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Abstract

The accurate detection of foot-strike and toe-off is often critical in the assessment of running

biomechanics. The gold standard method for step event detection requires force data which

are not always available. Although kinematics-based algorithms can also be used, their

accuracy and generalisability are limited, often requiring corrections for speed or foot-strike

pattern. The purpose of this study was to develop FootNet, a novel kinematics and deep

learning-based algorithm for the detection of step events in treadmill running. Five treadmill

running datasets were gathered and processed to obtain segment and joint kinematics, and

to identify the contact phase within each gait cycle using force data. The proposed algorithm

is based on a long short-term memory recurrent neural network and takes the distal tibia

anteroposterior velocity, ankle dorsiflexion/plantar flexion angle and the anteroposterior and

vertical velocities of the foot centre of mass as input features to predict the contact phase

within a given gait cycle. The chosen model architecture underwent 5-fold cross-validation

and the final model was tested in a subset of participants from each dataset (30%). Non-

parametric Bland-Altman analyses (bias and [95% limits of agreement]) and root mean

squared error (RMSE) were used to compare FootNet against the force data step event

detection method. The association between detection errors and running speed, foot-strike

angle and incline were also investigated. FootNet outperformed previously published

algorithms (foot-strike bias = 0 [–10, 7] ms, RMSE = 5 ms; toe-off bias = 0 [–10, 10] ms,

RMSE = 6 ms; and contact time bias = 0 [–15, 15] ms, RMSE = 8 ms) and proved robust to

different running speeds, foot-strike angles and inclines. We have made FootNet’s source

code publicly available for step event detection in treadmill running when force data are not

available.
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Introduction

Running is one of the most popular sports around the world [1, 2] and one of the most studied

actions within human movement research. Biomechanical analyses of running technique typi-

cally involve the identification of gait cycles (i.e. strides) and rely on the accurate detection of

foot-strike and toe-off within each cycle. Foot-strike and toe-off are also used to compute basic

running metrics associated with performance and injury, two of the main foci of running bio-

mechanics research and consumer-based running technology. The current “gold standard” to

identify foot-strike and toe-off for both overground and treadmill running is the onset and off-

set of the vertical ground reaction force (vGRF) that exceeds a particular force magnitude.

However, force plates are typically limited to small areas in overground running studies mak-

ing it difficult to collect several consecutive steps and force-instrumented treadmills are costly

and only available in a few laboratories. As an alternative, conventional treadmills are often

used in running kinematics research and gait clinics, requiring the estimation of step events

without force data, which has historically proved challenging.

There are several algorithms that use kinematic quantities as input for step detection in

treadmill running within the current literature [3–5]. Researchers have explored different vari-

ables to detect contact events including anatomical landmark trajectories (mainly on the foot)

and their derivatives, and segment/joint kinematics [5, 6]. Algorithms based on landmark tra-

jectories are simpler but typically require markers to be affixed to the shoe or foot in highly

deformable areas (e.g. fifth metatarsal head, hallux). The repeated impacts and metatarsal joint

dorsiflexion during late stance can compromise marker fixation especially in longer trials,

leading to losing a marker or introducing noise into the marker trajectory signal. Noise can be

further amplified when differentiating the signals, potentially affecting the accuracy and reli-

ability of methods using high order derivatives. Algorithms using segment or joint kinematics

as input may be more robust to noise in individual marker trajectories but they can be sensitive

to errors in marker placement, which affect the computation of segment and joint kinematics

[7–9].

Despite the multiple studies in kinematics-based step event detection, current algorithms

require specific marker configurations, can be affected by running speed or foot-strike patterns

[4] and validations have only been conducted in a single laboratory, potentially limiting their

generalisability [3]. Furthermore, algorithm assessment has predominantly been limited to

accuracy comparisons against a “gold standard” or other algorithms, but there has been little

discussion about the impact that errors in the estimation of step events may have on the quan-

tification and assessment of kinematic variables commonly studied in running biomechanics.

Osis et al. [10] showed that typically accepted errors of 20 ms in the detection of foot-strike

can imply a change in knee flexion angle of up to 7˚ at relatively low running speeds

(2.65 ± 0.22 m/s). With joint angular velocity expected to increase at higher speeds, the impact

of a 20 ms error on a given variable can become larger, requiring careful consideration. This

highlights: a) the need for a more comprehensive understanding of the sensitivity of com-

monly studied kinematic variables at foot-strike and toe-off to errors in step detection; and b)

the room for improvement in the accuracy, reliability and generalisability of step detection

algorithms based on kinematics.

Recently, deep learning methods have provided solutions to complex pattern recognition

and signal processing problems [11]. A deep learning model is a hierarchical network of func-

tions organised in several interconnected layers [12]. Function parameters (i.e. weights and

bias) are optimised in the training process to map a set of input features to desired output

labels. Amongst the different network architectures, recurrent neural networks (RNN), and

more specifically long short-term memory neural networks (LSTM) [13] are particularly well
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suited for supervised learning tasks [14] on sequential data such as the kinematic and kinetic

time-series typically studied in biomechanics. LSTM networks have proved successful in the

identification of events in audio signals [15] and the classification of electrocardiogram signals

[16]. In recent studies [17], LSTM has also been used in biomechanics to detect step events in

children with gait disorders. Numerical results showed that LSTM outperformed existing algo-

rithms, which makes it a promising candidate for foot-strike and toe-off event detection in

treadmill running.

Therefore, the purpose of this study was to develop and evaluate FootNet, a novel kinemat-

ics and deep learning-based algorithm for foot-strike and toe-off event detection during tread-

mill running. The algorithm is based on an LSTM network and has been trained and tested

using data collected under different running conditions (e.g. speeds, foot-strikes, inclines) and

laboratories. We also investigated the sensitivity of different kinematic variables to errors in

step detection.

Materials & methods

Data collection

We gathered five treadmill running datasets including lower limb kinematics and GRFs. These

data were collected in three independent laboratories and present a wide variety of participant

characteristics, testing protocols and equipment (Table 1):

• Foot-strikes dataset is an open access dataset [18] including 28 experienced athletes with

rearfoot, midfoot and forefoot strike patterns. The testing protocol was approved by the Uni-

versidade Federal do ABC Ethics committee and written informed consent was obtained

from each participant prior to participation in the study. Participants were captured using a

12-camera motion capture system (Motion Analysis, Santa Rosa, CA, USA) collecting at 150

Hz, and a dual-belt instrumented treadmill (FIT, Bertec, Columbus, OH, USA) collecting at

300 Hz synchronised through Cortex 6.0 software (Motion Analysis, Santa Rosa, CA, USA).

• Inclines dataset is another open access dataset [19] including 10 recreational participants

running at different speeds on positive and negative gradients. Ethical approval for the test-

ing protocol was granted by the Institutional Review Board at Vanderbilt University and all

participants gave written informed consent prior to completing the test. Participants were

captured using a 10-camera motion capture system (Vicon Motion Systems, Oxford, UK)

collecting at 200 Hz and a dual-belt instrumented treadmill (Bertec Corporation, Columbus,

Ohio, US) collecting at 1000 Hz synchronised through Vicon Nexus 2.9 software (Vicon

Motion Systems, Oxford, UK).

• Speed dataset included 15 recreational participants running at a wide range of speeds (i.e.

2.5–5.0 m/s at 0.5 m/s increments).

• Footwear dataset included 11 long distance runners running at a fixed speed and their pre-

ferred speed under different athletic footwear conditions.

• Prolonged run dataset [20] included 16 recreational runners running at their preferred speed

under two athletic footwear conditions (i.e. neutral and stability), running for two bouts of

21 minutes with a 2-minute break in between during which data were recorded every 5

minutes.

Approval for the studies relating to the Speed, Footwear and Fatigue datasets was gained

from the institutional review board at the University of Massachusetts and written informed
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consent for all participants was obtained. These three datasets were collected using an 8-cam-

era motion capture system (Qualysis, Inc., Gothenburg, Sweden) collecting at 200 Hz and an

instrumented treadmill (Treadmetrix, Park City, UT) collecting at 2000 Hz synchronised

through Qualysis Track Manager (Qualysis, Inc., Gothenburg, Sweden).

For each dataset, three-dimensional marker trajectories were low-pass filtered (Butter-

worth, 4th order, zero lag) with a cut off frequency of 10 Hz [18]. Filtered marker trajectories

were used to estimate the position and orientation of body segments using a six degrees-of-

freedom modelling approach in Visual3D (Visual 3DTM, C-Motion, USA). The anatomical

definitions of the shank and a single-segment foot were kept consistent for every dataset but

different tracking markers for the shank and foot were selected for each dataset (Fig 1). This

allowed us to increase the variability within the data during algorithm development and to val-

idate the model for different tracking marker sets. Ankle joint angles were calculated using the

Cardan sequence flex/extension, abd/adduction and int/external rotation. Full trials were

firstly divided in cycles using the highest position of the foot centre of mass (COM) and the

contact phase of each cycle was identified within the raw vGRF. Although the onset and offset

Fig 1. Tracking markers used for each dataset. The shank was tracked using clusters at different positions and

different marker configurations. CALC: calcaneus, CALC2: lateral calcaneus, MTB5: 5th metatarsal base, MPT5: 5th

metatarsal head, MTB2: 2nd metatarsal base, MTP2: 2nd metatarsal head, MTP1: 1st metatarsal head.

https://doi.org/10.1371/journal.pone.0248608.g001

Table 1. Participant demographics and testing conditions.

Dataset Pts Age (yrs) Height (m) Body mass (kg) Strike pattern Speed (m/s) Incline ( ) Shoes

Foot-strikes 28 M 35± 1.76± 69.6± 14 RF 2.5–4.51 0 Preferred

7 0.07 7.7 5 MF

9 FF

Inclines 5 M 24± 1.70± 66.7± 6 RF 2.6–4 -9–9 Preferred

5 F 3 0.10 6.4 3 MF

1 FF

Speed 15 M 22 ± 2 1.76 ± 0.1 74 ± 7 13 RF 2.5–52 0 Racing

1 MF Flat

1 FF

Footwear 6 M 30± 1.67± 57.5± 7 RF 3.35 0 5 neutral models

5 F 8 0.04 3.5 1 MF 4±
3 FF 0.53

Prolonged 16 M 24± 1.78± 70.1± 16 RF 3.2± 0 Neutral

4 0.05 8 2 FF 0.43 Stability

Pts: Participants, M: Males, F: Females, RF: Rearfoot strikers, MF: Midfoot strikers, FF: Forefoot strikers. Foot-strike patterns for the Inclines dataset were identified in

the 0 incline condition.
1 Participants ran at speeds ranging between 2.5 and 4.5 m/s in increments of 1 m/s.
2 Participants ran at speeds ranging between 2.5 and 5 m/s in increments of 0.5 m/s.
3 Participants ran at their preferred speed.

https://doi.org/10.1371/journal.pone.0248608.t001
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of vGRF is regarded as the “gold standard” method for step event detection, it must be noted

that instrumented treadmills are not as reliable as floor-embedded force plates, especially at

low loads. This is due to the bending stiffness of the treadmill deck and the moving belt. We

noticed aberrant plateaus/bumps in the vGRF signal in some cycles when approaching toe-off,

where a steep decreasing vGRF is expected. Therefore, we systematically assessed vGRF signals

and discarded those cycles exhibiting a positive loading rate�200 N/s (i.e. 1 N per frame, if

sampling at 200 Hz) in the interval where vGRF dropped from 100 N to 50 N (i.e. 1677 out of

36212 cycles, 4.63%). The contact phase was defined in the accepted cycles using a 50 N thresh-

old (non-contact: vGRF < 50 N; contact: vGRF� 50 N). The first and last frame of contact

within each cycle were identified and the closest frames at motion capture sampling frequency

were selected as foot-strike and toe-off. A label vector (i.e. 0 non-contact and 1 contact for

each time point at motion capture sampling frequency) was created for each cycle and used as

“ground truth” for algorithm development.

Step detection algorithm architecture and development

This study approached the detection of foot-strike and toe-off as a binary classification prob-

lem. FootNet aims to predict the contact and non-contact phases within a given cycle based on

a set of kinematic input features. Foot-strike and toe-off can then be simply identified by find-

ing the start and end of the contact phase. Shank and foot COM, proximal and distal end

velocities and accelerations as well as ankle joint angles, angular velocities and angular acceler-

ations were visually inspected for salient attributes within the gait cycle (e.g. peaks or troughs)

that could facilitate the identification of foot-strike and toe-off. We avoided displacements as

they depend on the definition of the global coordinate system and high order derivatives to

prevent noise amplification. The anteroposterior velocity of the distal tibia, ankle dorsi/plan-

tarflexion angle and the anteroposterior and vertical velocity of the foot COM, were selected as

the best input feature candidates for contact phase prediction after initial experimentation.

Consider defining the input data sequences as X = [X1, X2,. . .,Xn]T, where n is the number

of input features (n = 4), and Xn is a sequence of input values {xt} with length t = 200. The out-

put sequence (or output label) is defined as Y = [y1, y2,. . .,yt]T, where yt is a binary value. The

proposed FootNet algorithm is developed based on RNN architecture with LSTM units, which

are known to mitigate the gradient vanishing problem faced by traditional RNNs when doing

back-propagation through time in long input sequences [13]. An LSTM unit at timepoint t
(Fig 2) is characterised by its memory cell or cell state, ct, which controls what gradient infor-

mation is maintained or discarded, and its hidden state, ht, which is the output of the LSTM

unit. The cell state acts as internal memory of the LSTM unit, carrying information about pre-

vious time along the entire sequence. In a typical LSTM unit, the cell state is controlled by

three gating functions: forget gate ft, input gate it and output gate ot, which can be computed

by three separate but similar functions:

ft
it
ot
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A denotes the three separate Sigmoid functions, the output of which ranges between
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0 and 1. The memory cell ct, is then calculated by:

ct ¼ ft � ct� 1 þ it � tanhðbwc½ht� 1; xt�
T
Þ ð2Þ

where� represents the element-wise multiplication operation, vector bwc denotes the weight of

the memory cell, and tanh(.) is the standard hyperbolic tangent activation function. The out-

put of the LSTM hidden node is computed by:

ht ¼ ot � tanh ct ð3Þ

The proposed FootNet model uses a variant of LSTM units called bidirectional LSTM (Bi-

LSTM), aiming to efficiently make use of both the forward state and backward state features

[21] in our step detection problem. Specifically, for each unit going forward in time, there is a

parallel unit that takes the same sequence as input but flipped. This allows the network to not

only learn relationships between previous time steps but also the following ones.

As shown in Fig 3, the proposed model consists of three hidden layers including two bidirec-

tional LSTM layers with 400 units each and a dense layer with 200 nodes and rectified linear

unit (ReLU) as activation function. The output layer has only one node with a Sigmoid activa-

tion function. Model parameters were optimised to minimise the binary cross-entropy loss

between the predicted byt and ground truth label vectors yt using Adam optimiser [22]. Training

data {X, Y} were fed in mini-batches of 200 training cycles and model parameters were opti-

mised after every mini-batch. Hyperparameter combinations, including the number of hidden

layers and units/nodes per layer, activation function, optimiser and mini-batch size were deter-

mined by empirical experimentation using a grid search approach. Dropout layers (with drop-

out ratio = 0.5) [23] were used after the LSTM layers and the fully connected layer to mitigate

overfitting during model training. The number of training epochs was limited to 100 and net-

work training was terminated if the reported validation accuracy converged (i.e. no validation

improvement in 10 epochs). To maximise the variability within the training data, we mixed par-

ticipants from different datasets. FootNet underwent 5-fold cross-validation [24] as shown in

Fig 2. LSTM unit. Graphical representation of an LSTM unit at timepoint t, where c and h represent the cell state and

hidden state respectively, x represents the input features at the current timepoint, and f, i o are the forget, input and

output gates controlling the information passed on to the cell state.

https://doi.org/10.1371/journal.pone.0248608.g002
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Fig 4. Data were standardised to z-scores using the mean and standard deviation from the train-

ing set as scaling factors for the validation set during cross-validation and for the testing set dur-

ing testing. This prevented any information leakage from the validation and testing sets.

Neural network architecture and training routines were developed in Python (Python 3.7,

Python Software Foundation, Wilmington, DE, USA) using custom scripts and the Keras

library (Keras 2.3.0, https://keras.io) within the TensorFlow machine learning framework

(TensorFlow 2.3, https://www.tensorflow.org). Network training was performed on a GPU

(NVIDIA Tesla P100, 16 GB RAM) operated by a computer (Intel (R) Xeon (R) processor with

two cores @2.3 GHz, operating system: Linux 4.19.104+, Ubuntu distribution: Ubuntu 18.04).

Fig 3. FootNet architecture. FootNet takes the distal tibia anteroposterior velocity, ankle plantar/dorsiflexion angle

and the foot COM anteroposterior and vertical velocities as input and produces a sequence of probabilities of non-

contact (0) and contact (1). Note that the input features are first standardised (z scores), 0-padded at the start of the

sequence to a standard length of 200 data-points and concatenated into a 1x200x4 array where 1 is the number of

cycles, 200 is the number of timepoints and 4 is the number of input features. Zero padding was added to batch the

training cases and 200 was selected as a sufficient number of timepoints to accommodate a stride cycle at any of the

tested speeds. The padding is ignored during training, hence the 0.5 values at the beginning of the output sequence.

https://doi.org/10.1371/journal.pone.0248608.g003

Fig 4. Data flow. From each dataset, 30% of the participants were extracted, concatenated and left aside as test set for

model testing (22 participants, 8712 cycles). The remaining 70% of the participants were divided in five groups and

concatenated in five folds with a representative number of participants from each dataset (10 to 14 participants each,

4999 ± 842 cycles in each fold). These five folds were used for cross-validation, whereby five models (i.e. sets of

parameters) were developed using four folds for training and the remaining fold for validation, with a different

validation fold for each model. The best performing model was selected, retrained using the five folds altogether and

then tested on the test set.

https://doi.org/10.1371/journal.pone.0248608.g004
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Step detection algorithm assessment

Mean (± standard deviation) cross-validation accuracy was calculated and the best performing

model (i.e. set of parameters) was selected and trained again using the entire training set (i.e.

the concatenated five folds). The performance of this model was assessed on the test set. Model

accuracy on the test set is reported for contact and non-contact classification. A Bland-Altman

analysis [25] was conducted to assess the agreement between our algorithm and the “gold stan-

dard” method for the detection of foot-strike, toe-off and contact times. Error distributions

were tested for normality using the Kolmogorov-Smirnov test. Due to the non-normal distri-

bution of errors in foot-strike (D = 0.495, p < 0.001), toe-off (D = 0.494, p< 0.001) and con-

tact time (D = 0.491, p< 0.001) detection, bias and 95% limits of agreement (95LA) were

estimated non-parametrically as median (bias) and 2.5th and 97.5th percentile (lower and

upper 95% limits of agreement) [26]. Root mean squared error (RMSE) and Pearson’s correla-

tion coefficient (r) were calculated to assess the linear association between errors in foot-strike,

toe-off and contact time estimation, and running speed, foot angle and incline, respectively.

Correlation coefficients were classified as trivial (r< 0.1), small (r� 0.1 and< 0.3), moderate

(r� 0.3 and < 0.5) and large (r� 0.5) [27]. Linear regression coefficients and coefficient of

determination (r2) were calculated for non-trivial correlations. The level of significance for

normality tests and correlation coefficients was set at α = 0.05.

Sensitivity analysis

We also studied the sensitivity of hip, knee and ankle sagittal plane angles at foot-strike and

toe-off to error in step event detection by calculating the difference between the angle at the

“ground truth” event obtained using the onset and offset of the vGRF method and the angle at

five neighbouring time-points either side of it. These variables have been previously

highlighted as key descriptors of running technique [28, 29]. The Speed dataset was used for

this purpose because it included the widest range of speeds and it was, therefore, further pro-

cessed to obtain full lower-limbs kinematics. Based on previous studies on the reliability of

three-dimensional kinematics measured by motion capture in clinical applications [9] and in

treadmill running [7], we considered an error in foot-strike or toe-off detection that implied a

change of< 2˚ as acceptable, 2–5˚ as reasonable but requiring consideration and> 5˚ as

unacceptable.

Results

Cross-validation accuracy of FootNet was 98.96 ± 0.01%. The best performing set of parame-

ters achieved a validation accuracy of 99.08% and was updated with the entire training dataset

for final testing. FootNet achieved 99.23% accuracy in the classification of contact and non-

contact frames on the test set. When comparing FootNet against the “gold standard” method

in the detection of step events, there was a median bias of 0 (95LA = [–10, 7]) ms for foot-

strike, 0 (95LA = [–10, 10]) ms for toe-off and 0 (95LA = [–15, 15]) ms for contact times (Fig

5). The RMSE was 5 ms for foot-strike, 6 ms for toe-off and 8 ms for contact time. Linear rela-

tions between the instant within the gait cycle where foot-strike and toe-off occurred, and

errors in foot-strike and toe-off detection respectively were trivial. There was a small positive

correlation between contact time length and error in contact time estimation (r = 0.1,

p< 0.001, error = 0.032� average contact time between methods– 6.928, r2 = 0.01).

The correlation analyses (Fig 6) revealed small negative linear associations between angle at

foot-strike and error in foot-strike (r = -0.19, p< 0.001, error = -0.1447� angle at foot-strike

+ 0.486, r2 = 0.04) and angle at foot-strike and error in contact time (r = 0.16, p< 0.001,

error = 0.161 � angle at foot-strike + 0.166, r2 = 0.02). Correlations between running speed and
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error in foot-strike, toe-off and contact time; and between incline and error in foot-strike, toe-

off, and contact time were trivial.

The sensitivity analysis of sagittal plane angular kinematics to error in the detection of step

events showed that angle errors were especially noticeable at toe-off (Fig 7 for an example at 4

m/s) and increased with speed (S1–S6 Figs). The knee angle was the most sensitive variable at

foot-strike reaching unacceptable errors in ~15 ms after contact. Ankle angle was the most sen-

sitive variable at toe-off with unacceptable errors when anticipating or delaying toe-off by ~10

ms. Anticipating toe-off by ~20 ms also led to unacceptable errors in hip and knee angle at

speeds faster than 3.5 m/s.

Discussion

The purpose of this study was to develop and evaluate FootNet, an algorithm for the detection

of foot-strike and toe-off events in treadmill running based on lower limb kinematics. Our

method is based on an RNN architecture with bidirectional LSTM units and has been devel-

oped and tested using five datasets collected in three independent laboratories under different

experimental and running conditions. The proposed algorithm has achieved close agreement

with the “gold standard” method for the detection of foot-strike and toe-off and outperforms

previously published algorithms. The algorithm was also robust to different running speeds,

foot-strike angle and incline as associations between algorithm performance and these factors

were small and practically negligible. Errors in hip, knee and ankle sagittal plane angles due to

the error in foot-strike and toe-off detection were mostly acceptable or reasonable when using

FootNet.

FootNet uses a simple input (i.e. distal tibia anteroposterior velocity, ankle dorsi/plantar-

flexion angle, and foot COM anteroposterior and vertical velocities) requiring minimal addi-

tional data processing for researchers. The use of segment kinematics makes our approach

robust to problems with marker fixation faced by trajectory-based algorithms. The algorithm

Fig 5. Algorithm performance for foot-strike, toe-off and contact time. Top row: Bland-Altman plots. The top and

bottom border of the grey patch represent the 95% limits of agreement. Regression lines are included to aid visual

interpretation. Correlations between instant within the gait cycle and error were trivial for foot-strike (r = -0.07,

p< 0.001) and toe-off (r = 0.04, p< 0.001) hence, line coefficients and coefficient of determination are not reported.

Average contact time length and error in contact time (r = 0.1, p< 0.001) line coefficients and coefficient of

determination are reported in the Results section. Second row: error histograms. The frequency of errors contained

within ±1 motion capture frame of the ground truth event is highlighted.

https://doi.org/10.1371/journal.pone.0248608.g005
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has been trained using several foot tracking marker sets (Fig 1), allowing to place markers

where fixation may not be as compromised as on the metatarsal heads. Since only the shank

and foot segments are needed, it also overcomes problems related to complex marker sets

requiring more segments. Additionally, FootNet has been trained and tested on data from run-

ners of different levels, under different fatigue and shoe conditions and in three independent

laboratories with different treadmills and motion capture systems. These sources of variability

in training and testing data alongside 5-fold cross-validation and the overfitting prevention

strategies implemented (i.e. dropout, early stopping) could explain the stable validation and

testing accuracies. Validation and testing accuracies suggest that our model generalises well to

unseen runners, overcoming issues encountered by previous algorithms [4] as reported by

King et al. [3].

FootNet outperformed previously published algorithms for the detection of foot-strike and

toe-off. The reported RMSE errors of 5 and 6 ms in the detection of step events were two to

four times smaller than those reported by King et al. [3] when comparing different algorithms

for the detection of foot-strike [4, 30] and toe-off [5]. This is also the case for contact times,

with RMSE of 8 ms, which is two to three times smaller than previously published algorithms

[4, 30]. Similarly, 95% of the errors when detecting foot-strike and toe-off were within ± 10 ms

of the “gold standard” which is half the range previously reported by Osis et al. [10]. FootNet

was robust to different running speeds and inclines with no linear associations between these

Fig 6. Correlation analyses. Scatter plots for the relation between running speed (top row), foot angle at contact

(middle row) and incline (bottom row) and errors in the detection of foot-strike (left), toe-off (middle) and contact

time (right) respectively. Note that only data on flat running surfaces was included for the running speed and foot

angle at contact scatter plots and correlation analyses. Regression lines are included in every plot to aid visual

interpretation, but line parameters and coefficient of determination are only reported in the Results section for

nontrivial correlations.

https://doi.org/10.1371/journal.pone.0248608.g006
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variables and error in foot-strike, toe-off or contact time estimation. Small linear associations

between foot-strike angle and error in foot-strike and contact times were present. However,

changes to foot-strike angle could only explain 4% and 2% of variance in foot-strike and con-

tact time error respectively, and these associations may be deemed as practically negligible.

FootNet appears to be applicable and equally effective at different running speeds, on different

inclines and for runners with different foot-strike patterns without the need for foot-strike spe-

cific algorithms or speed corrections, overcoming some of the main limitations of kinematics-

based step detection algorithms previously reported in the literature [3].

The sensitivity analysis of hip, knee and ankle sagittal plane angles to error in the detection

of step events showed that angle errors increased with speed as expected and revealed that

these errors were especially noticeable at toe-off. Knee angle was the most sensitive variable at

foot-strike as previously found by Osis et al. [10], with changes >5˚ at ~15 ms after contact.

The rapid extension of the hip, knee and ankle plantar flexion at the end of the stance phase

made these variables especially sensitive to errors in toe-off detection. Ankle angle was the

Fig 7. Sensitivity analysis. Top row: mean (± standard deviation) hip, knee and ankle sagittal plane angles at 2.5

(cyan), 4 (blue) and 5 (black) m/s during the gait cycle beginning from highest foot COM position to highest foot

COM position. Average foot-strike and toe-off are indicated with vertical dashed lines to aid interpretation. More

positive angles refer to dorsiflexion in the ankle plot. Using 4 m/s as example, the violin plots show the error (˚)

distribution in hip, knee and ankle sagittal plane angles at foot-strike (2nd row) and toe-off (4th row) as a function of

anticipated (negative time values on the x axis) or delayed (positive time values) step event detection, where the correct

value of the variable is taken from the event time provided by the “gold standard” method (force plate). The horizontal

black line within each violin represents the mean. Error classification in acceptable (light blue), reasonable (dark blue)

and unacceptable (red) are displayed for foot-strike (third row) and toe-off (fifth row) respectively.

https://doi.org/10.1371/journal.pone.0248608.g007
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most sensitive to error in toe-off detection with unacceptable errors occurring when anticipat-

ing or delaying toe-off detection by ~10 ms. We advise researchers investigating joint kinemat-

ics at foot-strike and toe-off using kinematic methods for the detection of step events to

consider the angle errors we have reported to help interpret their results. Overall, the 95% lim-

its of agreement between our algorithm and the “gold standard” method sat ~10 ms around

the “ground truth” events, ensuring lower-limb joint angle errors remained acceptable (<2˚)

or reasonable (2–5˚) for every variable but ankle angle at toe-off. Yet, 82% of toe-off events

were detected within ~5 ms of the ground truth toe-off (Fig 5), ensuring most ankle angle

errors remained reasonable.

Limitations and perspectives

Using data from every dataset to maximise variability within the training data came at the cost

of not having a testing set collected under completely different laboratory conditions. The

Speed, Footwear and Prolonged datasets were collected in the same laboratory and put

together, provided the largest amount of data. Hence, leaving one of these datasets out for test-

ing would be ineffective, and leaving the three of them out could hinder training capacity. The

Foot-strikes dataset provided the largest number of non-rearfoot strikers, which was limited in

the other datasets and the Inclines dataset provided different treadmill slopes, which were only

present within this dataset. We considered mixing the datasets and leaving 30% participants

from each set out for testing the best compromise between variability in training and training-

testing data independence.

Force-instrumented treadmills are usually stiffer than non-instrumented ones where our

algorithm is intended to be used. Different surface mechanical properties can affect running

kinematics [31] and, unfortunately, there are currently no recommended standards for tread-

mills used in research. Although algorithm performance may be affected on different tread-

mills, an advantage of using a deep learning approach is that the algorithm can be further

optimised with new datasets. For instance, high-speed cameras could be used to assess and

improve the validity of our algorithm on non-instrumented treadmills with different mechani-

cal properties. A transfer learning framework [32] could also be developed whereby a

researcher can manually label a relatively small number of cycles and use those to re-optimise

FootNet’s parameters for a specific dataset collected under the same conditions. For these rea-

sons and in the interest of further improving the tool for the biomechanics research commu-

nity, FootNet and its source code is available for download on GitHub (https://github.com/

adrianrivadulla/FootNet) and contributions are encouraged.

Conclusions

We have developed and evaluated FootNet, a new and opensource algorithm that improves

the detection of foot-strike and toe-off events based on kinematics for treadmill running. This

algorithm requires a simple input and outperforms previously published algorithms for the

detection of step events. FootNet is also robust to different running speeds, foot-strike patterns

and inclines. Errors in kinematic variables as a result of errors in foot-strike and toe-off detec-

tion using FootNet were mostly classified as acceptable. The algorithm is publicly available,

and its use is recommended when studying treadmill running biomechanics in the absence of

force plates.

Supporting information

S1 Fig. Sensitivity analysis at 2.5 m/s. Top row: mean (± standard deviation) hip, knee and

ankle sagittal plane angles during the gait cycle beginning from highest foot COM position to
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highest foot COM position. Average foot strike and toe off are indicated with vertical dashed

lines to aid interpretation. More positive angles refer to dorsiflexion in the ankle plot. The vio-

lin plots show the error (˚) distribution in hip, knee and ankle sagittal plane angles at foot

strike (2nd row) and toe off (4th row) as a function of anticipated (negative time values on the

x axis) or delayed (positive time values) step event detection, where the correct value of the var-

iable is taken from the event time provided by the “gold standard” method (force plate). The

horizontal black line within each violin represents the mean. Error classification in acceptable

(light blue), reasonable (dark blue) and unacceptable (red) are displayed for foot strike (third

row) and toe off (fifth row) respectively.

(DOCX)

S2 Fig. Sensitivity analysis at 3 m/s. Top row: mean (± standard deviation) hip, knee and

ankle sagittal plane angles during the gait cycle beginning from highest foot COM position to

highest foot COM position. Average foot strike and toe off are indicated with vertical dashed

lines to aid interpretation. More positive angles refer to dorsiflexion in the ankle plot. The vio-

lin plots show the error (˚) distribution in hip, knee and ankle sagittal plane angles at foot

strike (2nd row) and toe off (4th row) as a function of anticipated (negative time values on the

x axis) or delayed (positive time values) step event detection, where the correct value of the var-

iable is taken from the event time provided by the “gold standard” method (force plate). The

horizontal black line within each violin represents the mean. Error classification in acceptable

(light blue), reasonable (dark blue) and unacceptable (red) are displayed for foot strike (third

row) and toe off (fifth row) respectively.

(DOCX)

S3 Fig. Sensitivity analysis at 3.5 m/s. Top row: mean (± standard deviation) hip, knee and

ankle sagittal plane angles during the gait cycle beginning from highest foot COM position to

highest foot COM position. Average foot strike and toe off are indicated with vertical dashed

lines to aid interpretation. More positive angles refer to dorsiflexion in the ankle plot. The vio-

lin plots show the error (˚) distribution in hip, knee and ankle sagittal plane angles at foot

strike (2nd row) and toe off (4th row) as a function of anticipated (negative time values on the

x axis) or delayed (positive time values) step event detection, where the correct value of the var-

iable is taken from the event time provided by the “gold standard” method (force plate). The

horizontal black line within each violin represents the mean. Error classification in acceptable

(light blue), reasonable (dark blue) and unacceptable (red) are displayed for foot strike (third

row) and toe off (fifth row) respectively.

(DOCX)

S4 Fig. Sensitivity analysis at 4 m/s. Top row: mean (± standard deviation) hip, knee and

ankle sagittal plane angles during the gait cycle beginning from highest foot COM position to

highest foot COM position. Average foot strike and toe off are indicated with vertical dashed

lines to aid interpretation. More positive angles refer to dorsiflexion in the ankle plot. The vio-

lin plots show the error (˚) distribution in hip, knee and ankle sagittal plane angles at foot

strike (2nd row) and toe off (4th row) as a function of anticipated (negative time values on the

x axis) or delayed (positive time values) step event detection, where the correct value of the var-

iable is taken from the event time provided by the “gold standard” method (force plate). The

horizontal black line within each violin represents the mean. Error classification in acceptable

(light blue), reasonable (dark blue) and unacceptable (red) are displayed for foot strike (third

row) and toe off (fifth row) respectively.

(DOCX)
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S5 Fig. Sensitivity analysis at 4.5 m/s. Top row: mean (± standard deviation) hip, knee and

ankle sagittal plane angles during the gait cycle beginning from highest foot COM position to

highest foot COM position. Average foot strike and toe off are indicated with vertical dashed

lines to aid interpretation. More positive angles refer to dorsiflexion in the ankle plot. The vio-

lin plots show the error (˚) distribution in hip, knee and ankle sagittal plane angles at foot

strike (2nd row) and toe off (4th row) as a function of anticipated (negative time values on the

x axis) or delayed (positive time values) step event detection, where the correct value of the var-

iable is taken from the event time provided by the “gold standard” method (force plate). The

horizontal black line within each violin represents the mean. Error classification in acceptable

(light blue), reasonable (dark blue) and unacceptable (red) are displayed for foot strike (third

row) and toe off (fifth row) respectively.

(DOCX)

S6 Fig. Sensitivity analysis at 5 m/s. Top row: mean (± standard deviation) hip, knee and

ankle sagittal plane angles during the gait cycle beginning from highest foot COM position to

highest foot COM position. Average foot strike and toe off are indicated with vertical dashed

lines to aid interpretation. More positive angles refer to dorsiflexion in the ankle plot. The vio-

lin plots show the error (˚) distribution in hip, knee and ankle sagittal plane angles at foot

strike (2nd row) and toe off (4th row) as a function of anticipated (negative time values on the

x axis) or delayed (positive time values) step event detection, where the correct value of the var-

iable is taken from the event time provided by the “gold standard” method (force plate). The

horizontal black line within each violin represents the mean. Error classification in acceptable

(light blue), reasonable (dark blue) and unacceptable (red) are displayed for foot strike (third

row) and toe off (fifth row) respectively.

(DOCX)
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