
Journal of Advanced Research 8 (2017) 529–536
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Mini Review
Serum uric acid and acute kidney injury: A mini review
http://dx.doi.org/10.1016/j.jare.2016.09.006
2090-1232/� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Cairo University.
⇑ Corresponding author. Fax: +90 2123454545.

E-mail addresses: mkanbay@ku.edu.tr, drkanbay@yahoo.com (M. Kanbay).
Kai Hahn a, Mehmet Kanbay b,⇑, Miguel A. Lanaspa c, Richard J. Johnson c, A. Ahsan Ejaz d

aCenter for Nephrology, Dialysis and Hypertension, Dortmund 69120, Germany
bDepartment of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul 34010, Turkey
cDivision of Renal Diseases and Hypertension, University of Colorado, Denver 80045, USA
dDivision of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, FL 32610, USA

g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 17 May 2016
Revised 17 September 2016
Accepted 18 September 2016
Available online 24 September 2016

Keywords:
Uric acid
Hyperuricemia
Chronic kidney disease
Acute kidney injury
Contrast nephropathy
Heat stress nephropathy
a b s t r a c t

Acute kidney injury causes great morbidity and mortality in both the community and hospital settings.
Understanding the etiological factors and the pathophysiological principles resulting in acute kidney
injury is essential in prompting appropriate therapies. Recently hyperuricemia has been recognized as
a potentially modifiable risk factor for acute kidney injury, including that associated with cardiovascular
surgery, radiocontrast administration, rhabdomyolysis, and associated with heat stress. This review dis-
cussed the evidence that repeated episodes of acute kidney injury from heat stress and dehydration may
also underlie the pathogenesis of the chronic kidney disease epidemic that is occurring in Central
America (Mesoamerican nephropathy). Potential mechanisms for how uric acid might contribute to acute
kidney injury are also discussed, including systemic effects on renal microvasculature and hemodynam-
ics, and local crystalline and noncrystalline effects on the renal tubules. Pilot clinical trials also show
potential benefits of lowering uric acid on acute kidney injury associated with a variety of insults. In sum-
mary, there is mounting evidence that hyperuricemia may have a significant role in the development of
acute kidney injury. Prospective, placebo controlled, randomized trials are needed to determine the
potential benefit of uric acid lowering therapy on kidney and cardio-metabolic diseases.
� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Acute kidney injury (AKI) is a major cause of morbidity and
mortality worldwide in both community and hospital settings
[1,2]. There has been a major effort by the International Society
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of Nephrology to reduce mortality from AKI, especially in the rural
setting (‘‘0 by 2025” initiative) [2,3]. AKI is especially common in
the intensive care unit, where it occurs in as many as 20–30% of
patients [4]. Even small rises in serum creatinine (SCr), that do
not meet the criteria for AKI, are independent predictors of
poor outcome [5]. There are numerous risk factors for AKI and
the pathological mechanisms are complex [6]. However, most
researchers accept that ischemic AKI involves loss of renal autoreg-
ulation with enhanced levels of vasoconstrictors leading to hypop-
erfusion and ischemia/reperfusion injury [6]. Accordingly,
therapeutic targets have included intervening at various stages of
this proposed hypothesis.

Recently uric acid has been resurrected as a potential mediator
of AKI, with the hypothesis that this ancient biological factor might
be driving inflammatory pathways that might accentuate acute
injury to the kidney [7–12]. Indeed, uric acid is now known not
to be biologically inert but to have a wide range of actions, includ-
ing being both a pro- and anti-oxidant, a neurostimulant, and an
inducer of inflammation and activator of the innate immune
response. These effects of uric acid may potentially explain why
uric acid is associated with the development of chronic kidney dis-
ease, as well as for hypertension, coronary artery disease, meta-
bolic syndrome and diabetes [13–19].

This review summarizes the epidemiology, pathophysiology,
and clinical studies that link uric acid with AKI. Hyperuricemia,
defined as >6.5 mg/dL in women and >7 mg/dL in men, has also
been recently recognized as an independent predictor for AKI.
While the relationship of hyperuricemia with AKI from acute
tumor lysis syndrome via crystal-dependent mechanisms is well
known, there is also increasing evidence that uric acid may modu-
late AKI via crystal-independent mechanisms.
Uric acid in acute kidney injury

Crystal-dependent mechanism of AKI

The best known example of crystal-induced tubulopathy is
tumor lysis syndrome in which the pathogenesis of AKI is thought
to be mediated by the precipitation of uric acid into crystals that
obstruct the distal tubules and collecting ducts of the kidney [20–
22]. Typically this occurs when a subject with a large tumor burden
is treated with chemotherapy, especially in subjects where the
tumor is extremely sensitive to such therapy such as after cytore-
ductive therapy for leukemia or lymphoma [23]. The release of
DNA and RNA from the lysed tumor cells, is metabolized in the liver,
generating large amounts of uric acid that enter the circulation. In
turn, this results in a surge in renal excretion of uric acid that
exceeds saturation, leading to crystallization with tubular luminal
obstruction, and local granulomatous inflammation associatedwith
macrophage and T cell infiltration [24]. The acute lysis of tumor
cells also results in lactic acid generation that may lead to urinary
acidification which enhances the crystallization of uric acid with
its precipitation that occurs primarily in the collecting duct system
and, to some extent, in the vasa recta. Uric acid crystal deposition
causes increased tubular pressure, increased intrarenal pressure,
and compressive congestion of the renal venules, and also results
in inflammasome-mediated activation of the innate immune sys-
tem with local inflammation and fibrosis. The resulting increased
renal vascular resistance and reduced renal blood flow combine
with elevated tubular pressure to reduce glomerular filtration, cul-
minating in AKI.

Clinical studies have also shown that preventing the develop-
ment of hyperuricemia can prevent the development of tumor lysis
syndrome. For example, in a multicenter, randomized, controlled
trial comparing rasburicase and allopurinol in children at high risk
for tumor lysis syndrome, more effective reduction of serum uric
acid (AUC of uric acid of 128 ± 70 mg/dL h in the rasburicase group
vs. an AUC of uric acid 329 ± 129 mg/dL h in the allopurinol group,
P < 0.0001) was associated with a greater reduction in serum crea-
tinine (41% vs. 11.4% in the rasburicase vs allopurinol group,
P < 0.001) values [25]. Normalization of hyperuricemia with ras-
buricase given preventively during induction of chemotherapy of
aggressive non-Hodgkin lymphoma also resulted in reduction in
serum creatinine [26,27].

Classically, the AKI in tumor lysis syndrome has been thought to
occur primarily in subjects in which the serum uric acid rises above
12 mg/dl, and in which the urine uric acid/creatinine ratio is
greater than 1. As such, serum uric acid levels in the modestly ele-
vated range (7–12 mg/dL) have historically thought not to be at a
level that will lead to urinary crystallization and tubular injury.
Indeed, marked hyperuricemia leading to urate crystal deposition
with AKI has been shown experimentally to cause AKI with a con-
comitant decrease in glomerular filtration rate (GFR) and renal
blood flow (RBF) by micropuncture and PAH clearance studies,
respectively [28]. However, crystal-associated tubular obstruction
is not the only mechanism involved in AKI associated with tumor
lysis syndrome. Both local and systemic inflammatory responses
play significant roles as demonstrated by concerted array of cyto-
kine responses with immunosuppression therapy [29]. Anders
et al. have shown that intracellular NLRP3 inflammasome, a pat-
tern recognition platform, translates crystal uptake into innate
immune activation via secretion of IL-1b and IL-18 and can trigger
inflammation and AKI in crystal-related disorders [30]. Cytotoxic-
ity of the uric acid crystals may also involve receptor-interacting
protein kinase 3 (RIPK3) or mixed lineage kinase domain like
(MLKL), two core proteins of the necroptosis pathway [31].
Another example of crystal-induced tubulopathy is rhabdomyoly-
sis where the high rates of generation and urinary excretion of uric
acid and low pH of tubular urine further contribute to tubular
obstruction by uric acid crystal-containing casts [32,33].

Crystal-independent mechanism of AKI

Experimental studies
A breakthrough in our understanding of the biology of hyper-

uricemia was shown by Sanchez-Lozada et al. [34], who demon-
strated in experimental models that mild hyperuricemia, at
levels that do not cause crystal formation or deposition, can also
induce a 50% reduction in GFR and RBF [18,35], opening the possi-
bility that even mild hyperuricemia may act as a risk factor for AKI.
Mild hyperuricemia has since been shown to have proinflamma-
tory and anti-angiogenic properties [36]. Uric acid causes activa-
tion of the renin-angiotensin system, and increases reactive
oxygen radicals, inflammatory mediators (MCP-1, ICAM), vascular
responsiveness and vascular smooth muscle proliferation and
migration; uric acid also inhibits proximal tubular cell prolifera-
tion, vascular endothelial cell proliferation and migration and
decreases bioavailability of nitric oxide, increases preglomerular
arteriolar thickening and impairs renal autoregulation.

These proinflammatory effects of uric acid provide the impetus
to investigate the relative contribution of hyperuricemia to AKI in a
model of cisplatin-induced AKI in rats. Moderate hyperuricemia
was associated with an absence of intrarenal crystals and the
occurrence of greater injury of the pars recta (S3) segment of the
proximal tubule and proliferation with significantly greater macro-
phage infiltration and increased expression of monocyte chemoat-
tractant protein-1 than the control cisplatin group [37]. Treatment
with urate oxidase (recombinant uricase) reversed the inflamma-
tory changes and lessened tubular injury. These data provided
the first experimental evidence that uric acid, at concentrations
that do not cause intrarenal crystal formation, may exacerbate
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renal injury in a model of AKI. It might be speculated that the
mechanisms of hyperuricemia-induced AKI in this model included
a proinflammatory pathway involving chemokine expression by
tubular cells with leukocyte infiltration.

Epidemiological studies

Cardiac surgery
Recently our group reported that even modest hyperuricemia

increases the risk for AKI following aortic aneurysm repair or car-
diovascular surgery [38,39]. In one study, hyperuricemia (preoper-
ative serum uric acid >7 mg/dL) was found to confer a 35-fold
increased risk for AKI that was independent of other risk factors
including a baseline reduction in eGFR [40]. Serum uric acid also
exhibited a U-shaped relationship with AKI. A similar relationship
between serum uric acid and AKI in cardiac surgery was reported
by Joung et al. [35]. The study of the relationship of serum uric acid
and renal function, specifically GFR, is hindered by the technical
complexities and the lack of broad consensus on guidelines about
estimating GFR. However, using a retooled creatinine clearance
equation with the power and versatility estimates renal function
under non-steady conditions, i.e. kinetic estimated GFR equation.
Hyperuricemia also effectively predicted subsequent changes in
urinary neutrophil gelatinase-associated lipocalin (NGAL), serum
creatinine (SCr), kinetic estimated GFR and the development of
AKI [41]. Uric acid exhibited a linear relationship with serum cre-
atinine and an inverse relationship with kinetic estimated GFR in
cardiac surgery patients. This supports the proposed mechanisms
of AKI that ischemic AKI involves loss of renal autoregulation with
enhanced levels of vasoconstrictors leading to hypoperfusion and
ischemia/reperfusion injury. Recent data in asymptomatic hyper-
uricemic subjects demonstrated improvement in estimated GFR
when serum uric acid was lowered with the xanthine oxidase
allopurinol [15,42,43].

Acute myeloid leukemia

Hyperuricemia may also increase the risk for other forms of AKI
as well, including from cisplatin treatment in oncology patients
where a linear relationship between serum uric acid and serum cre-
atinine has been demonstrated [44]. In acute myeloid leukemia
patients [32], serum uric acid has been shown to be an independent
predictor of AKI and tumor lysis syndrome with superior predictive
performance than conventional markers such as lactate dehydroge-
nase, cytogenetic profile and tumormarkers. In order to confirm the
previously reported relationship between uric acid and estimated
GFR in cardiac surgery patients, it is investigated the relationship
between SUA and KeGFR in a larger, unique patient cohort wherein
SUA levels fluctuate during the course of standard care. Koratala
et al. retrospectively studied acute myeloid leukemia patients
[45]. The unique characteristic of this cohort was that all of the
patients were managed with the same clinical protocols, i.e., they
were admitted to the hospital with a confirmed diagnosis of AML,
underwent laboratory, imaging and cytogenetic testing, received
prophylactic therapy with bicarbonate containing fluids and oral
uric acid lowering medications, and then received induction ther-
apy. The investigators demonstrated a linear relationship between
serum uric acid and serum creatinine and an inverse relationship
between serum creatinine and kinetic estimated GFR, validating
previous findings and reinforcing the emerging translational phys-
iological evidence regarding the role of uric acid in AKI.

Radiocontrast nephropathy

Radiocontrast is well known to be a nephrotoxin, and can result
in either oliguric or anuric AKI. The injury is associated with both
renal vasoconstriction and tubular toxicity, but the actual mecha-
nism remains unknown. Interestingly, radiocontrast causes an
acute uricosuria [41,46] that may potentially play a role in injury.
Indeed, an elevation in serum uric acid, even at modest levels, is
known to increase the risk for contrast-induced AKI [47,48]. A
recent meta-analysis by Kanbay et al. that included 10 studies
reported that elevated levels of serum uric acid were associated
with a twofold increased risk for the development of
radiocontrast-induced AKI (pooled odds ratio 2.03; 95%CI 1.48–
2.78) [49]. Prophylactic administration of allopurinol to subjects
undergoing radiocontrast procedures was associated with signifi-
cant renoprotection compared to hydration with or without N-
acetyl cysteine [50,51]. These studies are consistent with the
hypothesis that blocking the acute uricosuria could potentially be
beneficial in this condition.

Crystal-dependent and crystal-independent mechanisms in
Mesoamerican nephropathy and heat stress nephropathy

In recent years an epidemic of chronic kidney disease has been
identified along the Pacific coast of Central America where it typi-
cally affects manual laborers working in the sugarcane or other
agricultural communities [37,44,52]. While the etiology remains
unknown, a common risk factor appears to be heat stress and
recurrent dehydration [53]. Heat stress is often associated with
mild muscle injury with subclinical rhabdomyolysis that can lead
to increase nucleotide release and a rise in serum uric acid levels
of injury [33,54]. Indeed, subclinical rhabdomyolysis, marked
hyperuricemia, and uricosuria with crystal formation have been
documented in sugarcane workers [37,44,53,55]. Indeed, it has
been found that repeated heat-stress in agricultural workers may
be associated with a rise in both serum and urine uric acid during
the workday [37,44,53], and when urinary uric acid concentrations
exceed solubility, uric acid crystals may form, causing local injury.
This suggests a potential mechanism involving repeated AKI from
intermittent hyperuricemia and uricosuria, and is consistent with
evidence from biomarker studies that renal injury is likely inter-
mittent in this condition [56,57]. Other mechanisms could also
be operative in causing renal injury in this disease, including the
effects of vasopressin or the endogenous polyol fructokinase path-
way [58–60], or from the ingestion of toxins such as agrochemicals
or heavy metals [61].

Proposed mechanisms for how uric acid may cause acute kidney injury

The proposed mechanisms for how uric acid may induce AKI are
shown in Fig 1, and are discussed in detail below. Traditionally, the
mechanism by which uric acid was posited to cause kidney dam-
age was via uricosuria with supersaturation leading to intratubular
crystal deposition that would then bind to tubular cells via toll-like
receptors to initiate innate immune response with activation of
inflammasomes and a local inflammatory response. There is
increasing thought that acute rises in serum uric acid, such as
might occur with heat stress, rhabdomyolysis or with radiocon-
trast administration may lead to urinary levels that may cause
renal injury. This might be especially common in the setting where
the urine is concentration and acidic, such as in subjects with
dehydration, as an acidic urinary pH favors crystal formation
[62,63]. In this regard, transient hyperuricosuria is not uncommon
in healthy men, and in serial determinations may occur approxi-
mately 20% of the time [64]. While most attention has focused
on the effects of urate crystalluria as a nephrotoxin [65,66], urico-
suria in the absence of crystalluria may also affect tubular function
[67–70] by inducing oxidative stress, epithelial-mesenchymal
transformation and tubular production of chemotactic factors,
and by altering cell proliferation [67,68,70–72].



Fig. 1. Postulated mechanisms for uric acid induced acute kidney injury.
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Generation of uric acid within tubular cells may also induce
inflammatory changes. For example, the metabolism of fructose
by fructokinase in the proximal tubular cells generates uric acid
that may induce local injury and inflammation [72]. Chronic
dehydration, by activating the aldose reductase system, can also
cause local generation of fructose that is metabolized to uric acid
[58]. Perioperative ischemia-reperfusion injury of the S3 segment
of the proximal tubule, as well as of the medullary thick ascend-
ing limb in the outer medulla [73], have been shown to deplete
intracellular ATP; this results in uric acid production that could
participate in multiple pathophysiological events including
tubular cell injury, free radical generation, tight junction and
cytoskeletal disruption, and ultimately loss of apical-basolateral
polarity [74].

In a related important development, the United States Federal
Drug Administration has strengthened the existing warning about
the risk of AKI in patients taking sodium-glucose cotransporter 2
(SGLT2) inhibitors. These drugs block glucose uptake in the S1
and S2 segments of the proximal tubular, and hence increase glu-
cose delivery to the S3 segment. Recently investigators have shown
that conditions associated with hyperglycemia and/or hyperosmo-
larity may result in the induction of aldose reductase in the prox-
imal tubule, which can convert glucose to sorbitol with subsequent
conversion to fructose by sorbitol dehydrogenase [58,75]. In turn,
the generation of fructose in the S3 segment can lead to local uric
acid generation, oxidative stress, release of chemokines, and tubu-
lar injury [72,76]. Reducing uric acid can ameliorate the oxidative
stress and chemokine release [72]. Thus it seems likely, that
despite numerous potential benefits of SGLT2 inhibitors [77], they
may increase the risk for AKI, especially under conditions in which
hyperglycemia or hyperosmolarity is present.

While local effects of uric acid on the kidney are likely, systemic
hyperuricemia has also been strongly linked with systemic inflam-
mation, oxidative stress, endothelial dysfunction and activation of
the renin-angiotensin system, and some studies suggest these
effects may be improved by lowering uric acid with allopurinol
[78–81]. In cell culture systems, soluble uric acid has been found
to stimulate chemotactic factors, vasoconstrictive mediators (such
as thromboxane and endothelin), growth factors, and prooxidants,
and to decrease the bioavailability of nitric oxide [82–86]. Uric
acid can also function as an antioxidant [87], but the reaction of
uric acid with oxidants can also generate new free radicals and
alkylating agents [88]. In animals, the primary effect of hyper-
uricemia on the kidney appears to be a reduction in renal blood
flow and an increase in glomerular pressure that can be prevented
by lowering uric acid and/or blocking oxidative stress [34,89].
The fundamental changes in renal vasculature and vasoconstric-
tive mechanisms that occur in AKI are similar to those observed
with hyperuricemia, including renin-angiotensin-aldosterone sys-
tem activation, oxidative stress, reduction of nitric oxide and
inflammation.
Clinical evidence for protection in AKI

The most relevant clinical question is whether treatment of
hyperuricemia will decrease the risk of subsequent AKI and trans-
late into clinical benefits in terms of prevention or a better out-
come of CKD and cardiovascular disease. Two small studies
reported that lowering serum uric acid with allopurinol prevents
development of radiocontrast induced AKI [50,51]. Kanbay et al.
were able to show that treatment with allopurinol resulted in an
increase of eGFR in asymptomatic hyperuricemic subjects [42]
while another study by Tallaat and El-Sheikh reported a deteriora-
tion of kidney function after withdrawal of allopurinol in CKD 3
and 4 patients [90]. In the FOCUS study, treatment with febuxostat
improved renal function in subjects with chronic kidney disease,
with a reduction of serum uric acid by 1 mg/dL predicting an
improvement of 1 mL/min in estimated GFR [91]. Finally, in a pilot
study by Ejaz et al., preoperative treatment of hyperuricemia with
rasburicase in subjects undergoing cardiovascular surgery resulted
in a decrease in incidence of AKI (7.7% vs. 30.8%), that, while not
reaching significance, is consistent with a potential benefit of low-
ering uric acid to reduce the risk for AKI [92].



Table 1
Clinical trials of the effect of uric acid in acute kidney injury (AKI) and chronic kidney disease (CKD). source:www.clinicaltrials.gov.

Study type

Lowering Serum Uric Acid to Prevent Acute Kidney Injury Interventional
Predicting Acute Kidney Injury After Coronary Artery Bypass Graft Observational
Chronic kidney diseases
Uric acid and the endothelium in CKD Interventional
Uric acid and long-term outcomes in chronic kidney disease Observational
The effect of uric acid decrement on endothelial function in patients with chronic renal failure Observational
FFT, inflammation, lipid metabolism, blood pressure and organ damage in patients with chronic kidney disease Observational
The effect of uric acid lowering in Type I diabetes Interventional
A multicenter trial of allopurinol to prevent kidney function loss in Type I diabetes Interventional
A controlled study of uric acid on the progression of IgA nephropathy Interventional
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Limitations

There are some findings that challenge the hypothesis that uric
acid may have a role in AKI. First, most of the clinical studies have
involved small numbers of patients, and hence randomized,
placebo-controlled, double-blind studies are indicated. Second,
there are also studies suggesting that uric acid may be a biomarker
for xanthine oxidase activity, and it is the xanthine oxidase that is
driving the disease through its ability to produce oxidants [93,94].
Indeed, some authors believe soluble uric acid may be beneficial as
it can function as an antioxidant [87,94]. However, the reaction of
uric acid with peroxynitrite generates radicals and alkylating spe-
cies [88,95,96]. Several large genetic studies also could not link
genetic polymorphisms that raise uric acid with hypertension or
diabetes [97,98], while others have found such associations [99–
102].
Conclusions

In summary, there is mounting evidence that uric acid is a
potential causative agent in AKI. Indeed, a large retrospective study
of hospitalized patients with cardiovascular, hematology/oncology,
infectious disease, gastrointestinal and respiratory disorders,
recently reported a linear relationship between serum uric acid
level and the development of dialysis-dependent AKI during hospi-
talization (odds ratio for SUA > 9.4 mg/dL was 1.79; CI = 1.13–2.82)
[103]. Uric acid may increase the risk for AKI via both systemic
effects of hyperuricemia and local effects due to crystalline and
noncrystalline effects of urinary uric acid on tubules. Given the
laudable goal for reducing mortality from AKI, more studies are
needed to assess whether lowering uric acid can prevent or treat
AKI. Indeed, a variety of studies are underway (Table 1).
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