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Abstract

Expanded polyglutamine repeats in different proteins are the known determinants of at least

nine progressive neurodegenerative disorders whose symptoms include cognitive and

motor impairment that worsen as patients age. One such disorder is Huntington’s Disease

(HD) that is caused by a polyglutamine expansion in the human huntingtin protein (htt). The

polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers

neurodegeneration and the disruption of energy metabolism in muscle cells. However, the

molecular mechanisms that underlie htt proteotoxicity have been somewhat elusive, and the

muscle phenotypes have not been well studied. To generate tools to elucidate the basis for

muscle dysfunction, we engineered Caenorhabditis elegans to express a disease-associ-

ated 513 amino acid fragment of human htt in body wall muscle cells. We show that this htt

fragment aggregates in C. elegans in a polyglutamine length-dependent manner and is

toxic. Toxicity manifests as motor impairment and a shortened lifespan. Compared to previ-

ous models, the data suggest that the protein context in which a polyglutamine tract is

embedded alters aggregation propensity and toxicity, likely by affecting interactions with the

muscle cell environment.

Introduction

George Huntington first described what subsequently became known as Huntington’s Disease

(HD) in 1872 in a paper titled “On Chorea” [1]. In that landmark paper, Huntington described

disease symptoms as dance-like spasmodic movements that typically manifest at around 40

years of age. He also noted that HD leaves the affected patient “but a quivering wreck of his

former self” due to neurodegeneration and concomitant cognitive decline before causing pre-

mature death [1]. In 1993, the single autosomal gene that causes HD became the first human

disease locus to be precisely identified. The locus was revealed via map-based cloning and the

HD-associated dominant allele was shown to contain an expanded trinucleotide repeat [2].

This trinucloetide repeat encodes a destabilizing expansion of a polyglutamine (polyQ) tract in

the huntingtin (htt) protein.

PLOS ONE | DOI:10.1371/journal.pone.0173644 March 10, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lee AL, Ung HM, Sands LP, Kikis EA

(2017) A new Caenorhabditis elegans model of

human huntingtin 513 aggregation and toxicity in

body wall muscles. PLoS ONE 12(3): e0173644.

doi:10.1371/journal.pone.0173644

Editor: Patrick van der Wel, University of

Pittsburgh School of Medicine, UNITED STATES

Received: October 6, 2016

Accepted: February 22, 2017

Published: March 10, 2017

Copyright: © 2017 Lee et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: There were no external sources of

funding for this work. All funding was provided by

internal support from the University of the South

including Faculty Development Grants and a

Kennedy Endowed Faculty Fellowship to EK. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173644&domain=pdf&date_stamp=2017-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173644&domain=pdf&date_stamp=2017-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173644&domain=pdf&date_stamp=2017-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173644&domain=pdf&date_stamp=2017-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173644&domain=pdf&date_stamp=2017-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173644&domain=pdf&date_stamp=2017-03-10
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Examination of post-mortem brain tissue obtained from affected individuals revealed the

conversion of the normally soluble htt protein monomers into insoluble inclusions of aggre-

gated htt [3]. Similar aggregates, albeit of different proteins, are also hallmarks of other polyQ

disorders including various spinal cerebellar ataxias and spinal and bulbar muscular atrophy.

Furthermore, Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and

others are also characterized by the aggregation and toxicity of damaged or misfolded protein.

The similarities in the nature of these diseases led to the coining of the general term “confor-

mational diseases” to describe those caused in some way by protein misfolding [4].

The aggregation and associated htt proteotoxicity begins in mid to late life, when disease

symptoms are first experienced. This suggests that aging is an important risk factor for disease

and a likely trigger for htt protein aggregation/toxicity. The ability of cells and organisms to

buffer against protein misfolding is thought to decline over time resulting in an impaired abil-

ity of older neurons to mitigate the toxic effects of the polyQ-expanded htt protein [5–7]. Con-

siderable evidence demonstrates that the overexpression of molecular chaperones or the

induction of the heat shock response can at least partially alleviate the toxicity of proteins with

an expanded polyQ tract [8–15].

The polyQ-expanded form of the htt protein may trigger cell death via the initiation of an

apoptotic pathway. This is evidenced by an increase in DNA fragmentation [16] and the initia-

tion of a caspase cascade in cells expressing mutant htt [17]. In fact, the htt protein and other

neurodegenerative disease-associated polyglutamine-containing proteins have been shown to

undergo proteolytic cleavage by the pro-apoptotic caspases in a polyQ length-dependent man-

ner [18]. Importantly, caspase-1 and caspase-3 both cleave the N-terminal domain of htt, with

caspase-3 cleaving specifically at amino acid position 513, liberating a potentially toxic polyQ-

containing fragment of that size [19]. Importantly, treatment of HEK 293 T cells expressing

the polyQ-expanded htt protein with caspsase inhibitors led to a decrease in htt toxicity [20].

These findings led to the “toxic fragment hypothesis” that htt cleavage by caspases is a crucial

step in HD pathology.

Do various fragments of the htt protein differ in aggregation propensity? We know more

about htt exon 1 aggregation than that of other fragments. Htt exon 1 has been identified in

the brains of HD mice [21] and shown to be either the result of proteolysis or of translation

from an aberrantly processed mRNA [22]. It has been shown to aggregate in a two-step process

in vitro, undergoing an initial nucleation phase of aggregation involving the formation of

spherical oligomers followed by protofibril-like structures containing up to 2600 individual

molecules of htt exon 1 protein [23]. Additionally, htt exon 1 formed small aggregates consist-

ing of short fibrils in cells grown in tissue culture [24].

To study the pathogenic mechanisms underlying the toxicity of the human htt protein in
vivo, animal models have been generated in which htt, or N-terminal fragments of htt, were

expressed in mice, Drosophila melanogaster or Caenorhabditis elegans. One of the earliest and

most well studied animal models is the R6/2 mouse that expresses the first ~90 amino acids of

the human htt protein containing an expanded polyQ tract of 144 glutamines [25]. The R6/2

mouse recapitulates the progressive neurodegeneration observed in HD patients and has been

used as a drug discovery tool [26].

Since the time that the R6/2 mouse was first published, many C. elegans models of htt aggre-

gation and toxicity have likewise been developed. The first expressed the N-terminal 171

amino acids of htt (Htt171) in sensory neurons including the ASH, ASI, PHA, and PHB neu-

rons under the control of the osm-10 promoter [27]. Htt171 was shown to aggregate in and be

toxic to ASH neurons in a polyQ length-dependent manner [27].

Another C. elegans htt model was developed in which only the first 57 amino acids of the

htt protein (Htt57) with short (Q19) and long (Q88 and Q128) polyQ tract lengths was tagged
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with GFP for visualization and expressed in mechanosensory neurons under the control of the

mec-3 promoter [28]. This Htt57 fragment resulted in the dysfunction, but not death, of PLM

neurons. Therefore, certain neuronal subtypes may be more susceptible to the toxic effects of

polyQ-containing proteins than others and neurodegeneration may not be the only way that

toxicity manifests. Additionally, aggregates predominated in neuronal processes rather than

cell bodies, resulting in abnormal axonal morphologies [28].

The most recent C. elegans htt model to be described expresses htt exon 1 with Q28, Q55, or

Q74 in body wall muscle cells, and is fused to GFP for visualization [29]. Until now, that was

the only model to express a fragment of the htt protein in muscle cells. Similar to findings in

neurons, the htt exon 1 fragment displayed polyQ length-dependent aggregation and toxicity

in body wall muscle cells [29].

Two additional C. elegans models published in 2002 [30] and 2006 [31] cannot be consid-

ered htt models per se because they do not contain htt protein sequence. Instead, they express

different polyQ tract-lengths fused to GFP for visualization (referred to herein as polyQ

alone). As such, they are generic models, modeling polyQ toxicity irrespective of the normal

protein context. PolyQ alone was shown to aggregate in body wall muscle cells [30] or neurons

[31] in a polyQ length-dependent manner and to cause cellular dysfunction in both tissues.

For the sake of comparison, a complete list of previously published C. elegans models of

polyQ alone or polyQ in the context of human htt is shown (Table 1). Each model differs with

respect to htt fragment length, the presence of a fluorescent tag, and the cell type in which htt

is expressed.

Each of the C. elegans models described here has contributed in its own way to our

understanding of the mechanisms underlying polyQ toxicity and the genetic and physical

interactions between polyQ-containing proteins and the cellular environment. For example,

aggregation of polyQ alone responds to changes in the overall load of misfolded protein [32,

33] and decreases when molecular chaperones are upregulated [9, 34] or when neuronal sig-

naling is suppressed [12]. But do these findings with polyQ alone translate to other htt mod-

els including vertebrates?

To address this, a genome-wide RNAi screen was performed to identify gene inactivations

that led to either an increase or decrease in Htt57-GFP toxicity as measured by PLM neuron

function [35]. That screen revealed 49 genes that also suppress htt toxicity in mice, providing

some of the first evidence that findings in C. elegans can directly translate to mammalian mod-

els. Likewise, important conserved signaling pathways, such as that associated with β-catenin,

suppressed Htt57-GFP toxicity in PLM neurons via interaction with the forkhead transcription

Table 1. Previously published Htt or polyQ alone C. elegans models.

Expressed

Protein

Tissue/Cell Type PolyQ lengths Phenotypes References

Htt171 Sensory neurons (ASH, ASI,

PHA, PHB)

Q2, Q23, Q95, Q150 PolyQ length-dependent aggregation and toxicity.

Age-dependent aggregation of Q150 in ASH

neurons.

Faber, et. al., Proc. Natl.

Acad. Sci., 1999

Htt57-YFP Touch Receptor Neurons (AVM,

ALML, ALMR, PVM, PLML,

PLMR)

Q19, Q88, Q128 PolyQ length-dependent aggregation and toxicity in

PLM tail mechanosensory neurons

Parker, et. al., Proc.

Natl. Acad. Sci., 2001

polyQ-YFP Body wall muscle cells Q19, Q29, Q33, Q35,

Q40, Q44, Q64, Q82

PolyQ length-dependent and age-dependent

aggregation and toxicity.

Morley, etl. al., Proc.

Natl. Acad. Sci., 2002

polyQ-YFP All Neurons Q19, Q35, Q40, Q67,

Q86

PolyQ length-dependent aggregation and toxicity.

No age-dependent changes observed.

Brignull, et. al., J

Neurosci., 2006

GFP-Htt exon

1

Body wall muscle cells Q28, Q55, Q74 PolyQ length-dependent aggregation and toxicity. Wang, et. al., Hum. Mol.

Genet., 2006

doi:10.1371/journal.pone.0173644.t001
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factor FOXO/DAF-16 [36]. In an elegant study published recently, Tourette et. al. showed that

the Wnt receptor is upregulated in animals expressing Htt57-GFP in mechanosensory neurons,

thereby leading to the observed decrease in FOXO activity [37]. As in previous studies, these

findings in C. elegans nicely translated to mouse models [37].

Most of what we know about HD relates to neurodegeneration. However, the htt protein is

ubiquitously expressed and recent studies point to early pathological hallmarks of disease

being caused by previously overlooked changes in metabolic pathways in muscle cells [38].

Specifically, changes to mitochondrial function in muscle cells were observed in pre-symptom-

atic gene positive individuals [39]. Likewise, ATP/phosphocreatine levels were decreased in

the muscles of both pre- and post-symptomatic HD patients [40]. Together, these metabolic

deficiencies are thought to contribute to muscle wasting in patients and HD mice.

Typically, the mouse has been the model system of choice to study muscle phenotypes associ-

ated with HD. This is partly because few suitable invertebrate models existed. Only one of the C.

elegans models described above expresses a htt fragment in muscle cells [29]. That model was

used to show that the RNAi-mediated knockdown of the mitochondrial fission gene Drp-1 res-

cued the muscle dysfunction that was caused by htt exon 1 [41].

Htt exon 1 encodes an N-terminal 17 amino acid region, a polyQ repeat, and a poly proline

rich domain (PRD). Longer fragments including the caspase cleavage fragments Htt513 and

Htt586 have these same features but also have a series of structurally ordered segments con-

taining HEAT repeats separated by intrinsically disordered regions that include the sites of

proteolysis [42]. HEAT repeats are present in a variety of proteins and are known to participate

in protein-protein interactions. Nonetheless, the exact number of HEAT repeats, or their bind-

ing partners, is not known for the htt protein [22]. Despite their hypothesized role in HD

pathology, caspase cleavage products of htt have never been directly examined for toxicity in

C. elegans or any other model system. That being said, the full length htt protein was expressed

in mice [43]. Because of the potential importance of the htt HEAT repeats in mediating inter-

actions with other cellular factors, having an invertebrate model expressing a long htt fragment

should allow for a more comprehensive view of htt action.

To that end, we describe here a new C. elegans model for htt aggregation and toxicity, in

which the naturally occurring 513 amino acid caspase cleavage product, herein referred to as

Htt513, was engineered to have either wild type or expanded polyQ tracts and to be expressed

in body wall muscle cells. We show that aggregation of the Htt513 fragment in body wall muscle

cells is a polyQ length-dependent process. We also demonstrate that aggregation is associated

with motor defects and a shortened lifespan, indicating that Htt513 proteotoxicity is likewise

polyQ length-dependent. This model represents a new tool to study the molecular mechanisms

of htt-associated muscle dysfunction as caused by a long and biologically relevant htt fragment.

Materials and methods

Plasmid constructs

The Punc-54Htt513(Qn)::YFP gene constructs were generated by PCR amplification of the Htt513

fragment from a previously published full length cDNA clone of the human htt gene [44]. The

primers used for PCR amplification were 5’ AATACCGCGGATGGCGACCCTGGAAAAGCTG,

which contains a 5’ SacII site and 5’ TTATACCGGTCCATCCACTGAGTCCGCCTGCAG, which

contains a 3’ AgeI site. The resultant PCR products were cloned into the corresponding restric-

tion sites of the previously described pPD30.38Q0::YFP plasmid which is a C. elegans vector con-

taining the unc-54 promoter driving YFP expression in body wall muscle cells [30].

The resulting sequence of the htt protein fragment used in this study was: MATLEKLMKAF
ESLKSFQ(n)PPPPPPPPPPPQLPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRPKK

Protein aggregation and toxicity
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ELSATKKDRVNHCLTICENIVAQSVRNSPEFQKLLGIAMELFLLCSDDAESDVRMVADECLNK
VIKALMDSNLPRLQLELYKEIKKNGAPRSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRT
SKRPEESVQETLAAAVPKIMASFGNFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQ
HSRRTQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTR
KEMEVSPSAEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQL
TAAKEESGGRSRSGSIVELIAGGGSSCSPVLSRKQKGKVLLGEEEALEDDSESRSDVSSSAL
TASVKDEISGELAASSGVSTPGSAGHDIITEQPRSQHTLQADSVD(Uniprot ID P42858).

Plasmid constructs were generated that had 15 or 128 CAG repeats, indicated as Punc-54Htt513

(Q15)::YFP or Punc-54Htt513(Q128)::YFP, respectively. The expressed proteins are herein referred

to as Htt513(Q15) or Htt513(Q128) for simplicity.

C. elegans strains, crosses, and culture

C. elegans were cultured according the standard methods [45]. In short, animals were main-

tained at 20˚C or 15˚C on NGM agar plates seeded with E. coli (OP50) obtained from the Cae-
norhabditis Genetics Center (St. Paul, Minnesota). The wild type strain used was the Bristol

N2 isolate. The Punc-54YFP line (herein referred to as YFP) was previously published and

expresses an integrated YFP transgene in body wall muscle cells [30]. To generate transgenic

animals, 50ng/μL of DNA encoding Punc-54Htt513(Q15)::YFP or Punc-54Htt513(Q128)::YFP were

microinjected into the gonads of adult wild type hermaphrodites to generate multiple (at least

5) independent lines transmitting extrachromosomal arrays. Integrated Punc-54Htt513(Q15)::

YFP (EAK102) or Punc-54Htt513(Q128)::YFP (EAK103) lines were generated by gamma irradi-

ation followed by backcrossing to N2 animals for at least three generations to ensure a wild

type genetic background free of secondary mutations.

Fluorescence microscopy

To obtain confocal z-stacks of transgenic C. elegans, animals were fixed with 4% paraformalde-

hyde and actin filaments were stained with phalloidin (Molecular Probes/Life Technologies,

Grand Island, NY) as previously described [7]. Imaging was with a Leica SP8 confocal micro-

scope (Wetzlar, Germany) using a 40X oil immersion objective. For Fluorescence Recovery

after Photobleaching (FRAP) of Htt513(Q128) foci in living animals, day 1 adults were immobi-

lized with 2mM levamisole, mounted on 2% agarose pads, and covered with a coverslip. FRAP

was performed on a Leica SP8 confocal microscope with a 63X oil immersion objective (Wet-

zlar, Germany). Data were analyzed as previously described [31]. For analysis of aggregation

over time, images were obtained with a Ziess Axio Observer A1 (Oberkochen, Germany)

inverted compound fluorescence microscope using a 20X objective. Micrographs of small

regions of the animal were stitched together manually to obtain images of whole animals.

Quantification of aggregate number

Quantification of aggregate number was performed on live animals at day 1 of adulthood.

Fluorescent micrographs were obtained with a Ziess Axio Observer (Oberkochen, Germany)

as described above and aggregate number in each image was determined by counting the fluo-

rescent foci. A minimum n-number of n = 50 animals was examined for each genotype.

Motility assays

Our measure of motility was thrashing rate in liquid. Individual animals harboring extra-

chromsomal or integrated arrays were examined at days 1, 4 and 8 of adulthood. They were

picked from petri plates to a 10μL drop of M9 on a microscope slide. Animals were given 30s

Protein aggregation and toxicity
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to recover from passaging before counting thrashes. A thrash was scored each time that the

head crossed the vertical midline of the body. The total number of thrashes was counted for

60s. An n-number of n = 30–50 animals was assayed for each genotype. Statistical analyses

were performed using R-studio.

Lifespan assays

Animals were acclimated at 20˚C for at least two generations before initiating lifespan analyses.

Forty age-matched L4 larvae were placed on NGM plates seeded with E. coli (OP50) and cul-

tured at 20˚C. During the reproductive time of their life cycle, animals were transferred away

from their progeny by daily passaging to freshly seeded plates. Post-reproductive adults were

passaged as needed to prevent starvation. Animals were scored as deceased when they no lon-

ger moved upon prodding the head several times with a platinum wire as described previously

[46]. Animals that crawled off the plate were censored in statistical analyses by adjusting the

total population to the number of animals seen on the plate on a given day. Data were analyzed

and plotted using R-studio.

Western blot analysis

100 fluorescent L4 larval stage animals were frozen at -80˚C in M9 overnight and thawed on

ice before boiling in Laemmli sample buffer for 5min. Samples were centrifuged at 10,000Xg

for 5min prior to loading on 10% polyacrylamide gels (SDS-PAGE). Following transfer to

PVDF filters, immunodetection was with an IRDye800 conjugated anti-GFP antibody (cat#

600-432-215) from Rockland Immunochemicals, Inc. (Gilbertsville, PA) or with the anti-

polyQ antibody 3B5H10 from Sigma (St. Louis, MO). Visualization was with an Odyssey sys-

tem from Li-Cor (Lincoln, NE). Three biological replicates were performed and average band

intensity for the three replicates was determined using the Odyssey system.

mRNA analysis

Ten day 1 and day 4 adult animals were frozen in liquid nitrogen and stored at -80˚C in M9

before RNA isolation using TrizolTM Reagent. RNA was treated with DNase I using the DNA-

freeTM DNA removal kit from Thermo Fisher Scientific, Inc. (Waltham, MA) according to the

manufacturers instructions. cDNA was synthesized using iScript Reverse Transcriptase (Bio-

Rad Laboratories, Hercules, CA) according to the manufacturers instructions. The Bio-Rad

cyber green master mix and the Bio-Rad MyIQ cycler were used for quantitative PCR (qPCR)

of yfp or actin as a loading control. The YFP primers were 5’ ATGGTGAGCAAGGGCGAGGAG
CTGTTC and 5’ GGTGGCATCGCCCTCGCCCTCGCCG.

The actin primers were 5’ ATCACCGCTCTTGCCCCATCand 5’ GGCCGGACTCGTCGTA
TTCTT. Three independent biological replicates were performed (each in technical triplicate)

and the data averaged.

Results and discussion

Expression of Htt513 in C. elegans body wall muscle cells

To express the first 513 amino acids of human htt (Htt513) in C. elegans body wall muscle cells,

we utilized the myosin heavy chain promoter, unc-54. YFP was translationally fused to the C-

terminus of Htt513 allowing us to visualize the protein in live animals. Because polyQ length is

known to affect aggregation and toxicity [47–49], we generated two different polyQ tract lengths

for the purpose of comparison. One was short (Q15) and in a range not usually associated with

HD. The other was much longer (Q128) and in the range of pathogenesis (Fig 1A). Formally, the

Protein aggregation and toxicity
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resultant proteins are Htt513(Q15)::YFP and Htt513(Q128)::YFP, respectively. However, for sim-

plicity’s sake we refer to them here as Htt513(Q15) and Htt513(Q128).

Because protein aggregation is a concentration-dependent process, we wanted to ensure that

our two Htt513 proteins were expressed at similar levels. We thus examined their relative levels

in integrated transgenic lines by immunoblot analysis with an anti-GFP antibody that reliably

cross-reacts with YFP. Both Htt513(Q15) and Htt513(Q128) accumulated to substantially lower

levels than YFP alone (Fig 1B). Specifically, Htt513(Q15) accumulated an average of 7% of YFP

levels and Htt513(Q128) accumulated an average of only 0.8% of YFP levels (Fig 1C). In fact,

Fig 1. Htt513 protein expression in C. elegans body wall muscle cells. (A) Schematic representation of gene constructs for Htt513(Qn)

expression in C. elegans body wall muscle cells. The polyQ-containing N-terminal domain including the first 513 amino acids of human htt

was translationally fused to YFP and expressed in body wall muscle cells under the control of the unc-54 promoter. Short (Q15) and long

(Q128) polyQ tracts were generated. (B) A representative immunoblot was probed with an anti-GFP antibody (top) and reprobed with an

anti-expanded polyQ antibody (bottom). (C) Quantification of protein bands detected with the anti-GFP antibody. Data represent means of

three biological replicates (n = 3) and error bars represent standard error of the mean.

doi:10.1371/journal.pone.0173644.g001

Protein aggregation and toxicity
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Htt513(Q128) protein levels were so low it was detectable only as a very faint band in an immu-

noblot analysis compared to the readily detected Htt513(Q15) protein. Because Htt513(Q128)

was so difficult to detect, we re-probed the immunoblot with a very sensitive antibody that was

raised against expanded polyQ tracts. As expected, the anti-expanded polyQ antibody recog-

nized Htt513(Q128), but not Htt513(Q15), demonstrating that the faint Htt513(Q128) band on

the anti-GFP immunoblot was indeed Htt513(Q128) (Fig 1B).

To confirm that the steady-state protein levels for Htt513(Q15) and Htt(Q128) were not

affected by the positions at which the transgenes inserted, we also examined protein levels in

lines transmitting non-integrated extrachromosomal arrays. The steady-state levels of Htt513

(Q15) and Htt513(Q128) protein were examined in at least 5 independent extrachromosomal

array lines and no overt differences were observed between lines harboring the same trans-

gene. Specifically, the levels of Htt513(Q15) were much lower than YFP alone, similar to the

results obtained from integrated lines. Importantly, Htt513(Q128) was only detected with the

anti-expanded polyQ antibody and not with the anti-GFP antibody as shown in a representa-

tive immunoblot (S1 Fig). At face value, this lack of detection with the anti-GFP antibody indi-

cates extremely low Htt513(Q128) protein levels, although an inhibitory effect of the expanded

polyQ tract on the binding of the anti-GFP antibody cannot be ruled out. Therefore, we also

examined mRNA levels using qRT-PCR. Both Htt513(Q15) and Htt513(Q128) mRNA levels

accumulated to only ~2% of control levels at day 1 and day 4 of adulthood (Fig 2). Because

Htt513(Q15) and Htt513(Q128) were expressed at similar levels, we can compare these lines

with respect to aggregation and toxicity.

Htt513 aggregates in a polyglutamine length-dependent manner in C.

elegans body wall muscle cells

For our model to useful, it should recapitulate some of the key features of HD, such as htt

aggregation. In patients, a threshold length of 35 glutamines has been described such that

Fig 2. Levels of Htt513 mRNA are low in adult animals. Total RNA was isolated from equivalent numbers

of YFP control animals and animals expressing Htt513(Q15) or Htt513(Q128) at day 1 or day 4 of adulthood.

qRT-PCR was performed with primers for YFP and expression levels were normalized to actin and plotted

relative to the YFP control at day 1 of adulthood, which was set equal to 100%. The data represent means of

three biological replicates and error bars represent standard error of the mean.

doi:10.1371/journal.pone.0173644.g002
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longer polyQ tracts result in htt aggregation. Thus, if the aggregation dynamics for Htt513 in

C. elegans are similar to that observed in patients, we would not expect Htt513(Q15) to aggre-

gate in C. elegans body wall muscle cells, but we would expect Htt513(Q128) to aggregate. Con-

sistent with this, Htt513(Q15) yielded primarily diffuse fluorescence at day 1 of adulthood,

whereas Htt513(Q128) formed fluorescent foci (Fig 3A). Upon counting the number of foci,

we found that the Htt513(Q15) integrated line had an average of less than one per animal com-

pared to the Htt513(Q128) integrated line that had an average of 26 (Fig 2B). These counts

were similar to those of corresponding lines harboring extrachromosomal arrays (S2 Fig).

Such foci are suggestive of Htt513(Q128) aggregation.

To determine if Htt513(Q128) formed bona fide protein aggregates, we performed Fluores-

cence Recovery After Photobleaching (FRAP) of the large, visible, Htt513(Q128) foci and com-

pared their recovery time to those of areas of diffuse fluorescence in animals expressing YFP

alone in body wall muscle cells. As expected for immobile protein aggregates, the Htt513(Q128)

foci showed no recovery of fluorescence within the 45s time course that we recorded (Fig 4).

This is in contrast to the Htt513(Q15) protein which did not form foci and whose diffuse fluo-

rescence recovered rapidly after photobleaching (S3 Fig). Together, these data indicate that

aggregation is dependent on polyQ tract length and not on other inherent characteristics of

the Htt513 protein fragment.

In HD patients, aggregation is age-dependent and correlates with the onset of symptoms.

To determine whether the aggregation of Htt513(Q15) or Htt513(Q128) changes during aging,

we examined animals grown to days 1, 4, or 8 of adulthood. We found that Htt(Q128) was

already aggregated at day 1 as described above (Fig 4), and that those aggregates persisted

unchanged to day 8. Furthermore, Htt513(Q15) was not aggregated at day 1 of adulthood, and

no age-dependent increase in aggregation was observed (Fig 5).

Surprisingly, instead of aggregation worsening over time, the levels of Htt513(Q15) protein

declined to almost undetectable levels by day 4 of adulthood (Fig 5). A parallel drop in mRNA

levels did not seem to cause this drop protein levels. qRT-PCR revealed that YFP control ani-

mals experienced a 60% decline in yfp mRNA between days 1 and 4 of adulthood. In contrast,

both Htt513(Q15) and Htt513(Q128) transgenes expressed only 2% of control levels at day 1 of

adulthood but expression did not decline during aging (Fig 2). In other words, Htt513(Q15)

and Htt513(Q128) mRNA levels were low but steady in adult animals.

The finding that Htt513(Q15) protein levels decline over time despite constant mRNA levels

suggests that Htt513(Q15) is a likely target for protein turnover. Additionally, it seems to be a

better substrate for turnover than Htt513(Q128) or YFP alone, as both of those proteins per-

sisted well into adulthood. This finding regarding protein stability is consistent with a recent

study of the half-lives of htt protein fragments in human cells in tissue culture where extremely

short N-terminal htt fragments were very stable, with half lives in the order of 16 hours, com-

pared to a longer fragment including the first 508 amino acids of human htt that had a half life

of only 1.5hrs [50]. The 513 amino acid fragment analyzed here is even longer than that, with

perhaps an even shorter half-life. Furthermore, the apparently greater stability of Htt513(Q128)

compared to Htt513(Q15) is likely due to increased aggregation of the polyQ-expanded protein

interfering with the degradation machinery.

Htt513(Q128) is toxic to C. elegans body wall muscle cells.

Htt exon 1 was previously shown to be toxic to C. elegans body wall muscle cells, especially

when it had an expanded polyQ repeat [29]. Likewise, expanded polyQ alone was also toxic to

muscle cells [30]. Interestingly, aging was shown to exacerbate the toxicity of some polyQ pro-

teins [30] but not others [51]. To determine whether Htt513 is toxic and whether toxicity is
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modulated by age or polyQ length, we assayed muscle cell function by measuring thrashing

rate in liquid at days 1, 4, and 8 of adulthood (Fig 6B).

Fig 3. The Htt513 protein forms large visible foci in body wall muscle cells in a polyglutamine length-dependent manner. (A)

Z-stack projections. Day 1 adult animals were fixed, stained with phalloidin, and z-stacks of head regions were imaged with a confocal

microscope. YFP is shown in yellow and phalloidin-stained actin filaments are shown in red. (B) Quantification of fluorescent foci

number in whole animals expressing Htt513(Q15) or Htt513(Q128). The data represent average foci number across 50 individuals

(n = 50). Error bars represent standard error of the mean.

doi:10.1371/journal.pone.0173644.g003
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Qualitatively, Htt513(Q15) and Htt513(Q128) appeared to have slower thrashing rates than

that of control animals expressing YFP alone at all time points tested. ANOVA analysis of all

nine treatments yielded a p-value of 1.1e-16, so we performed post-hoc analyses in the form of

a priori planned comparisons using the Scheffé multiple comparisons test (Table 2).

Fig 4. FRAP reveals Htt513(Q128) aggregates in C. elegans body wall muscle cells. Fluorescence Recovery

After Photobleaching (FRAP) was performed on regions of diffuse fluorescence in animals expressing YFP alone or

on individual fluorescent foci in Htt513(Q128) animals. (A) Representative images before bleaching (pre-bleach),

immediately following bleaching (post-bleach) and after a 45s recovery (post-recovery). Red boxes indicate the

regions subjected to photobleaching. (B) Quantification of relative fluorescence intensity over a 45s FRAP time

course. Data represent averages of at least 10 fluorescent foci (or regions of diffuse fluorescence) in different

animals. Error bars represent standard error of the mean. The time of bleaching is indicated with an arrow.

doi:10.1371/journal.pone.0173644.g004
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Fig 5. Age-dependent decline in Htt513(Q15) steady-state protein levels. Representative fluorescent

micrographs showing YFP in live animals examined over a time course spanning days 1–8 of adulthood. Htt513

(Q15), and Htt513(Q128) integrated lines were imaged with the same exposure time (300ms), while YFP alone

was imaged with an exposure time 100X shorter (3ms) due to its much higher expression levels. Intestinal

autoflourescence began to appear between days 4–8 of adulthood and can be seen in the animals imaged with

longer exposure times.

doi:10.1371/journal.pone.0173644.g005

Protein aggregation and toxicity

PLOS ONE | DOI:10.1371/journal.pone.0173644 March 10, 2017 12 / 19



Using a p-value cut-off of less than 0.001, these data indicate that only Htt513(Q128)

resulted in motility defects relative to YFP alone at all time points tested. In contrast, Htt513

(Q15) appeared to be greatly affected in motility only at day 4 of adulthood, only somewhat

affected at day 8, and showed no age-dependent increase in toxicity as determined by compar-

ing the thrashing rate of Htt513(Q15) animals over time (Fig 6B, Table 2). Likewise, Htt513

(Q128) did not increase in toxicity during aging. Instead, there was a slight motility improve-

ment observed between days 1–4. Despite the statistically significant motility defects observed

for Htt513(Q128) animals, no overt morphological abnormalities were detected in muscle cells

via phalloidin staining of actin filaments (Fig 3A).

To ensure that the observed toxicity was not an artifact of the Htt513(Q128) transgene inser-

tion site, we also examined the thrashing rate of animals expressing Htt513(Q15) and Htt513

(Q128) from extrachromosomal arrays. We found a similar motility impairment at day 1 of

adulthood (Fig 6A), indicating that the observed motility defect is most likely due to the toxic

effects of the Htt513(Q128) protein.

Animals expressing Htt513(Q128) have a shortened life span

As a complementary approach to measure the toxic effects of the Htt513(Q128) protein, we

asked whether expression in C. elegans body wall muscle cells had any effect on lifespan. To

address this, we performed a lifespan analysis of N2 (wild type), YFP, Htt513(Q15), and Htt513

(Q128) animals. We observed a marked reduction in the mean lifespan of animals expressing

Htt513(Q128) (Fig 7). Specifically, Htt513(Q128) animals had a mean lifespan of 12 days and a

maximum lifespan of 25 days compared to N2, YFP, and Htt513(Q15) animals which all had

mean lifespans of 21 days and maximum lifespan of 29, 25, and 28 days respectively. These

data indicate that the toxicity of the Htt513(Q128) protein manifests not only as impaired mus-

cle function but also early death. This is in contrast to the previously described C-terminal

fragment of the human ataxin-3 protein which, even in its polyQ-expanded form, did not

affect C. elegans lifespan despite a significant impairment of muscle function [51].

Conclusions

We have described a new model for the aggregation and toxicity of a disease-associated frag-

ment of the polyQ-containing htt protein in C. elegans body wall muscle cells. This is the first

time that a htt fragment of this length (Htt513) was expressed in C. elegans–all other fragments

have been no longer than 171 amino acids. Furthermore, this is only the second time that any

htt fragment has been expressed in C. elegans body wall muscle cells. All polyQ-containing

proteins expressed to date in C. elegans body wall muscle cells (polyQ alone, AT3CT, Htt

exon1, and now Htt513) aggregate in a polyQ length-dependent manner and display polyQ

length-dependent toxicity. One notable difference is that steady-state Htt513 protein levels

seem to be lower than those of other polyQ-containing proteins in this same tissue. It is possi-

ble that Htt513 is a better substrate for protein turnover, especially in its wild type rather than

polyQ-expanded form. Another notable difference is that only Htt513(Q128) was reported to

shorten lifespan. Taken together, the data presented here suggest that the Htt513 fragment

may have unique physical interactions with the cellular environment, including, but not lim-

ited to, the protein degradation machinery. As such, screens for genetically or physically inter-

acting proteins will likely tell us a great deal about how Htt513 interfaces with the proteostasis

network for which many members including molecular chaperones and neuronal signaling

components have recently been identified in C. elegans [5]. Finally, this should be a useful

model to study the muscle-specific effects of mutant htt.
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Fig 6. Htt513(Q128) is toxic to body wall muscle cells. Toxicity was determined as a function of the rate at

which animals thrash in liquid. Individual data points are indicated for each genotype and age to illustrate the full

range of data. Mean thrashing rate is indicated with horizontal lines. Error bars represent 95% confidence intervals.

A) Thrashing rate at day 1 of adulthood for animals harboring extrachromosomal arrays. The indicated p-values

are the results of Sheffé multiple comparisons post-hoc tests. ANOVA p-value = 1.23E-10. n = 30. B) Thrashing

rate at days 1, 4, and 8 of adulthood for animals harboring integrated transgenes. ANOVA p-value = 1.1e-16.

n = 50

doi:10.1371/journal.pone.0173644.g006
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Supporting information

S1 Fig. Expression of Htt513(Qn) proteins in C. elegans body wall muscle cells from extra-

chromosomal arrays. Top: Representative immunoblot probed with an anti-expanded polyQ

antibody. Bottom: The same immunoblot as above probed with an anti-GFP antibody. The

YFP control was expressed from an integrated transgene while Htt513(Q15) and Htt513(Q128)

Table 2. Scheffé Multiple Comparisons Post-Hoc Test of Significance.

Treatment pairs p-value Significance

day 1 YFP vs. Htt513(Q15) 0.99 -

day 1 YFP vs. Htt513(Q128) 1.95E-11 ***

day 4 YFP vs. Htt513(Q15) 2.22E-16 ***

day 4 YFP vs. Htt513(Q128) 1.11E-16 ***

day 8 YFP vs. Htt513(Q15) 0.001 ***

day 8 YFP vs. Htt513(Q128) 2.28E-13 ***

Htt513(Q15) day 1 vs. day 4 0.03 *

Htt513(Q15) day 1 vs. day 8 2.99E-04 ***

Htt513(Q15) day 4 vs. day 8 9.99E-01 -

Htt513(Q128) day 1 vs. day 4 3.48E-08 ***

Htt513(Q128) day 1 vs. day 8 1.95E-11 ***

Htt513(Q128) day 4 vs. day 8 0.99 -

- p>0.05.

* p<0.05.

*** p�0.001.

doi:10.1371/journal.pone.0173644.t002

Fig 7. Htt513 (Q128) animals have a shortened lifespan. Lifespan assays were performed on populations of

at least 40 individuals expressing either Htt513(Q15), Htt513(Q128), or YFP in body wall muscle as compared

to wild type animals. The fraction of animals still alive at any given day is indicated.

doi:10.1371/journal.pone.0173644.g007
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were expressed from extrachromosomal arrays.

(TIF)

S2 Fig. Htt513 aggregation in extrachromosomal array lines. Day 1 adult animals were fixed

and imaged with a compound fluorescence microscope. YFP fluorescence is shown for animals

expressing Htt513(Q15) or Htt513(Q128).

(TIF)

S3 Fig. Fluorescence Recovery After Photobleaching (FRAP) reveals that Htt513 (Q15) is

not aggregated. FRAP was performed on regions of diffuse fluorescence in animals expressing

YFP alone, Q19-YFP or Htt513(Q15). Quantification of relative fluorescence intensity over a

60s FRAP time course is shown. Data represent averages of at least 10 regions of diffuse fluo-

rescence in different animals. Error bars represent standard error of the mean. The time of

bleaching is indicated with an arrow.

(TIF)

Acknowledgments

We would like to the laboratory of Richard Morimoto at Northwestern University for the

equipment used to generate transgenic animals, as well as for fruitful conversations. The labo-

ratory of Janine Kirstein at the Leibniz Institute for Molecular Pharmacology provided assis-

tance with transgene integration. Matthew Rudd of the University of the South provided

assistance with statistical analyses. Last but not least, this research project was supported in

part by the Emory University Integrated Cellular Imaging Microscopy Core.

Author Contributions

Conceptualization: EK.

Formal analysis: AL EK.

Funding acquisition: EK.

Investigation: AL HU LS EK.

Methodology: AL EK.

Project administration: EK.

Resources: EK.

Supervision: EK.

Validation: AL HU LS EK.

Visualization: AL HU EK.

Writing – original draft: EK.

Writing – review & editing: AL HU EK.

References

1. Huntington G. On chorea. George Huntington, M.D. The Journal of neuropsychiatry and clinical neuro-

sciences. 2003; 15(1):109–12. Epub 2003/01/31. doi: 10.1176/jnp.15.1.109 PMID: 12556582

2. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Lakshmi S, et al. A novel gene containing

a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The

Protein aggregation and toxicity

PLOS ONE | DOI:10.1371/journal.pone.0173644 March 10, 2017 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173644.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173644.s003
http://dx.doi.org/10.1176/jnp.15.1.109
http://www.ncbi.nlm.nih.gov/pubmed/12556582


Huntington’s Disease Collaborative Research Group. Cell. 1993; 72(6):971–83. Epub 1993/03/26.

PMID: 8458085

3. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, et al. Intranuclear neuronal inclu-

sions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the

density of inclusions and IT15 CAG triplet repeat length. Neurobiology of disease. 1998; 4(6):387–97.

Epub 1998/07/17. doi: 10.1006/nbdi.1998.0168 PMID: 9666478

4. Carrell RW, Lomas DA. Conformational disease. Lancet. 1997; 350(9071):134–8. Epub 1997/07/12.

doi: 10.1016/S0140-6736(97)02073-4 PMID: 9228977

5. Kikis EA. The struggle by Caenorhabditis elegans to maintain proteostasis during aging and disease.

Biology direct. 2016; 11(1):58. Epub 2016/11/05. PubMed Central PMCID: PMC5093949. doi: 10.1186/

s13062-016-0161-2 PMID: 27809888

6. Gidalevitz T, Kikis EA, Morimoto RI. A cellular perspective on conformational disease: the role of

genetic background and proteostasis networks. Current opinion in structural biology. 2010; 20(1):23–

32. Epub 2010/01/08. PubMed Central PMCID: PMC3050498. doi: 10.1016/j.sbi.2009.11.001 PMID:

20053547

7. Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Cae-

norhabditis elegans aging. Proceedings of the National Academy of Sciences of the United States of

America. 2009; 106(35):14914–9. Epub 2009/08/27. PubMed Central PMCID: PMC2736453. doi: 10.

1073/pnas.0902882106 PMID: 19706382

8. Bailey CK, Andriola IF, Kampinga HH, Merry DE. Molecular chaperones enhance the degradation of

expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular

atrophy. Human molecular genetics. 2002; 11(5):515–23. Epub 2002/03/05. PMID: 11875046

9. Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, Chalfant MA, et al. Small-molecule proteostasis

regulators for protein conformational diseases. Nature chemical biology. 2012; 8(2):185–96. Epub

2011/12/27. PubMed Central PMCID: PMC3262058.

10. Chai Y, Koppenhafer SL, Bonini NM, Paulson HL. Analysis of the role of heat shock protein (Hsp)

molecular chaperones in polyglutamine disease. The Journal of neuroscience: the official journal of the

Society for Neuroscience. 1999; 19(23):10338–47. Epub 1999/11/27.

11. Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T. Heat shock transcription factor 1-

activating compounds suppress polyglutamine-induced neurodegeneration through induction of multi-

ple molecular chaperones. The Journal of biological chemistry. 2008; 283(38):26188–97. Epub 2008/

07/18. doi: 10.1074/jbc.M710521200 PMID: 18632670

12. Prahlad V, Morimoto RI. Neuronal circuitry regulates the response of Caenorhabditis elegans to mis-

folded proteins. Proceedings of the National Academy of Sciences of the United States of America.

2011; 108(34):14204–9. Epub 2011/08/17. PubMed Central PMCID: PMC3161566. doi: 10.1073/pnas.

1106557108 PMID: 21844355

13. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine

protein aggregation and toxicity. Proceedings of the National Academy of Sciences of the United States

of America. 2002; 99 Suppl 4:16412–8. Epub 2002/08/22. PubMed Central PMCID: PMC139902.

14. Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ. Hsp70 and Hsp40 attenuate formation of

spherical and annular polyglutamine oligomers by partitioning monomer. Nature structural & molecular

biology. 2004; 11(12):1215–22. Epub 2004/11/16.

15. Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM. Suppression of polyglutamine-

mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature genetics. 1999;

23(4):425–8. Epub 1999/12/02. doi: 10.1038/70532 PMID: 10581028

16. Butterworth NJ, Williams L, Bullock JY, Love DR, Faull RL, Dragunow M. Trinucleotide (CAG) repeat

length is positively correlated with the degree of DNA fragmentation in Huntington’s disease striatum.

Neuroscience. 1998; 87(1):49–53. Epub 1998/08/29. PMID: 9722140

17. Mattson MP. Apoptosis in neurodegenerative disorders. Nature reviews Molecular cell biology. 2000; 1

(2):120–9. Epub 2001/03/20. doi: 10.1038/35040009 PMID: 11253364

18. Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, et al. Cleavage of

huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract.

Nature genetics. 1996; 13(4):442–9. Epub 1996/08/01. doi: 10.1038/ng0896-442 PMID: 8696339

19. Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singaraja R, et al. Caspase cleavage

of gene products associated with triplet expansion disorders generates truncated fragments containing

the polyglutamine tract. The Journal of biological chemistry. 1998; 273(15):9158–67. Epub 1998/05/16.

PMID: 9535906

20. Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, et al. Inhibiting caspase cleavage of

huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. The Journal of

Protein aggregation and toxicity

PLOS ONE | DOI:10.1371/journal.pone.0173644 March 10, 2017 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/8458085
http://dx.doi.org/10.1006/nbdi.1998.0168
http://www.ncbi.nlm.nih.gov/pubmed/9666478
http://dx.doi.org/10.1016/S0140-6736(97)02073-4
http://www.ncbi.nlm.nih.gov/pubmed/9228977
http://dx.doi.org/10.1186/s13062-016-0161-2
http://dx.doi.org/10.1186/s13062-016-0161-2
http://www.ncbi.nlm.nih.gov/pubmed/27809888
http://dx.doi.org/10.1016/j.sbi.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/20053547
http://dx.doi.org/10.1073/pnas.0902882106
http://dx.doi.org/10.1073/pnas.0902882106
http://www.ncbi.nlm.nih.gov/pubmed/19706382
http://www.ncbi.nlm.nih.gov/pubmed/11875046
http://dx.doi.org/10.1074/jbc.M710521200
http://www.ncbi.nlm.nih.gov/pubmed/18632670
http://dx.doi.org/10.1073/pnas.1106557108
http://dx.doi.org/10.1073/pnas.1106557108
http://www.ncbi.nlm.nih.gov/pubmed/21844355
http://dx.doi.org/10.1038/70532
http://www.ncbi.nlm.nih.gov/pubmed/10581028
http://www.ncbi.nlm.nih.gov/pubmed/9722140
http://dx.doi.org/10.1038/35040009
http://www.ncbi.nlm.nih.gov/pubmed/11253364
http://dx.doi.org/10.1038/ng0896-442
http://www.ncbi.nlm.nih.gov/pubmed/8696339
http://www.ncbi.nlm.nih.gov/pubmed/9535906


biological chemistry. 2000; 275(26):19831–8. Epub 2000/04/20. doi: 10.1074/jbc.M001475200 PMID:

10770929

21. Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, et al. Proteolysis of mutant

huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei

in Huntington disease. The Journal of biological chemistry. 2010; 285(12):8808–23. Epub 2010/01/21.

PubMed Central PMCID: PMC2838303. doi: 10.1074/jbc.M109.075028 PMID: 20086007

22. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al. Huntington disease. Nature

reviews Disease primers. 2015; 1:15005. Epub 2015/01/01. doi: 10.1038/nrdp.2015.5 PMID: 27188817

23. Sahoo B, Singer D, Kodali R, Zuchner T, Wetzel R. Aggregation behavior of chemically synthesized,

full-length huntingtin exon1. Biochemistry. 2014; 53(24):3897–907. Epub 2014/06/13. PubMed Central

PMCID: PMC4075985. doi: 10.1021/bi500300c PMID: 24921664

24. Sahl SJ, Weiss LE, Duim WC, Frydman J, Moerner WE. Cellular inclusion bodies of mutant huntingtin

exon 1 obscure small fibrillar aggregate species. Scientific reports. 2012; 2:895. Epub 2012/11/30.

PubMed Central PMCID: PMC3508451. doi: 10.1038/srep00895 PMID: 23193437

25. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD

gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in trans-

genic mice. Cell. 1996; 87(3):493–506. Epub 1996/11/01. PMID: 8898202

26. Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M, et al. A potent small molecule inhib-

its polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in

vivo. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102

(3):892–7. Epub 2005/01/12. PubMed Central PMCID: PMC545525. doi: 10.1073/pnas.0408936102

PMID: 15642944

27. Faber PW, Alter JR, MacDonald ME, Hart AC. Polyglutamine-mediated dysfunction and apoptotic

death of a Caenorhabditis elegans sensory neuron. Proceedings of the National Academy of Sciences

of the United States of America. 1999; 96(1):179–84. PMID: 9874792

28. Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C. Expanded polyglutamines in Cae-

norhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neu-

rons without cell death. Proceedings of the National Academy of Sciences of the United States of

America. 2001; 98(23):13318–23. doi: 10.1073/pnas.231476398 PMID: 11687635

29. Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ. Suppression of polyglutamine-induced

toxicity in cell and animal models of Huntington’s disease by ubiquilin. Human molecular genetics.

2006; 15(6):1025–41. Epub 2006/02/08. doi: 10.1093/hmg/ddl017 PMID: 16461334

30. Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein

aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2002; 99(16):10417–

22. doi: 10.1073/pnas.152161099 PMID: 12122205

31. Brignull HR, Moore FE, Tang SJ, Morimoto RI. Polyglutamine proteins at the pathogenic threshold dis-

play neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. The Journal of neu-

roscience: the official journal of the Society for Neuroscience. 2006; 26(29):7597–606.

32. Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. Progressive disruption of cellular protein fold-

ing in models of polyglutamine diseases. Science. 2006; 311(5766):1471–4. Epub 2006/02/14. doi: 10.

1126/science.1124514 PMID: 16469881

33. Gidalevitz T, Wang N, Deravaj T, Alexander-Floyd J, Morimoto RI. Natural genetic variation determines

susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC biology.

2013; 11(1):100. Epub 2013/10/02.

34. Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, et al. Genome-wide RNA inter-

ference screen identifies previously undescribed regulators of polyglutamine aggregation. Proceedings

of the National Academy of Sciences of the United States of America. 2004; 101(17):6403–8. doi: 10.

1073/pnas.0307697101 PMID: 15084750

35. Lejeune FX, Mesrob L, Parmentier F, Bicep C, Vazquez-Manrique RP, Parker JA, et al. Large-scale

functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polygluta-

mine neurons. BMC genomics. 2012; 13:91. Epub 2012/03/15. PubMed Central PMCID: PMC3331833.

doi: 10.1186/1471-2164-13-91 PMID: 22413862

36. Parker JA, Vazquez-Manrique RP, Tourette C, Farina F, Offner N, Mukhopadhyay A, et al. Integration

of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 2012; 32(36):12630–40. Epub 2012/

09/08. PubMed Central PMCID: PMC3780431.

37. Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, et al. The Wnt receptor

Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of

Protein aggregation and toxicity

PLOS ONE | DOI:10.1371/journal.pone.0173644 March 10, 2017 18 / 19

http://dx.doi.org/10.1074/jbc.M001475200
http://www.ncbi.nlm.nih.gov/pubmed/10770929
http://dx.doi.org/10.1074/jbc.M109.075028
http://www.ncbi.nlm.nih.gov/pubmed/20086007
http://dx.doi.org/10.1038/nrdp.2015.5
http://www.ncbi.nlm.nih.gov/pubmed/27188817
http://dx.doi.org/10.1021/bi500300c
http://www.ncbi.nlm.nih.gov/pubmed/24921664
http://dx.doi.org/10.1038/srep00895
http://www.ncbi.nlm.nih.gov/pubmed/23193437
http://www.ncbi.nlm.nih.gov/pubmed/8898202
http://dx.doi.org/10.1073/pnas.0408936102
http://www.ncbi.nlm.nih.gov/pubmed/15642944
http://www.ncbi.nlm.nih.gov/pubmed/9874792
http://dx.doi.org/10.1073/pnas.231476398
http://www.ncbi.nlm.nih.gov/pubmed/11687635
http://dx.doi.org/10.1093/hmg/ddl017
http://www.ncbi.nlm.nih.gov/pubmed/16461334
http://dx.doi.org/10.1073/pnas.152161099
http://www.ncbi.nlm.nih.gov/pubmed/12122205
http://dx.doi.org/10.1126/science.1124514
http://dx.doi.org/10.1126/science.1124514
http://www.ncbi.nlm.nih.gov/pubmed/16469881
http://dx.doi.org/10.1073/pnas.0307697101
http://dx.doi.org/10.1073/pnas.0307697101
http://www.ncbi.nlm.nih.gov/pubmed/15084750
http://dx.doi.org/10.1186/1471-2164-13-91
http://www.ncbi.nlm.nih.gov/pubmed/22413862


mutant huntingtin pathogenicity. PLoS biology. 2014; 12(6):e1001895. Epub 2014/06/25. PubMed Cen-

tral PMCID: PMC4068980. doi: 10.1371/journal.pbio.1001895 PMID: 24960609

38. Zielonka D, Piotrowska I, Marcinkowski JT, Mielcarek M. Skeletal muscle pathology in Huntington’s dis-

ease. Frontiers in physiology. 2014; 5:380. Epub 2014/10/24. PubMed Central PMCID: PMC4186279.

doi: 10.3389/fphys.2014.00380 PMID: 25339908

39. Reddy PH. Increased mitochondrial fission and neuronal dysfunction in Huntington’s disease: implica-

tions for molecular inhibitors of excessive mitochondrial fission. Drug discovery today. 2014; 19(7):951–

5. Epub 2014/04/01. PubMed Central PMCID: PMC4191657. doi: 10.1016/j.drudis.2014.03.020 PMID:

24681059

40. Lodi R, Schapira AH, Manners D, Styles P, Wood NW, Taylor DJ, et al. Abnormal in vivo skeletal muscle

energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy. Annals of neurol-

ogy. 2000; 48(1):72–6. Epub 2000/07/14. PMID: 10894218

41. Wang H, Lim PJ, Karbowski M, Monteiro MJ. Effects of overexpression of huntingtin proteins on mito-

chondrial integrity. Human molecular genetics. 2009; 18(4):737–52. Epub 2008/11/29. PubMed Central

PMCID: PMC2722218. doi: 10.1093/hmg/ddn404 PMID: 19039036

42. Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nature genetics. 1995; 11

(2):115–6. Epub 1995/10/01. doi: 10.1038/ng1095-115 PMID: 7550332

43. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, et al. A YAC mouse

model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective

striatal neurodegeneration. Neuron. 1999; 23(1):181–92. PMID: 10402204

44. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis

but death does not correlate with the formation of intranuclear inclusions. Cell. 1998; 95(1):55–66. Epub

1998/10/20. PMID: 9778247

45. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77(1):71–94. Epub 1974/05/01.

PubMed Central PMCID: PMC1213120. PMID: 4366476

46. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as

wild type. Nature. 1993; 366(6454):461–4. doi: 10.1038/366461a0 PMID: 8247153

47. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, et al. Trinucleotide repeat length

instability and age of onset in Huntington’s disease. Nature genetics. 1993; 4(4):387–92. Epub 1993/08/

01. doi: 10.1038/ng0893-387 PMID: 8401587

48. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, et al. Relationship between trinu-

cleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature genetics. 1993; 4

(4):393–7. Epub 1993/08/01. doi: 10.1038/ng0893-393 PMID: 8401588

49. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, et al. The relationship between

trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nature genetics. 1993;

4(4):398–403. Epub 1993/08/01. doi: 10.1038/ng0893-398 PMID: 8401589

50. Bhat KP, Yan S, Wang CE, Li S, Li XJ. Differential ubiquitination and degradation of huntingtin frag-

ments modulated by ubiquitin-protein ligase E3A. Proceedings of the National Academy of Sciences of

the United States of America. 2014; 111(15):5706–11. Epub 2014/04/08. PubMed Central PMCID:

PMC3992696. doi: 10.1073/pnas.1402215111 PMID: 24706802

51. Christie NT, Lee AL, Fay HG, Gray AA, Kikis EA. Novel polyglutamine model uncouples proteotoxicity

from aging. PloS one. 2014; 9(5):e96835. Epub 2014/05/13. PubMed Central PMCID: PMC4016013.

doi: 10.1371/journal.pone.0096835 PMID: 24817148

Protein aggregation and toxicity

PLOS ONE | DOI:10.1371/journal.pone.0173644 March 10, 2017 19 / 19

http://dx.doi.org/10.1371/journal.pbio.1001895
http://www.ncbi.nlm.nih.gov/pubmed/24960609
http://dx.doi.org/10.3389/fphys.2014.00380
http://www.ncbi.nlm.nih.gov/pubmed/25339908
http://dx.doi.org/10.1016/j.drudis.2014.03.020
http://www.ncbi.nlm.nih.gov/pubmed/24681059
http://www.ncbi.nlm.nih.gov/pubmed/10894218
http://dx.doi.org/10.1093/hmg/ddn404
http://www.ncbi.nlm.nih.gov/pubmed/19039036
http://dx.doi.org/10.1038/ng1095-115
http://www.ncbi.nlm.nih.gov/pubmed/7550332
http://www.ncbi.nlm.nih.gov/pubmed/10402204
http://www.ncbi.nlm.nih.gov/pubmed/9778247
http://www.ncbi.nlm.nih.gov/pubmed/4366476
http://dx.doi.org/10.1038/366461a0
http://www.ncbi.nlm.nih.gov/pubmed/8247153
http://dx.doi.org/10.1038/ng0893-387
http://www.ncbi.nlm.nih.gov/pubmed/8401587
http://dx.doi.org/10.1038/ng0893-393
http://www.ncbi.nlm.nih.gov/pubmed/8401588
http://dx.doi.org/10.1038/ng0893-398
http://www.ncbi.nlm.nih.gov/pubmed/8401589
http://dx.doi.org/10.1073/pnas.1402215111
http://www.ncbi.nlm.nih.gov/pubmed/24706802
http://dx.doi.org/10.1371/journal.pone.0096835
http://www.ncbi.nlm.nih.gov/pubmed/24817148

