was used to determine the mechanism involved in the
release of DNA. It revealed that 833 (338 down- and 495 up-regulated) genes were differen-
tially expressed at 24 and 48 h, by comparison with 9 h used as reference (Supplementary
Table S2). Notably, 458 genes were differentially expressed at the two times of incubation.
These genes were classified into different functional categories: the most represented being
metabolism (30%) followed by information storage and processing (10%), cellular processes
(8%) and phage (7%). This analysis was validated by qPCR on selected genes and a good
correlation was noted for the two times of incubation (24 h: r2 = 0.91, y = 1.205x − 0.0656;
48 h: r2 = 0.93, y = 1.1209x − 0.1745) (Supplementary Table S1).

The transcriptomic data revealed the overexpression of two mechanisms that could
be involved in cell lysis, one implicating prophage genes and the other the cidABC genes
(Table 1). Many prophage genes located in two distinct chromosomal loci were overex-
pressed (Table 1). The first region of about 15 kb (SXYL_01051-66) is poorly characterized
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and includes an integrase encoded by SXYL-1051 and several potential tail and host lysis-
related genes. The second prophage region of 39.4 kb from SXYL_01727-88 displays the
typical organization of the Siphoviridae phage genome, with typical functional modules of
lysogeny, DNA metabolism, DNA packaging and head, tail and host lysis-related genes [43].
Temperate Siphoviridae are the main prophages found in coagulase-negative Staphylococcus
genomes [44]. The gene SXYL_01783 encodes the phage antirepressor protein. In Salmonella
phage P22, the antirepressor overcomes the repressor protein involved in the maintenance
of lysogeny [45]. In the S. xylosus biofilm at both 24 and 48 h incubation, the lysogeny could
switch to the lytic cycle. To determine if lytic production of phage particles can be induced
from S. xylosus C2a, a planktonic culture was treated with mitomycin C Observation by
transmission electron microscopy seemed to reveal only one type of phage with a shaped
head and a long thin tail, as Siphoviridae (Figure 3). A spontaneous release of phages from
S. aureus biofilm cells has already been observed [31]. These phages were detected over
a period of 48–72 h in biofilm cultures. Likewise, lysogenic pneumococcal strains are
able to release phage particles during biofilm development by spontaneous induction of
prophage and hence release DNA [46]. In Shewanella oneidensis, prophage-mediated lysis
results in DNA release and enhanced biofilm formation [47]. In this bacterium, induc-
tion of the Lambda So prophage occurs in RecA-dependent manner, involving oxidative
stress-induced DNA damage as the major trigger. Iron and, in a minor way, H2O2 are
involved in this oxidative stress [48]. For S. xylosus, the mechanism that could induce the
release of phage particles in the biofilm remains unknown, but we observed that genes
involved in iron uptake and response to oxidative stress were up-regulated, as discussed
in Sections 3.9 and 3.10.

In addition to overexpression of genes encoding proteins from the two phage loci, the
cidABC operon in sessile cells of S. xylosus was overexpressed particularly at 48 h (>10-fold)
(Table 1). This operon has been widely studied in S. aureus [26]. CidA forms pores in
the membrane allowing the murein hydrolase to reach and degrade peptidoglycan. CidB
protein, like CidA, contains multiple predicted membrane-spanning domains, but its role
is not yet established. CidC is a pyruvate oxidase that decarboxylates pyruvate to acetate.
The cid operon plays a significant role during S. aureus biofilm development [27]. Thus, the
biofilm produced by the S. aureus cidA mutant is more loosely compact and less adherent
to the substrate. DNase treatment of this biofilm has a small effect, while it destabilizes the
wild-type S. aureus biofilm revealing that DNA is released because of the cidA-mediated
lysis of a subset of the bacterial population [27]. In our study, the overexpression of cidA
from 24 h could have contributed to the lysis of S. xylosus and thus the release of DNA.
Death and lysis in staphylococcal biofilms are under the control of a regulatory network
such as CidR, which induces cidABC, lrgAB and alsSD transcription in response to the
accumulation of intracellular pyruvate or acetate [24,26]. In our conditions, cidABC, as
already mentioned, was overexpressed and lrgAB was not modulated. The alsSD operon
is not present in the genome of S. xylosus, but ilvNB encoding an acetolactate synthase
and budA encoding an acetolactate decarboxylase leading to acetoin were overexpressed
(Table 1). In S. aureus biofilm, acetate derived from CidC activity potentiates cell death by a
mechanism dependent on intracellular acidification and respiratory inhibition and AlsSD
counters CidC by diverting carbon flux towards neutral rather than acidic byproducts,
consuming protons in the process [49]. Based on our results, and as summarized in Figure 4
for S. xylosus, CidC, IlvNB, and BudA could modulate cell death to achieve optimal biofilm
biomass. Lysis might be an advantage for the biofilm community because the remaining
cells can gain nutrients from dead and lysed neighboring cells, as we will discuss in the
section on metabolism.
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Table 1. Genes of S. xylosus discussed in this study, overexpressed at 24 h and/or 48 h compared to 9 h in biofilm.

Mean Ratio of Expression

Gene ID Gene Name Description 24 h/9 h 48 h/9 h

CELL LYSIS

SXYL_01051 Phage integrase 7.2 17.9
SXYL_01054-66 Phage proteins 5.7 * 12.4 *
SXYL_01727-84 Phage proteins 3.8 * 3.1 *
SXYL_00365-66 cidAB Holin-like protein CidA and CidB 2.7 * 13.5 *
SXYL_00367 cidC Pyruvate oxidase 9.2
SXYL_00431 budA Alpha-acetolactate decarboxylase 8.3 4.9
SXYL_00873-74 ilvNB Acetolactate synthase 2.1 *
INFORMATION STORAGE, PROCESSING, CELLULAR PROCESSES

Replication, recombination
SXYL_01294 dnaG DNA primase 2.2 2.1
SXYL_00005-06 gyrBA DNA gyrase subunits B,A 2.1 *
Transcription
SXYL_00212 Transcriptional regulator 2.1 2.6
SXYL_00418 marR MarR-family transcriptional regulator 4.1 4.5
SXYL_00690 MarR family transcriptional regulator 3.2 5.1
SXYL_00457 Acetyltransferase 2.5
SXYL_00523 PadR-like family transcriptional regulator 5.9 7.0
SXYL_00786 Transcriptional regulator, GntR family 5.1
SXYL_00904 Transcriptional regulator, GntR family 2.3
SXYL_02403 Transcriptional regulator, GntR family 4.3 5.8
SXYL_01239 mnmA tRNA-specific 2-thiouridylase MnmA 2.4 2.8
SXYL_01352 AraC-family transcriptional regulator 2.3
SXYL_02345 LacI-family transcriptional regulator 2.3 2.1
SXYL_02663 Transcriptional regulator, LacI family 2.3
SXYL_02482 Transcriptional regulator, MerR family 2.1
SXYL_02549 Transcriptional regulator 5.1 5.1
SXYL_02596 HxlR family transcriptional regulator 3.1
SXYL_00022 walK Sensor protein kinase walK 2.1
SXYL_00323 isaA Probable transglycosylase IsaA 2.8
SXYL_00116 sceD2 Probable transglycosylase SceD 2 8.7 18.6
SXYL_00117 sceD1 Probable transglycosylase SceD1 13.7 21.7
Translation, ribosomal biogenesis
SXYL_01279-80 prmA Ribosomal protein L11 methyltransferase 3.6 * 3.5 *
SXYL_01281 rpsU 30S ribosomal protein S21 2.1 2.0
SXYL_01549 rpsN 30S ribosomal protein S14 3.5 3.5
SXYL_01550 rpmG2 50S ribosomal protein L33 2 2.0
SXYL_01615 infB Translation initiation factor IF-2 2.0
SXYL_01619 rimP Ribosome maturation factor RimP 2.2
SXYL_01673 Peptide deformylase-like 2.1
SXYL_02139 queC 7-cyano-7-deazaguanine synthase 3.2 3.3

SXYL_02689 rsmG Ribosomal RNA small subunit
methyltransferase G 2.8 2.5

SXYL_02690-91 mnmGE tRNA uridine 5-carboxymethylaminomethyl,
GTPase 2.9 * 2.6 *

DNA/RNA repair
SXYL_00942 dinB DNA polymerase IV 2.8 3.7
SXYL_00004 recF DNA replication and repair protein RecF 2.1
SXYL_01201 tag DNA-3-methyladenine glycosylase 2.1
SXYL_01206 DNA repair RadC family protein 2.8
SXYL_02062 rnr Ribonuclease R 2.1
SXYL_01796 uvrC UvrABC system protein C 3.7 2.1
SXYL_02088-89 uvrAB UvrABC system protein A, B 4.3 * 3.5 *
SXYL_00943 Putative exonuclease 2.3 3.0
SXYL_02241 Endonuclease III 2.2
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Table 1. Cont.

Mean Ratio of Expression

Gene ID Gene Name Description 24 h/9 h 48 h/9 h

Protein turnover
SXYL_02399 ctsR Transcriptional regulator CtsR 5.4 6.1

SXYL_02396 clpC ATP-dependent Clp protease ATP-binding
subunit ClpC 4.9 4.8

SXYL_01946 clpB Chaperone protein ClpB 10.8 13.4
SXYL_00898 groS 10 kDa chaperonin 2.1
SXYL_01275 hrcA Heat-inducible transcription repressor HrcA 3.8 4.6
SXYL_01276 grpE Protein GrpE 3.9 4.8
SXYL_01277 dnaK Chaperone protein DnaK 3.4 3.7
SXYL_01278 dnaJ Chaperone protein dnaJ 3.9 3.9

SXYL_01192 clpX ATP-dependent Clp protease ATP-binding
subunit ClpX 2.2 2.1

SXYL_01933 mecA Adapter protein MecA 2.0
SXYL_02418 hslO 33 kDa chaperonin 2.5 2.1
SXYL_00548 Heat shock protein Hsp20 7.6 7.3
SXYL_00549 Heat shock protein Hsp20 9.5 8.8

SXYL_00505 Membrane protein insertase, YidC/Oxa1
family 2.2

PYRIMIDINE, PURINES SALVAGE

Pyrimidine
SXYL_00796 pdp Pyrimidine-nucleoside phosphorylase 2.1
SXYL_01688-91 pyrCBPR Pyrimidine synthesis 8.2 *
SXYL_01407 Nucleoside-diphosphate-sugar epimerase 2.1
SXYL_02117-18 nrdFE Ribonucleoside-diphosphate reductase 2.8 *
Purine
SXYL_00017 purA Adenylosuccinate synthetase 2.2
SXYL_01548 guaC GMP reductase 2.5 3.0
SXYL_02435 purR Pur operon repressor 2.0
CARBOHYDRATE CATABOLISM

Amino sugar catabolism

SXYL_00403 nanE N-acetylmannosamine-6-phosphate
2-epimerase 2.5

SXYL_00404 RpiR family transcriptional regulator 2.1
SXYL_00405 nanK N-acetylmannosamine kinase 2.5
SXYL_00406 nanA N-acetylneuraminate lyase 3.9 2.7
SXYL_00254 Glucosamine-6-phosphate deaminase 3.4
Glycolysis
SXYL_00773-76 mtlDFA PTS system mannitol 4.1 * 5.4 *
SXYL_00253 PTS system, glucose-specific IIBC component 4.7 2.7

SXYL_01179 gapA2 Glyceraldehyde-3-phosphate dehydrogenase
2 2.7

SXYL_00207 ppsA Pyruvate phosphate dikinase 5.6 5.6

SXYL_00208 Putative pyruvate, phosphate dikinase
regulatory protein 6.3 7.3

Pentose, glucuronate
SXYL_01454 Xylose isomerase-like protein 2.3
SXYL_00123 araB L-ribulokinase 2.1
SXYL_00124 araD L-ribulose-5-phosphate 4-epimerase 2.2 2.4
SXYL_02343 2-keto-3-deoxygluconate kinase 2.6 5.4
Energy
SXYL_01849-50 cydBA Cytochrome bd-type quinol oxidase 2.5 *
AMINO ACID METABOLISM
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Table 1. Cont.

Mean Ratio of Expression

Gene ID Gene Name Description 24 h/9 h 48 h/9 h

Transport
SXYL_00264-66 Amino acid ABC transporter 4.1 *
SXYL_02464 Ammonia permease 2.7 4.3

SXYL_00661-65 ABC-type amino acid transport system, Glutamate ABC
transporter 2.7 *

Glutamate/glutamine
SXYL_02459 gltD NADH-glutamate synthase small unit 2.4
SXYL_02460 gltB Glutamate synthase large subunit 2.9 2.3

SXYL_02461 gltC Transcription activator of glutamate synthase
operon 3.6

SXYL_01568-69 glnA1R Glutamine synthetase, repressor 3.4 *

SXYL_00107-08 glnA2 Glutamine synthetase, Aldehyde
dehydrogenase 6.7 * 4.5 *

SXYL_01686-87 carBA Carbamoyl-phosphate synthase 4.1 *
Histidine
SXYL_00008 hutH Histidine ammonia-lyase (Histidase) 6.4 5.0
SXYL_00617-18 hutUI Urocanate hydratase, Imidazolonepropionase 2.9 * 3.1 *
Valine/leucine/isoleucine
SXYL_00867-74 ilvADCBACNB Valine, leucine, isoleucine synthesis 2.7 *
Glycine/serine/threonine

SXYL_01317-19 gcvTPAPB Aminomethyltransferase, probable glycine
dehydrogenase 3.0 * 2.3 *

Cysteine/methionine
SXYL_02417 cysK Cysteine synthase 2.3
SXYL_02636-37 cysIJ Sulfite reductase (NADPH) hemoprotein 3.3 *
SXYL_01238 Putative cysteine desulfurase 2.5 3.2
SXYL_01672 fmt Methionyl-tRNA formyltransferase 2.2
Alanine/lysine
SXYL_01473 lysA Diaminopimelate decarboxylase 5.3 3.3
SXYL_01474 alr2 Alanine racemase 2 11.9 7.6
SXYL_01475 Uncharacterized hydrolase 12.1 7.6

SXYL_01476-78 dapHBA 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate
N-acetyltransferase, 4.1 * 2.5 *

4-hydroxy-tetrahydrodipicolinate reductase,
synthase

SXYL_02665 Dihydrodipicolinate synthase 2.0 3.2
SXYL_00325 ldhD D-lactate dehydrogenase 10.3 11.9
COFACTOR, VITAMIN SYNTHESIS

SXYL_01097-100 ribDEBAH Riboflavin biosynthesis 2.8 * 3.7 *
SXYL_00734-35 ecfA2T Energy-coupling factor transporter 2.2 *
SXYL_01194 hemA Glutamyl-tRNA reductase 2.0
SXYL_01196 hemC Porphobilinogen deaminase 2.5
SXYL_02635 cobA Uroporphyrin-III C-methyltransferase 2.0 2.9

SXYL_00839 thiD Hydroxymethylpyrimidine/phosphomethylpyrimidine
kinase 2.0

SXYL_01231 HesA/MoeB/ThiF family protein 2.1 2.0
SXYL_01893 menF Isochorismate synthase 2.0 2.4
SXYL_02295 folE2 GTP cyclohydrolase FolE2 2.2
INORGANIC ION TRANSPORT

Phosphate
SXYL_01484-86 pstSCA ABC-type phosphate transport system 2.4 *
Fe
SXYL_01359 fur Ferric uptake regulation protein 2.3 2.1
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Table 1. Cont.

Mean Ratio of Expression

Gene ID Gene Name Description 24 h/9 h 48 h/9 h

SXYL_02216-18 sitABC ABC metal ion transport system,
Iron/manganese/zinc 2.0 * 4.7 *

SXYL_00561-63 Oxidoreductase, Monooxygenase,
Transporter 5.6 * 12.4 *

SXYL_00793 dps Dps family protein 3.6 3.7
Mn, Co, Zn, Cu
SXYL_02659-60 mtsC Metal ion ABC transporter, manganese 3.4 *

SXYL_00416 Putative ABC-type Mn Zn transport system
periplasmic 2.2

SXYL_00783-84 czrA Co Zn Cd efflux system component, Zn, Co
transport repressor CzrA 11.6 * 11.8 *

SXYL_00326-27 copZA Copper chaperone CopZ, Copper-exporting
P-type ATPase A 10.0 * 13.2 *

SXYL_00512 Putative cation efflux family protein 4.5 3.4
RESPONSE TO STRESS

Osmotic
SXYL_00223 cudT Choline transporter 2.4
SXYL_00224 cudC Putative transcriptional regulator 4.9 5.6
SXYL_00225 cudA Glycine betaine aldehyde dehydrogenase 21.1 21.4
SXYL_00226 betA Oxygen-dependent choline dehydrogenase 13.4 12.3
SXYL_02221-26 mnhF2E2D2C2B2A2 Na(+)/H(+) antiporter 2.7 *

SXYL_02219 Putative NhaP-type Na+ H+ and K+ H+
antiporter 2.1

SXYL_00425 Na(+)/H(+) exchanger 2.1
SXYL_00407 Sodium:solute symporter family protein 4.0 2.3
Oxidative
SXYL_01551 katB Catalase B 2.4
SXYL_02505 katA Catalase A 4.2 5.7
SXYL_01797 trxA Thioredoxin 2.6
SXYL_02083 trxB Thioredoxin reductase 2.3 2.3
SXYL_02534-35 ahpCF Alkyl hydroperoxide reductase 4.2 * 4.2 *
SXYL_00895 Nitroreductase family protein 4.9 4.1

* Means of the expression of the clustered genes overexpressed.
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3.3. Slow Cellular Process in the Mature Biofilm

The physiology of S. xylosus biofilm, like S. aureus and S. epidermis biofilms, is char-
acterized by a general down-regulation of active cell processes such as protein, DNA,
and cell wall syntheses that is typical of slow-growing cells [50]. However, several genes
involved in the DNA machinery were up-regulated (Table 1). Thirteen genes encoding
transcriptional regulators orchestrating gene activity and 12 genes involved in translation
and ribosomal biogenesis were up-regulated. It is noteworthy that, walK was up-regulated
(Table 1). It encodes a member of the two-component regulatory system WalRK. In S. aureus,
WalRK positively controls biofilm formation [51] and is essential for cell viability mainly by
controlling the transcription of cell wall lysing enzymes [52]. WalKR in S. aureus activated
the transcription of nine genes involved in the different steps of cell wall turnover (lytM,
atlA, isaA, sceD, ssaA, and four ssaA-related genes) [51]. In our study, only the isaA gene,
and two sceD genes were up-regulated (Table 1).

3.4. DNA/RNA, Protein Repair Systems

It is worthy of mention that, 10 genes encoding proteins involved in DNA/RNA
repair were up-regulated in S. xylosus in biofilm (Table 1). Among them, dinB encodes
DNA polymerase IV, which is up-regulated during the SOS response to DNA damage in
Escherichia coli and contributes to spontaneous mutation in slow-growing or non-growing
cells [53]. The recF gene, which was up-regulated in our conditions, encodes RecF, which is
required for DNA replication and for daughter strand gap repair [54]. This gene is also
up-regulated in S. epidermidis in biofilm [55]. The gene tag encoding DNA-3-methyladenine
glycosylase was up-regulated in S. xylosus; this enzyme is a base excision repair glyco-
sylase that recognizes and excises a variety of alkylated bases from DNA [56]. The gene
SXYL_01206 encoding the RadC family protein was up-regulated in S. xylosus. This protein
is involved in DNA replication and repair [57]. The gene rnr encoding a ribonuclease R was
also up-regulated. In E. coli, this RNase acts over a range of substrates, such as, ribosomal,
transfer, messenger, and small non-coding RNAs [58]. The UvrABC repair system, encoded
by uvrABC, which was overexpressed in our conditions, catalyzes the recognition and
processing of DNA lesions. Endonuclease III is a ubiquitous DNA repair enzyme that
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repairs oxidized pyrimidine base lesions in DNA. It is encoded by the SXYL_02241 gene,
which was up-regulated in our conditions.

Bacterial cells are equipped to adapt to various environmental conditions. They have
developed a general response, like heat shock proteins, chaperones and ATP-dependent
proteases, to deal with damaged proteins. In our study, 10 genes encoding proteases
and chaperones involved in protein turnover were up-regulated (Table 1). S. xylosus
overexpressed ctsR and the clpC, clpB, dnaK and groES genes. These genes are identified
in S. aureus as belonging to the CtsR regulon [59]. Moreover, dnaK belongs to a cluster,
which includes grpE, dnaJ and hcrA encoding a transcriptional regulator. All these genes
were up-regulated in S. xylosus in biofilm. In S. aureus, the dnaK and groES operons also
belong to the HrcA regulon embedded within the CtsR regulon, which controls HrcA
synthesis [59]. A similar transcriptional regulation could occur in S. xylosus as revealed
by the network of genes up-regulated under our conditions. The gene mecA up-regulated
by S. xylosus encodes MecA, which enables the recognition and targeting of unfolded
and aggregated proteins to the ClpC protease. Finally, the gene SXL_00505, up-regulated,
encodes a YidC/Oxa1 family membrane protein insertase. These family members can
function depending on the context as insertases, chaperones, and assembly factors for
transmembrane proteins [60].

3.5. Pyrimidine and Purine Salvage

Uracil arising from cell lysis could be used as pyrimidine source. It can be taken up
by the pyrP encoded permease, which is a part of the pyr operon including pyrCBPR, all
of which was highly up-regulated at 48 h of incubation in S. xylosus (Table 1). PyrR can
act as a phosphoribosyltransferase leading to UMP and is a regulatory protein of the pyr
operon in Bacillus subtilis [61]. The genes pyrCB, carAB, and glnA2 genes, which were all
up-regulated, could also contribute to the synthesis of UMP from glutamate/glutamine
as already described for S. xylosus [62] (Table 1). As for S. xylosus, the genes encoding
pyrimidine were strongly up-regulated in S. aureus in biofilm compared to planktonic
cultures [63]. The nrdEF genes up-regulated in S. xylosus in biofilm could participate
in the synthesis of pyrimidine deoxynucleotides. Three genes, including the repressor
purR, which is involved in purine synthesis were up-regulated (Table 1). In B. subtilis,
PurR regulated the 12-gene pur operon required for de novo synthesis of purine from
the IMP pathway [61]. Such regulation could happen in S. xylosus; this operon is also
down-regulated in S. aureus grown in biofilm [63].

3.6. Amino Sugar Catabolism

One of the main features of S. xylosus in sessile conditions was its potential to use
amino sugars released from the cell wall of lysed bacteria as a carbon source. These amino
sugars are catabolized via the amino sugar pathway, for which a cluster of four genes was
up-regulated (nan, SXYL_00403-406, Table 1 and Figure 4). A complete nan system was
defined as one that minimally includes orthologues of genes encoding NanA, NanE, and
NanK [64]. This is the case with S. xylosus, which also comprises a transcriptional regulator
of the RpiR family (Table 1). The nan systems of E. coli and S. aureus also include a regulator,
albeit very different from each other and not characterized for S. aureus [64]. This nan
pathway led to N-acetyl-glucosamine-6-phosphate, which could be further catabolized
to pyruvate via several steps (Figure 4). In addition, in S. xylosus in biofilm, four genes
involved in the pentose and glucuronate pathways were overexpressed (Table 1). Pyruvate
could be catabolized by enzymes encoded by cidC, budA and ilvNB as described above
(Figure 4) but all other genes involved in its catabolism and in the TCA cycle were down-
regulated (Table S2). Finally, two cydBA genes encoding cytochrome oxidase, which
generates a proton motive force, were overexpressed (Table 1). In E. coli, cytochrome bd
oxidase was expressed under O2-limited conditions [65]. This suggests that S. xylosus
embedded in an eDNA matrix as observed by microscopy seems to perceive an anaerobic
environment as revealed by the transcriptomic data related to the catabolism of sugars.
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3.7. Amino Acid Synthesis

Amino acids could be released during cell lysis. Indeed, two clusters of genes
(SXYL_00264-66; SXYL_00661-65) coding for ABC type amino acid transporters and one
gene encoding an ammonia permease were up-regulated in S. xylosus in biofilm, particu-
larly at 48 h of incubation (Table 1). One of these clusters was involved in the transport
of glutamate, a key component as the main nitrogen donor. In addition, glutamate could
be synthesized by two pathways. One could involve alpha ketoglutarate and glutamine
catabolized by glutamate synthase encoded by gltDB, which was overexpressed, together
with gltC coding for a transcriptional activator (Table 1). In B. subtilis, the main regulatory
role of GltC appears to be the prevention of a cycle of simultaneous glutamate synthesis
and degradation [66]. The other pathway could involve the degradation of histidine with
the overexpression of hutH and hutUI encoding histidine catabolic enzymes (Table 1). Then
glutamate could be catabolized to glutamine-by-glutamine synthases encoded by glnA1,
which was overexpressed only at 48 h of incubation, and glnA2, which was overexpressed
at 24 and 48 h (Table 1). The glnA1 gene is in an operon with glnR encoding a repressor. In
B. subtilis, GlnR represses the gln operon in the presence of glutamine. This repression is
considered as a fine-tuning mechanism of gln expression [66]. Finally, glutamine could be
involved in the synthesis of pyrimidine, as described in Section 3.5.

Almost all genes involved in the synthesis of branched-chain amino acids were up-
regulated in S. xylosus in biofilm, especially at 48 h of incubation (cluster SXYl_00867-74,
Table 1). Several genes involved in the synthesis of glycine, and of cysteine/methionine
and alanine/lysine were up-regulated. Noteworthily, alr2 was highly overexpressed.
It encodes an alanine racemase, which furnishes D-alanine for the synthesis of the cell
wall. Surprisingly, the gene ldhD encoding a D-lactate dehydrogenase was highly up-
regulated (>10-fold) both at 24 and 48 h. D-lactate instead of the usual D-alanine could be
introduced in peptidoglycan, as already reported for Staphylococcus haemolyticus resistant
to vancomycin [67].

3.8. Cofactor, Vitamin Synthesis

S. xylosus in biofilm overexpressed the cluster rib involved in riboflavin synthesis
(Table 1). It also overexpressed a cluster of two genes encoding energy-coupling factor
transporters (Table 1). These transporters mediate the uptake of essential vitamins and
metal ions in many prokaryotes, in particular for those bacteria lacking the pathways
for folate, biotin, and thiamine biosynthesis [68]. Biotin and thiamine are two vitamins
essential for S. xylosus growth [69]. Seven other overexpressed genes are involved in the
synthesis of porphyrin, cofactor and folate (Table 1).

3.9. Inorganic Ion Transport

In our conditions, three genes of the cluster pstSCAB involved in the import of in-
organic phosphate were up-regulated at 48 h of incubation (Table 1). In S. aureus, the
two-component system PhoPR is required for the expression of pstSCAB and is necessary
for its growth under phosphate limiting conditions [70]. In our conditions, the genes
encoding this system were down-regulated (Table S2). In S. xylosus biofilm, phosphate
seems not to be limiting, as DNA was released in the growth medium.

Iron, an essential cofactor for several enzymes, is complexed with different pro-
teins and its concentration is finely regulated. Fur (ferric uptake regulator) is involved
in iron homeostasis and, is a repressor of three iron-acquiring systems (hts, sst, fhu) in
S. xylosus [36,62]. In biofilm, fur was up-regulated, and consequently, these three systems
were under-expressed (Table S2). Two clusters of genes, sitABC and SXYL_00561-63, were
overexpressed at 24 and 48 h of incubation. The cluster sitABC, encoding an iron-regulated
ABC transport involved in divalent metal uptake, was modulated in the presence of ferrous
iron (FeSO4), while the cluster SXYL_00561-63 was highly up-regulated in the presence of
ferritin in S. xylosus [71]. Note that, the gene dps encoding a Dps family protein was up-
regulated. The crystal structure of Dps reveals structural homology with ferritins, a large
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family of iron storage proteins [72]. This led us to suppose that the cluster SXYL_00561-63
could be involved in the uptake of iron from Dps in S. xylosus in biofilm.

As mentioned for iron, all metal ions are required for biological reactions, but they are
toxic in excess, and the intracellular availability of each is tightly regulated [73]. S. xylosus
in biofilm up-regulated three genes involved in manganese acquisition and two clusters
involved in metal efflux, one for zinc and cobalt and the other for copper (Table 1). Surplus
of zinc and cobalt can be sensed by the regulator CzrA, encoded by czrA, which was highly
up-regulated in our conditions, inducing the metal-efflux protein encoded by SXYL_00783.
The copper chaperone CopZ, encoded by copZ, which was highly up-regulated in our
conditions, could lead to the transcriptional de-repression of copA, which could result in
the export of copper [73].

3.10. Response to Stress

The transcriptome profile of S. xylosus revealed the activation of stress-induced path-
ways within biofilm. The up-regulation of the cudTCAbetA cluster encoding a choline
transporter (CudT), a regulator (CudC) and two enzymes (CudA, BetA) to form glycine
betaine a powerful osmoprotectant indicated the perception of an osmotic stress (Table 1).
In S. xylosus, the cudAbetA genes are up-regulated by choline and elevated NaCl concentra-
tions [74]. In addition, the cluster mnhF2-A2 and three genes encoding Na+/H+ antiporter
systems were up-regulated, particularly at 48 h of incubation. Similarly, the genes opuD en-
coding a glycine betaine transporter, prop a proline betaine transporter and mnhA a Na+/H+

antiporter unit are up-regulated in S. aureus in biofilm [75]. In addition, both genes en-
coding a glycine betaine transporter and a glycine betaine aldehyde dehydrogenase are
up-regulated in S. epidermidis in biofilm [55].

S. xylosus also had to cope with oxidative stress, as shown by the up-regulation of
seven genes involved in detoxification. Five of these genes (katB, trxB, ahpCF, SXL_00895)
are under the control of the repressor PerR, whose gene is not modulated in our conditions
(Table 1). These genes are overexpressed following nitrosative stress in a meat model [35].
In addition, katA was down-regulated, and sodA was not modulated in S. xylosus in biofilm,
whereas these genes were found under-expressed in S. aureus in biofilm versus stationary
growth phase [63]. A response to oxidative stress has already been reported for several
biofilm-forming bacteria [76].

4. Conclusions

This study provides data on the physiology of S. xylosus in biofilm. It reveals that
eDNA is a major component of the extracellular polymeric matrix and can be released by
two mechanisms of cell lysis, lytic phage and the CidABC system. This lysis could furnish
nutrients such as amino sugars, amino acids, nucleotides, and ions for the remaining
cells. S. xylosus has developed defense mechanisms against osmotic and oxidant stresses.
In addition, S. xylosus overexpressed several genes involved in DNA/RNA repair systems
and in protein turnover. The ability of S. xylosus to form biofilm embedded in eDNA matrix
allows it to colonize and survive in manufacturing environment.
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