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Abstract

Tractography algorithms have been developed to reconstruct likely WM pathways in the brain from diffusion tensor
imaging (DTI) data. In this study, an elegant and simple means for improving existing tractography algorithms is proposed
by allowing tracts to propagate through diagonal trajectories between voxels, instead of only rectilinearly to their facewise
neighbors. A series of tests (using both real and simulated data sets) are utilized to show several benefits of this new
approach. First, the inclusion of diagonal tract propagation decreases the dependence of an algorithm on the arbitrary
orientation of coordinate axes and therefore reduces numerical errors associated with that bias (which are also
demonstrated here). Moreover, both quantitatively and qualitatively, including diagonals decreases overall noise sensitivity
of results and leads to significantly greater efficiency in scanning protocols; that is, the obtained tracts converge much more
quickly (i.e., in a smaller amount of scanning time) to those of data sets with high SNR and spatial resolution. Importantly,
the inclusion of diagonal propagation adds essentially no appreciable time of calculation or computational costs to
standard methods. This study focuses on the widely-used streamline tracking method, FACT (fiber assessment by
continuous tracking), and the modified method is termed ‘‘FACTID’’ (FACT including diagonals).
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Introduction

Diffusion tensor imaging (DTI) is a useful MR technique for

non-invasively investigating structural properties of neural white

matter (WM) by measuring the random and constantly occurring

motion of fluid and aqueous tissue particles. Importantly, DTI

tractography has been shown to provide a means for estimating

the topology of WM tracts in vivo, increasing our understanding of

brain physiology, pathology and structural connectivity in both

clinical and research-oriented applications, e.g., [1–8]. For

example, this technique has been shown to successfully reproduce

many known WM pathways and to be useful in planning for

neurosurgical operations. Tract-defined volumes also provide

regions of interest (ROIs) for quantitative evaluation of axonal

development and degeneration, such as with tract-based spatial

statistics [9–12].

Several methods for performing DT tractography have been

developed. Two main categories of techniques are streamline

tracking (STT) [13–15] and tensor deflecting (TEND) [16–18]; the

former variety directs tracts using information of only the first

eigenvalue of D, and the latter utilizes that of all three eigenvalues.

Common methods of propagating tracts include using either

constant or variable step sizes (typically small compared to the

voxel width) with Euler or higher order Runge-Kutta integration

[13,14,19], or traversing between voxel boundaries in a single step,

called FACT (fiber assessment by continuous tracking) [15,20].

Tractography algorithms continue to be developed an refined, in

order to deal with existing issues including: an inability to

distinguish crossing and kissing fibers; difficulty following multiple

pathways within a single voxel or multiple branchings; individual

voxel errors due to signal noise or to numerical artifacts in

reconstruction; uncertain termination conditions; a tendency of

producing false negatives; and the accumulation of errors in

propagating tracts. Additionally, non tensor-based models of

diffusion have been developed, such as high-angular resolution

(HARDI) techniques [21].

In this paper, we propose an elegant and simple means for

improving existing tractography algorithms and for decreasing

numerical artifacts by allowing tracts to propagate through

diagonal trajectories between voxels instead of only rectilinearly

to their facewise neighbors. The motivation of this change, which

to the best of the authors’ knowledge has not been previously

implemented in any published tractography algorithms, is that the

propagation of tracks should be independent (to the maximum

degree possible) of the arbitrary orientation of scan geometry,

which is represented by the coordinate axes. That is, the same

tractographic output should be yielded by an object observed at

various rotations under constant scanning conditions, or, equiv-

alently, by an unmoved object scanned using various rotations of

coordinates (ignoring minor variations due to random noise in the

separate diffusion weighted measures).

In this study, we address numerical errors and inherent noise

sensitivity which existing tractography algorithms exhibit due to

their directional bias along scan coordinate axes. Namely, while

the orientation of axonal fibers is entirely unrestricted in three-
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dimensional (3D) space (and, indeed, in a given whole-brain data

set, a full range of directions is practically guaranteed to be

represented), however numerical tracts are propagated only

through facewise neighboring voxels along the orientations of

the three coordinate axes. This restriction makes diagonally

oriented or bending tracts difficult to follow and also biases the

resulting structural connectivity. As discussed further below, this

also makes algorithms more sensitive to local noise.

Through a series of tests using actual DTI scans (both human

brains and a phantom) and an additional test using simulations of

realistic data, we first show that ‘‘including diagonals’’ (ID) greatly

decreases the dependence of the tracking on the arbitrary

directions of the scan coordinate axes which exists in current

algorithms. Moreover, the results from this study show that, both

quantitatively and qualitatively, this adaptation reduces overall

noise sensitivity and leads to significantly greater efficiency in

scanning protocols; that is, the obtained results converge much

more quickly (i.e., in a smaller amount of scanning time) to those

of high SNR and spatial resolution data sets. Importantly, the

inclusion of diagonal propagation adds essentially no appreciable

time of calculation or computational costs to standard methods. In

this study, we focus on the widely-used FACT method of tract

propagation for streamline tracking (e.g., the citation count from

Google for this paper [15] is .1500 citations total, with .200

citations since just 2011.) which is utilized, for example, in the

widely used dtiStudio analysis package [22]. In this case, we term

the improved method ‘‘FACTID’’ (FACT including diagonals).

Materials and Methods

1 Ethics Statement
Participants from the university campuses in Taipei were

enrolled after providing informed, written consent. The study was

approved by the local Ethics Committee (Institutional Review

Board of National Yang-Ming University), and it was conducted in

accord with the Declaration of Helsinki.

2 Motivation and description of FACTID
Fig. 1A shows a two dimensional (2D) example of tract

propagation in FACT, with four test tracts (dotted lines, direction

of propagation given by small arrowheads) entering and traversing

the bottom-left voxel in the direction of greatest diffusion (shown

as bold, dual-direction arrow). Each test tract becomes redirected

at the voxel boundary, following the greatest diffusion in the next

voxel (assuming the fractional anisotropy (FA) remains above a

minimum threshold, and that the angular difference between the

two voxels is below a given maximum). Of note in this example, is

that there appears to be a tract running diagonally through the

grid, which is largely missed by the tracking algorithm. If the

coordinate axes were rotated 45 degrees, however, propagation

could easily occur along this apparent tract. In other words, the

orientation of the axes strongly affects the estimated tracts, leading

to a high probability of numerical artifacts being present in the

calculations. Furthermore, the propagating algorithm may be very

sensitive to rotational perturbations to ellipsoids, which are a

common consequence of signal noise: a small rotation of the

bottom-left voxel may dramatically change the direction of

propagation from horizontal to vertical, leading to a large path

divergence. Thus, there are several cases where FACT is

susceptible to producing numerical artifacts due to signal noise

and to grid-dependence.

The solution proposed in this study, termed FACTID, is to

allow tracts to propagate diagonally between voxels. This

approach is shown for the same test tracts in Fig. 1B. In this

scenario each tract propagates continuously to the octagon-shaped

boundary in a given voxel (bold solid line) instead of the voxel

boundary (thin solid line). Thus, the tracts from the bottom-left

voxel will propagate vertically if they reach any of the three lower

edges of the top-left voxel’s octagon; horizontally if they reach any

of the three leftward edges of the bottom-right voxel’s octagon;

and diagonally if they reach the single open edge of the upper-

right voxel’s octagon (though being redirected along the new

eigenvector at the new voxel’s edge in all cases). In this case it is

possible to follow the diagonal tract, and results would remain

similar even for a different orientation of coordinate axes. Also,

small rotations of the main diffusion direction may produce less

severe changes in the direction of the propagating path. The full

3D boundary-propagation surfaces for the old and new cases are

shown for comparison in Fig. 1C and 1D, respectively; this

method effectively increases the number of neighbors of a voxel

from 6 in FACT (one for each face of the cube) to 26 in FACTID.

The simple additional steps in tract propagation are shown

schematically for separate cases of a set of voxels in Fig. 1E (colors

showing on different possible diffusion orientation of lower left

square). In the first panel a given tract propagates until it reaches

the current voxel edge. Then, a tract which reaches a corner

region (i.e., the non-bold segment of the voxel edge) test projects to

check which neighboring voxel is in line with its current trajectory

(defined by intersecting the bold surface). If the tract intersects a

diagonally-neighboring voxel, the tract extends over the short

region to that voxel’s edge. Finally, the tract may continue

propagating per usual along the direction of the first eigenvector of

the new voxel. Note that the simple additional steps to include

diagonals do not appreciably increase either computing time or

expense in switching from FACT to FACTID.

3 Evaluating and comparing algorithms
In several relevant scenarios, the FACT and FACTID

algorithms would produce different results; however, the degree

of variation would most likely depend on scanning conditions.

Many of the differences between FACT and FACTID would be

minimized by having extremely high SNR and spatial resolution.

Figure 1. Schematic of tractography algorithms. Panel A shows
an example of the propagation of four test tracks in 2D FACT algorithm
(bold arrows show orientations of primary eigenvectors), where tracks
cross from edge to edge of the lower left voxel and continue to
facewise neighbors. Panel B shows the same system in the FACTID
approach, where tracts propagate to the octagon surfaces in each voxel
(bold line, gray area), allowing diagonal motion. The analogous 3D
regions are shown for FACT and FACTID in panels C and D, respectively.
Panel E illustrates the simple steps in the FACTID algorithm to allow for
diagonal tract propagation (see text for details).
doi:10.1371/journal.pone.0043415.g001

Improving DTI Tractography

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e43415



For example, in the former case there would be fewer instance of

noise warping and rotating vectors; in the latter partial-volume

effects would decrease, and the small horizontal and vertical steps

of FACT would better follow diagonal tracts with less errors. In

such ‘‘ideal’’ cases of both high SNR and spatial resolution, one

would expect ‘‘reasonable’’ tractography algorithms to yield, for

the most part, results which are predominantly convergent both

with each other (that is, differences due to numerical approaches

are minimal) and also with most of the actual pathways (small

numbers of false positives and negatives). However, practical

considerations of time and expense set finite limitations on

scanning and therefore on both SNR and spatial resolution; the

errors present at data acquisition will necessarily be accumulated

and propagated in tractographic calculation, though in different

manners and degrees in various algorithms. Previous studies have

shown DTI tractography to be sensitive to both spatial resolution

[23] and SNR/noise [24].

Therefore, in designing and testing an algorithm, one may view

an important goal to be to produce results which converge as

quickly as possible to the ‘‘ideal’’ cases of high SNR and spatial

resolution. By minimizing numerical errors and artifacts, DTI

studies can be made much more efficient by allowing best results

with least scan time. In this study, we compare FACT and

FACTID by analyzing their results as SNR and resolution are

decreased from a level at which each algorithm produced mainly

convergent results; relative noise sensitivity is also compared by

adjusting the SNR of a data set with realistic noise and calculating

the changes in tracts explicitly. Additionally, we show that results

of FACTID are less affected by arbitrary coordinate axis

orientation than FACT by testing both algorithms on a series of

rotated scans (of constant SNR and spatial resolution).

4 Scanning protocols
Three healthy subjects (an adequate sample size for the

purposes of algorithm testing and comparison in this study) gave

informed consent and participated in this study consisting of three

experiments. All MR images for human study were carried out on

a 3 Tesla MR scanner (Trio, Siemens, Germany) equipped with a

32-channel phased-array heal coil. A twice refocused spin-echo

echo planar imaging (EPI) sequence was used for DTI acquisition

to minimize residual susceptibility effects [25]. Three b0 images

and 30 diffusion weighted images with b = 1000 s/mm2 were

acquired for each DTI data. The imaging parameters were:

TR = 8800 ms, TE = 101 ms (99 ms for rotational invariance

scans), FOV = 24624 cm, BW = 1325 Hz/pixel and parallel

acquisition (GRAPPA) with 2-fold acceleration.

Both FACT and FACTID tractography codes were imple-

mented in custom C software. They were visualized using

TrackVis [26], and additional analysis was performed using AFNI

software [27], FSL [28] and Matlab (Mathworks, Natick, MA,

USA). Data sets of the same spatial resolution were coregistered

for motion correction; in all cases, motion was less than the length

of one pixel. DTs were calculated from diffusion weighted images

using nonlinear fits, implemented with AFNI. Whole brain, brute

force tractography [24] was utilized, with tracts of interest and

corresponding ROIs chosen by selecting tracts passing through

specific seed ROIs. Within a voxel, seedpoints for commencing

tracts were evenly distributed, the number typically dependent on

spatial resolution in order to produce a constant number density

per volume for comparison.

5 Methods of testing algorithms
In this study, we used five tests to examine several aspects of the

convergence properties of the FACT and FACTID algorithms on

human brain data sets. The following tests are used to: 1) compare

the relative dependence of algorithms upon the orientations of

coordinate axes; 2–3) compare the relative error propagation due

to signal noise as SNR decreases; 4) compare the relative error

propagation as spatial resolution decreases; and 5) compare results

on known, underlying fiber bundles. Tests 1, 2, 4 and 5 use actual

data sets (with last being a constructed phantom, described below),

and the data sets in test 3 were created by including realistic noise

of varied magnitude to real diffusion weighted (DW) data sets.

1) Invariance in rotation. Five DTI data sets with whole brain

coverage and voxel size of 2.53 mm3 were acquired with

different slice orientation for the purpose of comparing the

dependence of algorithms on the orientation of coordinate

axes. The slices were rotated along (x, y, z) axes with angles

of (0u, 0u, 0u), (0u, 0u, 10u), (0u, 0u, 20u), (0u, 0u, 40u), and (0u,
40u, 40u), respectively. Seed ROIs were mapped between

data sets using linear registration (FMRIB’s Linear Image

Registration Tool, FLIRT) [29].

2) Convergence in SNR. Whole brain coverage of subject was

obtained at constant 2 mm isotropic resolution. Scanning

was repeated 16 times, allowing comparisons of various

SNR by averaging acquisitions (after registration) of

Nave = 1, 2, 4, 8, 12 and 16. Changes in track number and

location per voxel as a function of SNR (number of DW

acquisitions averaged, Nave) were quantified.

3) Dependence on noise. The DTI ellipsoids of an actual data

set were chosen to be a realistic ‘‘solution’’ brain image data

set (here, the Nave = 16, 2 mm data set from Test 2); noisy

DWI copies of this data set were derived by adding Rician

noise of various SNR0 ( = 10, 20 and 50; the subscript

denotes that the quantity is measured with respect to the

reference b = 0 signal) to synthesized anisotropic diffusion

coefficient (ADC) measures along the same M = 30 gradient

directions, similar to [24,30,31]. DTI ellipsoids were then

calculated for each noisy data set, and tractography was

performed (using 23 seedpoints per voxel). Direct compar-

ison of the alterations to number and locations of tracks per

voxel were observed and quantified.

4) Convergence in spatial resolution. Whole brain coverage of

same field of view (FOV) was obtained at isotropic

resolutions of 3 mm, 2.5 mm and 2 mm, with Nave 1, 3

and 11, respectively, for approximately constant SNR; the

numbers of seedpoints per voxel for starting tracts were 63,

53 and 43, respectively. Seed ROIs were mapped between

data sets using FLIRT.

5) Phantom test. Publicly available DW data sets (30 gradients)

from an existing phantom model were used (see details in

[32,33]). Having examined several options, here we selected

a data set of highest resolution (3 mm isotropic) and DW

factor which has been shown to be nearest optimal,

b = 1500 s/mm2, for ellipsoidal modeling [34,35]. One

seedpoint per voxel was used, with a single tract kept

through each of 16 specified ROIs. Quantitative metrics

between an estimated tract and the ‘‘underlying truth’’ tract

per ROI were calculated with a provided program: dist (L2-

norm distance); tan (comparison of tangents); and curv

(comparison of curvature) [33].

In all tests, standard FACT parameters were used. Tracts were

propagated until reaching a voxel with FA,0.2 (except in the

phantom test, which had no minimum FA) or until the turning

angle between two the first eigenvectors of two successive voxels

Improving DTI Tractography
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was h.45u. Additionally, only tracts with path length .20 mm

were retained for further analysis.

For comparison with existing and other tractography algo-

rithms, the FACT-based dtiStudio [22] and DTI-Query [36] with

Runge-Kutta integration were used for Test 1 and Tests 1–4,

respectively. In DTI-Query, 4th order Runge-Kutta (RK4)

integration was used, with seeds placed at 2 mm intervals and

tracts propagating with 1 mm steps (note that in all tests, voxel

resolution was in a range of 2–3 mm).

For tests 1–4 (i.e., brain sets), images of the tracts which passed

through specific ROIs were compared visually for comparison of

fiber bundle location and extent. In tests 2–3 (those of perfectly

aligned voxel boundaries; see the Discussion), three quantitative

measures with slightly varied properties were calculated to

quantify the similarity of tract volumes. The standard Dice

coefficient, CD, was used to quantify the voxelwise overlap of tract-

defined ROI maps [37]; the index is independent of the number of

tracts passing through the same location and has a range of 0–1.

For ROIs, A and B, the Dice coefficient is given as a fraction of

sums over n total voxels:

CD(A,B)~

Pn

i~1

2ai
:bi

Pn

i~1

(aizbi)

, ð1Þ

where ai = 1 if aiMA and ai = 0 otherwise (and similarly for bi).

Following Dauguet et al., 2007 [38], seed regions which, by

definition, are common to both ROIs were excluded from the

calculation to avoid bias.

To include the relevant information of the number of tracts

produced by each algorithm, we created a weighted version of the

Dice coefficient, CDw, as well as implementing the eta2 parameter

[39]; both indices also have a range of 0–1. Since the number of

tracts per voxel, Tx,i, typically varied by orders of magnitude

within a given data set, weights in the expressions utilized the

logarithm of the number tracks, wx,i = log2(Tx,i). The formulation

of CDw is given by

CDw(A,B)~

Pn

i~1

½2zwa,izwb,i�ai
:bi

Pn

i~1

(½1zwa,i�aiz½1zwb,i�bi)

, ð2Þ

and eta2 is given by

eta2(A,B)~1{

Pn

i~1

½wa,i
:ai{wb,i

:bi�2

2
Pn

i~1

½(wa,i
:ai{ �MM)2z(wb,i

:bi{ �MM)2�
, ð3Þ

where �MM~(2n){1Pn
i~1 (wa,i

:aizwb,i
:bi). The difference in the

two weighted similarity indices is that CDw compares the number

of tracts in A and B independent of voxel location, while eta2

compares voxelwise number of tracts. That is, eta2 is unity only for

perfectly overlapping regions if Ta,i = Tb,i for all i, while CDw is

unity for perfectly overlapping regions if
Pn

i~1 Ta,i~
Pn

i~1 Tb,i.

The phantom test provides means for comparing FACTID with

other, non-FACT-based algorithms, as well, through the scores of

algorithms used in [33]. We note that these include both single-

and multiple-DT and HARDI-based reconstructions; in this work,

we are testing FACTID for single DT-based tractography only.

However, it should be noted that FACT-based methods can be

directly applied to HARDI and multiple-DT models, such as with

MFACT in [40], and FACTID can be applied analogously. Single

DT-based integration methods included streamline RK4 step-wise

integration of a vector field first eigenvectors smoothed using

trilinear interpolation. Additionally, Euler step-wise integration of

tensor deflection propagation [16–18] (trilinear interpolation of

tensor field) was implemented. A FACT-based method of

propagation along principle eigenvectors was also implemented,

using the version as described by [41,42]. Other methods included

multiple tensors, PAS-MRI [43] and HARDI models, as well as a

global fitting mixture of Gaussian method [44,45], though in this

study we are investigating only single DT-based tractography

approaches (with applications and extensions to other methods

planned in future work, see Discussion).

Results

In the first test (rotational invariance), data sets of constant

resolution and SNR were obtained using slices which had been

aligned with coordinate axes rotated by various angles. Fig. 2

shows a comparison of results for tracts passing through a single

ROI, located in the posterior CC and intersecting the cingulum

(ROI location shown in the figure). Visual comparison of tract

bundle location and extent allows for an evaluation of the relative

similarity amongst rotated sets for both FACT and FACTID.

Locations where large tract bundles appear to be either missing or

added in comparison to the group as a whole are highlighted in the

figure. Quantitatively, the average values of similarity indices

comparing the rotated sets (mapped to the non-rotated space using

FSL) to the non-rotated are: CD = 0.54, CDw = 0.67 and eta2 = 0.94

for FACT, and CD = 0.54, CDw = 0.68 and eta2 = 0.95 for

FACTID.

In the second test (SNR convergence), tractography was

performed on data sets of various Nave (1 to 16) using both FACT

and FACTID. Fig. 3 shows a comparison of results for tracts

passing through two ROIs (AND logic) in the mediofrontal cortex

and including the corpus callosum (CC) (locations shown in the

figure). By visual inspection, at Nave = 16 FACT and FACTID

produce similar results in terms of extent and location of tract

bundles, and similarity indices between the tracts of the two

algorithms have high values, CD = 0.86, CDw = 0.94 and

eta2 = 0.93. Each column shows the effects of decreasing SNR

(decreasing Nave) on the obtained tracts, with similarity indices

between algorithms decreasing to CD = 0.83, CDw = 0.92 and

eta2 = 0.92 at Nave = 1; locations of tract bundles which visual

inspection show to be either missing or added in comparison with

the highest SNR case are highlighted. Fig. 4 shows a comparison

of relative similarity indices for FACT and FACTID results,

plotting the values of the weighted and unweighted similarity

indices for the tracts of the shown Nave(and also with Nave = 12)

with those of the Nave = 16 case.

In the third test (noise dependence), the DT ellipsoids of a single

scan were taken as a solution, and realistic sets of DWI data of

SNR0 = 50, 20 and 10 were created. The results of tractography

for the original data set and the noisy copies are shown in Fig. 5

using FACTID (left column) and FACT (right column); shown

tracts pass through two ROIs (AND logic) in the mediofrontal

cortex and including the CC (locations shown in the figure).

Explicit differences in tract bundle locations are not highlighted in

this case, due to the large number of differences at lowest SNR.

The relation of tractographic results to SNR0 are shown

quantitatively in Fig. 6 using the Dice and eta2 coefficients.

Improving DTI Tractography
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In the fourth test (resolution convergence), tractography was

performed on data sets of different spatial resolution, 2 mm to

3 mm (isotropic). A comparison of results are shown in Fig. 7 for

tracts passing through two ROIs (AND logic) in the mediofrontal

cortex and including the CC (locations shown in the figure). Visual

comparison of tract bundle location and extent shows that

similarity between FACT and FACTID results is greatest at high

(2 mm) resolution and decreases as voxel size increases. Locations

where tract bundles are missing at lower resolution in comparison

to 2 mm resolution are highlighted in the figure, as well.

Quantitatively, the similarity indices between the 2 mm- and

3 mm-resolution cases (mapped to the same space using FSL) are:

CD = 0.29, CDw = 0.43 and eta2 = 0.62 for FACT, and CD = 0.38,

CDw = 0.51 and eta2 = 0.66 for FACTID; between the 2 mm- and

2.5 mm-resolution cases, CDw = 0.82 and eta2 = 0.85 for both

FACT and FACTID, with the Dice coefficients of CD = 0.70 and

0.71, respectively.

In the fifth test (known phantom), tractography was performed

on a test phantom model, to produce known ‘‘underlying truth’’

tracts. A comparison of results are shown in Fig. 8, where panel A

reproduces the underlying tracts (from Fig. 4 of [33]); panels B and

C show FACT and FACTID results, respectively, having chosen

the longest tract per ROI to represent the given tract (as generally

multiple tracts were found passing through each ROI). Quanti-

tative comparisons of tractography estimates and the underlying

tracts are given (per ROI and overall mean) in Table 1. Measures

of spatial deviation (dist), tangential variation (tan) and curvature

differences (curv), are given for both the longest tracts and also for

the best value per ROI, with lower values reflecting more

similarity to the underlying tracts. Scores are generally similar,

with FACTID producing lower mean scores overall in each

category, and particularly much lower values for dist in ROIs 3

and 12. In both algorithms, some tracts are unable to propagate

through or are redirected at crossing- and kissing-fiber junctions,

though this occurred in many fewer cases for FACTID.

Discussion

Tractography approaches continue to be developed and refined,

in part due to the fact that there is currently no ‘‘gold standard’’

test for algorithms, though test phantoms, such as utilized here,

provide useful data sets for comparison with known underlying

construction. Even histological studies cannot provide definitive

comparison, though they do provide important verification of

results as well as specify limitations. In this study, an improvement

to standard tractography methodology, FACT, was proposed and

tested, that of allowing diagonal propagation of tracts through

voxels. The motivation of the new approach, FACTID, was to

Figure 2. Algorithm comparison for rotation test. FACTID (col. 1) and FACT (col. 2) results are given for various rotations of coordinate axes.
Corono-axial projections are shown of tracts intersecting a single ROI in the posterior corpus callosum which intersects the cingulum (shown in upper
left). Dissimilarities in tract bundle location from average results are shown with dotted (missing) and dashed (additional) lines. Coloration by FA
magnitude of each voxel, ranging from 0.2 (yellow) to 1.0 (red). Also shown for comparison are results for the tracts through the same ROI using
dtiStudio-FACT (col. 3) and DTI-Query RK4 (col. 4), with distinct colorations from separate software. The former yields quite similar results to those of
FACT in Column 2, and RK4 shows changes in fiber structure (though not with missing bundles).
doi:10.1371/journal.pone.0043415.g002
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decrease the dependence of algorithms on the direction of

arbitrary coordinate axes, thereby decreasing numerical errors in

results. Three criteria were examined for studying the results of

two tractography algorithms on real data sets and on one realistic

set. Both FACT and FACTID were compared in terms of

important properties: their relative invariance to rotation of axes

(i.e., relative coordinate independence), their rate of convergence

with increasing SNR, and their rate of convergence with

increasing spatial resolution.

Both visual inspection and quantitative comparison (with the

weighted and unweighted Dice coefficients and eta2, as well as test

phantom metrics) were employed in the analysis. We note that

across the cases of changing spatial resolution and particularly the

angles of coordinate axes, the use of CD, CDw and eta2 also

becomes convolved with the mapping of the tenuous structures.

However, for all tests visual comparison of fiber location provided

meaningful evaluation of relevant similarities and differences, with

the excision or addition of tract bundles with changing protocols

being an important form of contrast and dissimilarity between

algorithms.

In the rotation invariance test, the degree of homogeneity of

results was significantly greater using the FACTID algorithm. Of

course, variation in the outputs of either algorithm is expected due

to interscan variability and potentially to changes of partial

voluming in corresponding voxels as axes were rotated; this can be

noted in some of the change in coloration (FA value) across the

scans at analogous tract location (Fig. 2). Variation is seen in the

density of some of the FACTID tracts as well as in the location of

some of the lateral extensions of the CC. Qualitatively, the

FACTID results appear to have more ‘‘split ends’’ than FACT,

most likely due to the accumulation of gradual changes allowed by

diagonal propagation as opposed to the more discrete changes of

the latter. In the FACT cases, significant alterations to tract

structure are observed, where the superior- and posterior-directed

extensions of the CC were not reproduced by in two orientations

(while they were using FACTID), and the lengths of the cingulum

bundles varied considerably.

Figure 3. Algorithm comparison for various Nave. FACTID (col. 1) and FACT (col. 2) results are shown for various SNR (determined
by Nave). Coronal projections are shown of tracts intersecting two mediofrontal ROIs (shown in upper left; AND logic). Dissimilarities in tract bundle
location from the top panel are shown for Nave,16 results with dotted (missing) and dashed (additional) lines. Related Dice and eta2 coefficients are
plotted in Fig. 4. Coloration by orientation of medial voxel of each fiber, with (x, y, z) associated with (red, green, blue). Also shown are RK4 results
(distinct coloration), with fiber differences in inferior- and anterior-running tracts appearing.
doi:10.1371/journal.pone.0043415.g003

Figure 4. Similarity indices for various Nave. CD, CDw and eta2

(formulations given in text) of Nave,16 results compared with
the highest SNR, Nave = 16 case, for FACT and FACTID for tracts
of interest (shown in Fig. 3).
doi:10.1371/journal.pone.0043415.g004
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Both tests of convergence produced comparable outcomes: as

the quality of scanning conditions was decreased (in SNR or

spatial resolution), larger differences appeared in the FACT

tractography results than in those of FACTID. In Tests 2, 3 and 4,

the number of missing FACT tract bundles quickly increased

(Figs. 3, 5 and 7). Quantitatively, in the SNR and noise tests the

FACTID indices of similarity to the highest Navedata were

consistently higher, as well (Figs. 4 and 6). While there were also

tract bundles that were not reproduced by FACTID in cases of

Figure 5. Comparison of algorithms for various SNR. FACTID (col. 1) and FACT (col. 2) results are shown (‘‘noiseless’’ model at top, with
realistic, noisy copies from DW simulations of decreasing SNR). Coronal projections are shown of tracts intersecting two mediofrontal ROIs (shown in
upper left; AND logic). The number of increasing dissimilarities with decreasing SNR is apparent, with related Dice and eta2 coefficients plotting in
Fig. 6. Coloration by orientation of medial voxel of each fiber, with (x, y, z) associated with (red, green, blue). Also shown are RK4 results (distinct
coloration), with several changes in tract results apparent.
doi:10.1371/journal.pone.0043415.g005

Figure 6. Similarity indices for changing SNR. CD, CDw and eta2 for
FACT and FACTID are given for tracts of interest shown in Fig. 5
(comparison of noisy DW-derived simulations of decreasing SNR).
doi:10.1371/journal.pone.0043415.g006

Figure 7. Comparison of FACTID (left column) and FACT (right
column) algorithms for various spatial resolutions. Coronal
projections are shown of tracts intersecting two mediofrontal ROIs
(shown in upper left; AND logic). Dissimilarities in tract bundle location
from the top panel are shown for results of 2.5 and 3 mm resolution
with dotted (missing) lines. Coloration by orientation of medial voxel of
each fiber, with (x, y, z) associated with (red, green, blue). Also shown
are RK4 results (distinct coloration), with several differences in tract
bundle results apparent.
doi:10.1371/journal.pone.0043415.g007
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decreased SNR and resolution, in general the results of the

algorithm appeared to retain most of the features of the highest

quality scans (i.e., having fewer number of fiber bundle errors and

consistently greater similarity indices).

The relative constancy of tractography results using FACTID in

Test 1 suggests minimal dependence or near independence of the

algorithm on coordinate axis orientation, which had been a

motivation for its inception. This is critical in tractography, as

tracts in the brain follow many trajectories at all possible angles to

the scan axes. Moreover, the relative consistency of results when

varying SNR or spatial resolution suggest a reduced accumulation

of error due to signal noise or numerical effects. FACTID may also

be able to follow faster-bending curves than FACT for the same

maximum turning angle, in cases where the eigenvector of the

facewise-neighbor is at too large an angle to the propagating path,

while the eigenvector of the diagonal voxel remains in the ‘‘cone’’

of allowed values. The numerical costs of moving from an

implementation of FACT to FACTID are negligible, as well.

In the limits of high SNR, where noise-induced rotations are

small, and of high spatial resolution, in which small horizontal and

vertical steps approximate a smooth curve well, FACT and

FACTID should yield nearly identical results (in convergent cases,

approximated as part of Tests 2, 3 and 4). However, as resolution

decreases, similar to increasing the step size, Dx, when applying

the Euler method to solve differential equations, errors will

accumulate more quickly, particularly when WM pathways are

not aligned with the coordinate axes. Decreasing SNR accentuates

these errors for all reconstruction algorithms. Here, we have

demonstrated that these errors occur with a reduced degree and

with less bias on coordinate direction when including diagonals,

converging more quickly to high SNR, high spatial resolution

results. A similar implementation of including diagonal propaga-

tion may improve other tractography approaches as well, such as

those utilizing TEND or Runge-Kutta integration.

The phantom tests provide a useful comparison of the

algorithms against predetermined results. Generally, FACTID

performed as approximately as well or better than FACT for all 16

test tracts, particularly in the important dist metric (Table 1), which

quantifies deviation of the estimated path itself from the

underlying fibers. In several cases, FACTID produced significantly

better scores, in large part due to its successful propagation

through crossing- and kissing-fiber regions, which FACT was

typically unable to accomplish (Fig. 8). Though, the FACTID

algorithm did produce some misdirected and truncated tracts, as

well.

Figure 8. Comparisons of phantom test tractography results. 16
‘‘underlying truth’’ tracts of the phantom are shown in (A), reproduced
from Fig. 4C of Fillard et al. (2011) [32]. Tractography results from this
study, represented by the longest tract passing through each test ROI
(pink squares, numbered), are shown for FACT in (B) and for FACTID in
(C). NB: identifying tract colors are the same in B and C, but different
than in A. Quantitative scores per ROI are given in Table 1.
doi:10.1371/journal.pone.0043415.g008

Table 1. Test metrics for the phantom results for the
representative longest tracts per ROI (shown in Fig. 8), and
also including the best values for each ROI (as generally each
ROI contained more than one tract) in brackets.

Phantom test metrics

dist [best dist] tan [best tan] curv [best curv]

ROI FACTID FACT FACTID FACT FACTID FACT

1 18.1 [18.1] 23.4 [23.4] 45.3 [17.8] 25.7 [14.5] 0.16 [0.08] 0.31 [0.12]

2 29.2 [25.7] 24.8 [24.7] 32.7 [20.1] 20.7 [19.4] 0.22 [0.10] 0.18 [0.10]

3 5.1 [4.7] 53.4 [53.4] 17.8 [14.1] 20.9 [18.9] 0.16 [0.14] 0.23 [0.15]

4 18.5 [18.5] 15.3 [15.3] 13.2 [12.1] 13.9 [12.4] 0.12 [0.10] 0.16 [0.15]

5 7.8 [6.4] 15.2 [15.2] 37.5 [18.2] 45.2 [30.0] 0.18 [0.09] 0.19 [0.18]

6 45.2 [44.7] 45.5 [44.6] 61.7 [51.3] 60.4 [60.4] 0.28 [0.13] 0.23 [0.18]

7 54.5 [54.5] 54.4 [54.4] 67.6 [66.8] 65.5 [65.5] 0.20 [0.18] 0.20 [0.20]

8 5.0 [4.7] 4.8 [4.8] 15.2 [12.9] 15.2 [13.5] 0.12 [0.07] 0.12 [0.09]

9 11.4 [10.7] 10.4 [10.5] 43.5 [15.2] 43.3 [17.4] 0.16 [0.08] 0.25 [0.13]

10 9.2 [7.6] 10.6 [7.6] 32.5 [18.2] 46.9 [18.6] 0.14 [0.07] 0.20 [0.07]

11 56.3 [56.3] 54.9 [54.9] 53.7 [50.9] 56.2 [51.6] 0.23 [0.20] 0.28 [0.22]

12 18.9 [17.9] 56.4 [56.4] 18.9 [18.9] 76.0 [57.6] 0.19 [0.10] 0.17 [0.17]

13 3.8 [3.8] 3.1 [3.1] 15.9 [14.0] 14.6 [14.6] 0.09 [0.07] 0.11 [0.08]

14 4.5 [3.6] 5.1 [3.6] 21.0 [16.3] 23.1 [18.6] 0.11 [0.07] 0.13 [0.08]

15 16.9 [15.2] 15.4 [15.4] 58.1 [13.2] 53.7 [14.4] 0.18 [0.06] 0.22 [0.08]

16 60.2 [49.5] 60.3 [49.3] 65.6 [11.2] 65.6 [18.4] 0.32 [0.06] 0.36 [0.14]

Mean 22.8 [21.4] 28.3 [27.3] 37.5 [23.2] 40.4 [27.9] 0.18 [0.10] 0.21 [0.13]

The bottom row gives the mean value per column. NB: lower values per test
reflect better values [32].
doi:10.1371/journal.pone.0043415.t001
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The phantom test has been used on several tractography

algorithms (see op. cit. within [33] for details), some with the DT

model and some with HARDI, such as orientation distribution

functions [21], which often require a large number of scans (only

sets of 30 DWIs at multiple b-values and resolutions were

available, however, for this phantom data set). In general, these

methods provided the best scores across the phantom tests. For

many fibers, FACTID produced results comparable with these

values, though improvement can be made in some cases for

navigating complex fiber regions. For most ROIs, FACT results

were similar or better than most DT-models (such as streamline

propagation with Runge-Kutta integration [13,46] or TEND

propagation with Euler integration [16,46]) in terms of dist values,

such as tract-ROIs 3 and 12, and tying top scores for with various

others having various performance (e.g., ROIs 5, 8 and 14); it

should be noted that FACTID had a much lower than top score

than other methods on ROI 6, which contained several crossing

and one kissing fiber. The general improvement of scores with

FACTID are likely due to decreased error accumulation from

lower noise sensitivity and reduced directional bias (as suggested

by Tests 1–4). Of course, future work will be done to further

improve the algorithm, particularly in navigating crossing/kissing

fibers (such as required in ROI 6). It would be interesting as well to

perform this phantom test in an analysis of false positives in order

to test the variability of connectivity which various algorithms

produce.

While the FACTID algorithm appears to decrease the speed of

error accumulation and to decrease some numerical features due

to axis orientation, of course artifacts still remain in the results.

Cases of potential ‘‘false positive’’ tracts appeared in the Nave = 4

data set of the SNR test (Fig. 3); though, a pathway appeared in

similar location in the FACT results of the same data, as well. The

FACTID algorithm is still susceptible to many of the same

imperfections of FACT, such as difficulty in distinguishing crossing

and kissing fibers (though, as seen in the phantom test, including

diagonals reduced these errors) or to propagate through regions of

low FA (where a real tract may continue, but a crossing fiber

disorients the diffusion anisotropy). Future improvements to

FACTID may include additional rules for dealing with such

difficulties or more sophisticated stopping criteria.

From the results of the study, it is apparent that the inclusion of

diagonals in FACTID makes significant improvement to the

facewise-propagating FACT algorithm, and we recommend the

former’s inclusion in standard and widely-used software. Improve-

ments to results in terms of decreased noise sensitivity and reduced

propagation bias would apply to any FACT-based algorithm.

Additionally, we are currently working on implementing FACTID

with both probabilistic tractography and higher-resolution diffu-

sion methods, such as HARDI, DSI, etc. The inclusion of

diagonals is likely to be useful in reducing numerical errors in

other tractography algorithms, as well, particularly those due to

coordinate-directional bias. It must be noted that several

tractography algorithms propagate with steps smaller than voxel-

traversing distances (such as Euler and RK4 integration methods),

and diagonal propagation may occur by chance depending on the

specific step location, size and direction. However, including

diagonals would provide systematic propagation in a greater

number of directions and for any step size, which has been shown

to be a significant improvement in this study. We plan to

investigate this in future studies of other algorithms with various

step sizes, expecting improvements on various scales at essentially

no extra computational cost.

Conclusions

Therefore, while work remains to be done to continue

improving FACT-based tractography, the simple inclusion of

diagonal propagation has been shown to have a number of

advantages which make FACTID a much preferred algorithm.

Quantitative and qualitative investigation have shown that

FACTID produces results which are more efficient with regards

to SNR and to spatial resolution (as limited by scanning time) and

more independent of arbitrary coordinate directions (and there-

fore, more consistent across the brain and scanning sessions). Also,

including diagonal propagation typically decreased the sensitivity

of results to MR noise. Therefore, in all tractographic applications,

FACTID decreases requisite scanning time for studies and

simultaneously increases reliability and robustness of results.
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