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Abstract
Understanding of the complex interaction between the peripheral immune system 
and lung cancer (LC) remains incomplete, limiting patient benefit. Here, we aimed to 
characterize the host peripheral immune response to LC and investigate its potential 
prognostic value. Bulk RNA-sequencing data of peripheral blood leucocytes (PBLs) 
from healthy volunteers and LC patients (n = 142) were analysed for characterization 
of host systemic immunity in LC. We observed broad blood transcriptome perturba-
tions in LC patients that were heterogeneous, as two new subtypes were established 
independent of histology. Functionally, the heterogeneity between the two subtypes 
included dysregulation of diverse biological processes, such as the cell cycle, blood 
coagulation and inflammatory signalling pathways, together with the abundance and 
activity of blood cells, particularly lymphocytes and neutrophils, ultimately manifest-
ing as differences in antitumour immune status. Based on these findings, a prognostic 
model composed of ten genes dysregulated in one LC subtype with relatively poor im-
mune status was developed and validated in a Gene Expression Omnibus (GEO) data 
set (n = 108), helping to generate a prognostic nomogram. Collectively, our study pro-
vides novel and comprehensive insight into the heterogeneity of the host peripheral 
immune response to LC. The expression heterogeneity–based predictive model may 
help guide prognostic management for LC patients.
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1  |  INTRODUC TION

The immune response is believed to play a crucial role in the oc-
currence and progression of cancers, including lung cancer (LC). 
Past studies have pointed out that, as a highly heterogeneous dis-
ease with poor prognosis and high mortality, LC may be promoted 
via a reprogrammed immune microenvironment by contributing 
to inflammation, immune regulation and treatment response.1,2 
Therefore, a variety of diagnostic and prognostic biomarkers have 
been proposed, and targeted immunotherapy has been applied in 
clinical therapy based on components of the tumour microenviron-
ment.3-5 From another perspective, cancer is perceived as a systemic 
disorder. Immune cell abundance, genomic DNA methylation and se-
rological characteristics have been found to be altered in the periph-
eral immune system in LC.6-8 Nevertheless, a comprehensive and 
in-depth understanding of the impacts of LC on the host immune 
system is still lacking.

At present, treatment and prognosis prediction for LC patients 
are based mainly on the tumour-node-metastasis (TNM) staging 
system.9 However, there are still considerable disparities in survival 
among patients with the same clinical characteristics. Researchers 
have tried to develop new prognostic auxiliary indicators to enhance 
the accuracy of LC prognosis,3,10,11 but intratumour heterogeneity 
and sampling bias may limit the validity and reproducibility of prog-
nostic markers, particularly for solid tumour specimens. Hence, re-
liable prognostic biomarkers are needed to guide adjuvant therapy.

As an accessible source of immune cells that migrate to and from 
tumour lesions, peripheral blood is exposed to tumour cells and 
host-secreted factors released into the peripheral circulation system 
and is suitable for evaluating the immune status of cancer patients. 
Furthermore, genome-wide expression profile analysis based on 
high-throughput transcriptome sequencing (RNA-Seq) of periph-
eral blood provides an unbiased and in vitro operational approach 
to measure transcriptional responses in complex diseases, including 
cancer.12,13

In this study, we generated transcriptional profiles of periph-
eral blood leucocytes (PBLs) from LC patients and healthy subjects 
by RNA-Seq. We characterized the transcription profile changes 
of PBLs in LC and parsed their heterogeneity for the first time. 
Moreover, we developed a risk score (RS) model with signature 
genes of PBL subtypes as a good indicator to predict overall survival 
(OS) for LC patients.

2  |  MATERIAL S AND METHODS

See also Supplementary Methods.

2.1  |  Collection of specimens

We recruited 69 healthy individuals and 73 LC patients and collected 
four millilitres of fresh peripheral blood from each enrolled individual 

before clinical treatment. The clinical characteristics of all subjects 
are summarized in Table S1. The study was reviewed and approved 
by the Ethics Committee of the Cancer Institute and Hospital of the 
CAMS and was carried out in accordance with the World Medical 
Association Declaration of Helsinki Ethical Principles for Medical 
Research.14 All subjects provided written informed consent.

2.2  |  Generation and normalization of RNA-
sequencing data

We extracted total RNA from peripheral leucocytes. Eligible librar-
ies were prepared from qualified samples using a NEBNext® Ultra™ 
RNA Library Prep Kit (New England Biolabs, Ipswich, MA, UK) and 
sequenced on the Illumina HiSeq 4000 platform. Paired-end reads 
(150 bp) were mapped to the human reference genome (GRCh38) by 
Salmon. Transcript abundances were summarized at the gene level 
with tximport and were normalized based on transcripts-per-million 
(TPM).

2.3  |  Differentially expressed gene 
identification and pathway enrichment analysis

The Bioconductor package DESeq2 was used to detect differentially 
expressed genes (DEGs) with a gene read count matrix.15 Only genes 
with a Benjamini-Hochberg false discovery rate (FDR) < 0.05 and a 
|log2 fold change (FC)| ≥ 0.59 were defined as DEGs.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were performed by 
the package ClusterProfiler and visualized with the package GOplot 
and Cytoscape software (v3.7.1) to functionally characterize the 
identified DEGs.16,17 The Benjamini-Hochberg FDR threshold in 
each case was set at 0.05.

2.4  |  Estimate the proportion of immune cells

CIBERSORT can differentiate mature human haematopoietic cells 
by deconvolution with an LM22 signature gene file. To estimate the 
proportion of 22 immune cell types for each individual, CIBERSORT 
analysis was performed on the gene expression data with the online 
tool developed by Newman et al (https://ciber​sort.stanf​ord.edu/). 
Routine blood indicators of 67 normal subjects and 37 LC patients 
collected from medical records were used to verify partial results.

To observe DEGs independent of immune cell composition be-
tween LC subtypes, we simplified the cell composition to the ratio of 
myeloid cells to lymphocytes (myeloid cells include monocytes, M0 
macrophages, M1 macrophages, M2 macrophages, resting dendritic 
cells, activated dendritic cells, resting mast cells, activated mast 
cells, eosinophils and neutrophils; lymphocytes include naive B cells, 
memory B cells, plasma cells, CD8 T cells, naive CD4 T cells, memory 
resting CD4 T cells, memory activated CD4 T cells, T follicular helper 

https://cibersort.stanford.edu/
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cells, regulatory T cells, gamma delta T cells, resting natural killer 
(NK) cells and activated NK cells) and used it as a covariate in the 
analysis of differential gene expression.

2.5  |  Dimension reduction and cluster analysis

To explore PBL transcriptional profiling–based heterogeneity among 
samples, we performed t-distributed stochastic neighbour embed-
ding (t-SNE) analysis by the package Rtsne using the first 50 princi-
pal components and 1000 iterations, combined with cluster analysis 
employed by the package mclust with default parameters using all 
genes.18 Principal component analysis (PCA) of all genes and un-
supervised hierarchical clustering analysis of the top 3000 most 
variable genes using the complete method and Pearson correlation 
distance were carried out by R to validate the gene expression pro-
file heterogeneity between LC subtypes.

2.6  |  Calculation of molecular distance

A metric presented by Pankla et al defined as molecular distance 
can be applied to quantify global transcriptome variation degree in 
patients versus normal people.19 This method essentially consists 
of implementing outlier analysis on a gene-by-gene basis, where the 
dispersion of the expression values found in the baseline samples is 
used to judge whether the expression value of a single case sample 
lies within two standard deviations of the controls' mean. Here, we 
calculated the molecular distance of the expression profile for each 
patient by taking normal samples as the baseline and compared the 
differences in variation degree between different groups.

2.7  |  Gene set enrichment analysis

To compare differences in the transcriptomes between LC subtypes, 
we implemented two enrichment methods for the gene expression 
profiles by taking blood transcription modules (BTMs) devised spe-
cifically for blood transcriptome analysis and the ‘hallmark’ MSigDB 
collection (v7.1) as gene sets: analyses performed with gene set 
enrichment analysis (GSEA) software (http://www.broad.mit.edu/
gsea/) and the tmod package.20 Pre-ranked gene lists consisted of 
genes arranged with a decreasing metric value derived from the 
DESeq2 analysis result. The formula used for calculating the metric 
is as follows:

For tmod, the CERNO test was employed. Only BTMs that were 
commonly significantly enriched (FDR < 5%) across the two meth-
ods were retained.

2.8  |  Weighted gene correlation network analysis

In this study, two gene co-expression networks consisting of 86 
samples (lung cancer set 1 (LC1) vs the normal group) and 125 sam-
ples (lung cancer set 2 (LC2) vs the normal group) were established 
by the package WGCNA.21 The two adjacency matrixes were cal-
culated with a beta of 8 or 10, and the minimum cluster size of the 
clustering dendrograms was 30. The association between eigengene 
values and clinical traits was assessed by Pearson's correlation, and 
key co-expression modules related to class differences were de-
tected according to the correlation and significance P values. Genes 
in each key co-expression module were ranked by effect size as the 
mean expression of the LC class minus the expression of the normal 
class to generate pre-ranked gene lists for downstream GSEA with 
BTMs as gene sets.

2.9  |  Construction and validation of a RS 
prognostic model

We downloaded a transcriptome data set of peripheral blood mon-
onuclear cells (PBMCs) with clinical outcomes from NCBI’s Gene 
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) 
under accession number GSE13255, which contains 108 LC patients. 
The normalized gene expression matrix transformed by log2 was ap-
plied to construct a RS prognostic model. A summary of the sample 
information is shown in Table S3.

All samples were randomly divided equally into training and 
testing sets. First, we identified a gene panel selected from LC2 
DEGs with P < .05 in a univariate regression analysis of the train-
ing set (n = 54). Next, we introduced least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis to the gene 
panel by the glmnet package.22 The expected generalization error 
was estimated by 10-fold cross-validation, and the LASSO model 
consisting of n genes with non-zero regression coefficients was 
determined. Those coefficients (c) and the corresponding gene ex-
pression values (E) were used to calculate a RS for each patient, as 
shown below:

An optimal cut-off value determined by performing time-
dependent receiver operating characteristic (ROC) analysis with the 
survival ROC package dichotomized patients into a high-risk group 
or a low-risk group. The Kaplan-Meier (KM) method with a log-rank 
test was used to perform time-to-event analysis to evaluate survival 
differences between the two groups. The testing set and stage I 
set were utilized to validate the prognostic ability of the predictive 
model.

Univariate and multivariate Cox proportional hazard regression 
analyses were performed to assess independent prognostic factors. 
A novel nomogram was built based on the multivariable analyses and 

metric =
− log10 (p value)

sign(log2FC)

RS = c1E1 +⋯cnEn

http://www.broad.mit.edu/gsea/
http://www.broad.mit.edu/gsea/
http://www.ncbi.nlm.nih.gov/geo/
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provided visualized risk stratification by the survival, foreign and rms 
packages. The discrimination of different predictors was appraised 
by Harrell's concordance index (C-index).

2.10  |  Statistical analysis

The Mann-Whitney U test (two-tailed) was used to compare cell 
proportions among samples. Pearson's product-moment correlation 
test was used to estimate correlations between CIBERSORT analy-
sis results and blood routine indicators of subjects. Fisher's exact 
chi-square test, unpaired Student's t test and a chi-square test with 
Yates correction for continuity were used to calculate differences in 
clinical characteristics between different LC subsets. The Kruskal-
Wallis test and Mann-Whitney U test (two-tailed) were performed 
for comparison of molecular distance. All statistical analyses were 
performed by using R (3.6.3) or SPSS (25.0) software. P <  .05 was 
considered statistically significant.

3  |  RESULTS

3.1  |  Broad blood transcriptome perturbations 
were evident in LC patients

To quantify sample differences in the PBL transcriptome between 
LC and healthy subjects, we carried out PCA across 142 subjects 
and found that the LC group was separated from the healthy group 
(Figure  1A). We identified 1368 DEGs in the LC versus healthy 
groups to uncover the biological alterations of the peripheral im-
mune system in response to LC (Figure 1B, File S1). Biological pro-
cesses, including the humoral immune response and regulation of 
lymphocyte activation, were enriched (Figure 1C). Disturbed path-
ways identified previously in LC histological studies, such as arachi-
donic acid metabolism and transcriptional misregulation in cancer, 
were also observed (Figure S1).23,24

We next estimated the proportions of immune cells for each 
subject by deconvoluting the PBL RNA-Seq data to investigate 
changes at the cellular level (File S2). Nine major cell components 
are displayed (Figure 1D). Changes in the abundance of monocytes, 
NK cells, T cells and B cells in the patient group were observed, 
which is in agreement with past research.25 Similar changes were 
found in routine blood indicators that were significantly positively 
correlated with deconvolution analysis results (Figure S2). In gen-
eral, the PBL transcriptome of LC patients was widely disturbed 
and denoted broad aberrancies in innate and adaptive immunity.

3.2  |  PBL transcriptional profiles of LC patients are 
heterogeneous

We next asked whether there is consistency in peripheral transcrip-
tome perturbations among LC patients. We performed t-SNE and 
cluster analyses across all subjects based on the similarity of gene 
expression profiles (Figure 2A). The LC patients were distinct from 
normal subjects, in line with the PCA results (Figure 1A). In particular, 
LC samples were clustered into two subsets defined as LC1 and LC2, 
both of which contained three LC histological subtypes (Figure S3). 
We also executed PCA and unsupervised hierarchical cluster analysis 
of the top 3000 most variable genes to verify between-group vari-
ance (Figure  2B,C). Two clusters were delineated in unsupervised 
hierarchical cluster analysis, and the vast majority of samples in LC1 
and LC2 were divided into different clusters. Detailed clinical traits 
of the two LC subsets are given in Table S2. Apparently, there were 
no significant differences in characteristics between the two sub-
sets except for stage (Fisher's exact chi-square test, P = .004). Early-
stage patients were relatively evenly distributed in the two subsets, 
but more advanced patients were classified as LC2.

In addition, we calculated the molecular distance for each pa-
tient to quantify global transcriptional changes in LC over the nor-
mal baseline (Figure 2D). Notably, the molecular distance between 
LC1 and LC2 was significantly different (Mann-Whitney U test, 
P <  .0001). Although the P value did not indicate statistical signif-
icance (Kruskal-Wallis test, P  =  .213), there seemed to be a slight 
difference between subgroups classified based on stage. For the 
subgroups with different histological types, their PBL expression 
profiles were very similar (Kruskal-Wallis test, P =  .875). These re-
sults further imply that the difference in LC histological type with 
different origins is not manifested in the PBL expression profiles.

In short, considerable heterogeneity of PBL transcriptional pro-
files independent of histological type was identified in LC. We next 
conducted analyses aiming to interpret the heterogeneity and its 
significance.

3.3  |  Global alterations revealed the 
heterogeneity of the PBL transcriptome in LC patients

First, to characterize the global blood transcriptional profile, we 
explored BTM signatures of the LC subsets devised specifically for 
blood transcriptome analysis by performing GSEA and tmod analy-
sis. Significantly up-regulated BTMs in LC1 versus normal controls 
(N) across the two methods (FDR  <  0.05) included NK cell signa-
ture enrichment, cell cycle and DNA repair relevant pathways. 

F I G U R E  1  Difference analysis and deconvolution of the PBL transcriptome between LC patients and healthy controls. A, PCA of 
PBL transcriptional profiles across all subjects. PC1 and PC2 are plotted on the x-axis and y-axis, respectively. Ellipses represent 95% 
CIs. B, Volcano plot of DEGs in LC versus healthy individuals. The horizontal line indicates FDR = 0.05, and the vertical line indicates 
|log2FC| = 0.59. Blue, black and red dots represent down-regulated, non-significantly differentially expressed and up-regulated genes, 
respectively. C, GO enrichment analysis of DEGs (FDR < 0.05) (BP, biology process; CC, cellular component; MF, molecular function). D, 
Estimated proportions of immune cells in healthy and LC individuals (Mann-Whitney U test, *P < .05; **P < .01; ***P < .001)
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Up-regulated BTMs in LC2 included myeloid cell signature enrich-
ment, blood coagulation and inflammatory signalling pathways 
(Figure 3A and Figure S4A). We next implemented WGCNA to evalu-
ate class differences in the co-expression network module derived 
from LC-induced data (Figure S5). Core modules related to disease 
states were found to be differentially enriched in the two subsets, 
most of which were consistent with the above enrichment analyses 
results (Figure 3B, File S3). Furthermore, hallmark signatures related 
to the cell cycle, such as E2F targets, MYC targets and the G2M 
checkpoint, were salient in LC1.26,27 LC2 highlighted the inflamma-
tory response and cytokine-mediated signalling pathway (Figure 3C 
and Figure S4B).

In view of the enrichment of immune cell signatures, we also fo-
cused on different cell abundances between the new LC subtypes. 
Neutrophils and lymphocytes, especially NK cells and CD8 T cells, 
showed significant differences between LC1 and LC2 by deconvolu-
tion and routine blood analysis (Figure 3D and Figure S6). Moreover, 
the estimated neutrophil-to-lymphocyte ratio of LC2, that is an indi-
cator of the inflammation level, was significantly higher than that of 
LC1 (1.09 ± 0.55 vs 0.15 ± 0.10).

Overall, heterogeneity in the PBL transcriptome of LC patients 
involved cell cycle–related pathways, blood coagulation, inflamma-
tory signalling pathways and PBL composition, which may play cru-
cial roles in the LC subsets.

3.4  |  Peripheral antitumour immune status is 
distinct between the LC subsets

Given the global abnormalities related to immunity of the PBL tran-
scriptome and its leading role in the peripheral immune response, 
we further assessed differences in immune status between two LC 
subsets based on DEGs. Two DEG panels from LC1 vs N (3015 DEGs) 
and LC2 vs N (1838 DEGs) were identified, with only 765 genes over-
lapping (Figure 4A, File S4). We focused on immunological aberran-
cies by matching the two DEG sets with a list of immune-associated 
genes from ImmPort (https://www.immpo​rt.org) (Figure  4A). A 
total of 223 and 145 overlapping DEGs were enriched in different 
pathways, including up-regulated NK cell–mediated cytotoxicity in 
LC1 and cytokine-cytokine receptor interaction in LC2 (Figure 4B). 
Considering the immune cell proportion differences, we identified 
two DEG signatures that were independent of cell components for 
the two LC subsets (Figure S7A, File S4). Most of the above enriched 
pathways remained striking and independent of cell composition, 
emphasizing the critical role in the immune response to different LC 
subtypes (Figure S7B).

Immunomodulators (IMs) are pivotal for modulation of the im-
mune response level. To gain insight into the peripheral immune 

status, we next evaluated the expression of a list of IMs that may 
stimulate or inhibit the immune response to LC (Figure 4C).28 The re-
sults showed that the expression of IMs varied across the LC subsets. 
In LC1, stimulatory IMs, such as CD70, CXCL9 and NK cell activa-
tion receptor-NKG2D (KLRK1), were up-regulated.29 Comparatively, 
most immunosuppressive molecules, such as PD1 (PDCD1) and PDL1 
(CD274), showed significant up-regulation, while stimulatory IMs, 
including NKG2D, tended to be down-regulated in LC2 cells. These 
findings underscored the possible peripheral immunosuppression in 
antitumour immunity of LC2 compared to LC1.

3.5  |  Gene signatures of the PBL transcriptome 
have the capability of predicting LC survival

Remarkable alterations induced by LC in the PBL transcriptome 
prompted us to determine whether relevant gene signatures have 
prognostic value for LC. Considering the more advanced status of 
the patients, the inflammatory and suppressed peripheral immune 
status in LC2, we speculated that LC2 may have a poorer prognosis 
and its signature genes have good performance in survival predic-
tion for LC patients. Hence, we took the 1838 DEGs identified from 
LC2 as candidate genes to develop and validate a prognostic pre-
diction model within a PBMC expression profile data set (n = 108). 
Eventually, a ten-gene signature (HK3, SLC36A1, MSR1, CEACAM1, 
CEACAM6, HCG27, FXYD7, TRPLC1, NR3C2 and RLN2) predictive 
model was constructed with univariate regression and LASSO Cox 
regression analysis (Table S4 and Figure S8A,B,E). Most of the ten 
genes are expressed in monocytes or lymphoid cells and differen-
tially expressed across the LC subsets in our study, suggesting possi-
ble differential outcomes between LC1 and LC2 (https://www.prote​
inatl​as.org/) (Figure S8F).

We calculated the RS for patients with expression values of the 
ten genes and corresponding regression coefficients and then di-
vided the training set (n = 54) into high-risk and low-risk groups ac-
cording to the optimum cut-off value (cut-off = −6.1; Figure S8C,D). 
Time-dependent ROC analysis showed that the areas under the 
curve (AUCs) at 1, 2, 3 and 5 years were 0.897, 0.853, 0.813 and 
0.911, respectively (Figure S9A). The high-risk patients had poorer 
OS than patients with lower RS (log-rank P < .0001, Figure 5A). The 
model showed good performance with the same cut-off value in the 
testing set (n = 54, log-rank P = .0042), even in patients with stage I 
disease (n = 38, P = .0062) (Figure 5B,C). The AUCs of ROC analysis 
at 1, 2, 3 and 5 years in the test set are shown in Figure S9B.

To determine whether the prognostic value of the RS was in-
dependent of other clinical characteristics, we conducted univari-
ate and multivariate Cox regression analyses with the training set. 
The RS remained an independent prognostic indicator with the 

F I G U R E  2  PBL transcriptional heterogeneity in LC. A, t-SNE plot of RNA-Seq data of all enrolled samples. Ellipses represent 95% CIs. B, 
PCA of LC samples. Ellipses represent 95% CIs. C, Unsupervised hierarchical clustering heatmap for the top 3000 most variably expressed 
genes among LC samples using the complete method and Pearson correlation distance. D, Molecular distance of LC subjects classified by 
new LC subtypes, TNM stages and histological types (LUAD, lung adenocarcinoma; SCLC, small cell lung cancer; LUSC, lung squamous cell 
carcinoma). The Mann-Whitney U test P values are displayed on top

https://www.immport.org
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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highest median hazard ratio (HR = 7.06, 95% confidence interval 
(CI) = 3.45-14.44) for LC after adjusting for race, adjuvant chemo-
therapy, smoking status and annual amount, age, sex, histology, 

COPD status and pathologic stage (Figure 5D). Thus, the robust-
ness of the RS for independently predicting LC patient OS was 
confirmed.

F I G U R E  3  Global diverse PBL transcriptional alterations revealed by gene enrichment analyses. A, BTMs differentially enriched between 
classes in both GSEA and tmod (FDR < 0.05 across both methods). Only tmod results are shown (N, normal controls). See also Figure S4A. 
B, BTM enrichment analysis of genes in significant co-expression network modules constructed by WGCNA based on LC versus normal 
controls. Key modules of LC1 network include the brown, magenta and turquoise modules. Key modules of LC2 network include the tan, 
magenta and turquoise modules. Only significant BTMs (FDR < 0.05) are shown. C, Hallmark gene sets from MSigDB v7.1 differentially 
enriched between classes in two testing methods (FDR < 0.05 across both methods). Only tmod results are shown. See also Figure S4B. D, 
Comparison of immune cell proportions in each LC subset. (Mann-Whitney U test; ns, not significant, P > .05; *P < .05; **P < .01; ***P < .001)
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F I G U R E  4  Antitumour immunological differences between the LC subsets. A, Gene overlap between immune genes and two DEG sets 
was identified by a Venn diagram. B, KEGG pathway enrichment analysis with two panels of immune-related DEGs showing highly significant 
pathways (FDR < 0.05) in the two subgroups. Only the top five up-regulated and down-regulated pathways are shown in each group. The 
inner circle shows the log2FC values of DEGs in enriched pathways. C, Expression pattern of immunomodulators (IMs) in LC1 and LC2. 
Log2FC values are shown as a heatmap. White asterisks indicate genes with differential expression (FDR < 0.05). Colours of annotation bars 
denote different molecular functions and features
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We next constructed a nomogram that integrated the RS and 
conventional clinical traits in survival prediction, including age and 
stage, to provide a quantitative method for predicting the prognosis 
of LC patients (Figure 6A). In the nomogram, points of variables as-
signed by a point scale and the sum of all variable points were used 
as the total points to predict the survival probability of LC patients 
at 1, 2, 3 and 5 years. Remarkably, prediction with the RS prognosis 
model showed a higher C-index than that with age or stage, and the 
nomogram model had a larger C-index than the other three predic-
tors in the training set and testing set (Figure 6B). Altogether, the 
RS model performed better than conventional clinical characteris-
tics in survival prediction and constituted a quantitative method for 
predicting survival of LC patients, which was better than individual 
predictors.

4  |  DISCUSSION

Lung cancer (LC) is widely recognized as a highly heterogeneous 
disease that greatly threatens human health. Previously, many tar-
geted studies have been conducted to comprehend the local im-
mune status of LC lesions, but the understanding of variations in 
the peripheral immune system of the LC host is still limited.30-32 In 
this study, we characterized the host systemic immune response to 
LC and decrypted its heterogeneity. Two new LC subtypes were es-
tablished based on the PBL transcriptome with different antitumour 
immune statuses and possible outcome differences. In addition, we 
constructed a RS prognostic model based on DEG signatures of the 
LC subtype with poor immune status to explore potential clinical ap-
plication value.

F I G U R E  5  Predictive performance of the RS model. A, KM curves of the training set (54 samples) stratified by the RS cut-off value. 
B, KM curves of the independent testing set (54 samples) stratified by the same cut-off value. C, KM curves of the stage I subgroup (38 
samples) from the test set. D, Univariate and multivariate regression analysis of the RS model and the other clinical characteristics regarding 
prognostic value
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The viewpoint that most tumours are systemic diseases that 
not only affect the organs of the lesion is increasingly accepted.33 
Our study provides a comprehensive characterization of the sys-
temic immune context in LC, which confirmed that the immune 
macroenvironment of LC has indeed undergone substantial changes 
at the PBL transcriptome level. An up-regulated humoral immune 
response, regulation of lymphocyte activation and changes in im-
mune cell proportions indicated a widespread impact of LC on host 
peripheral adaptive and innate immunity. Furthermore, enrichment 
of arachidonic acid metabolism and transcriptional misregulation in 
cancer supported that cancerous features may be captured from the 
peripheral blood transcriptome.34

In this study, we revealed substantial PBL transcriptome het-
erogeneity independent of histological type in LC patients. In other 
words, although different histological types have distinct origins, 
there seem to be no marked differences in influence on the periph-
eral immune system. Interestingly, similar findings were presented in 
research on breast cancer, and whether this observation represents 
a pan-cancer phenomenon needs additional study to verify.35-37 
Additionally, the heterogeneity seems to be related to stage in our 
study, raising the possibility that the PBL transcription profile can 
partly reflect the tumour burden of LC patients.

We tried to uncover the underlying biological mechanisms and 
significance of the heterogeneity. For LC1, one possible explanation 
for the marked up-regulation of cell cycle–related pathways is that 
the proliferation of lymphocytes, especially CD8 T cells, is stimulated 
via antigen presentation by dendritic cells (DCs), thereby producing 
effector cells and enhancing cell immunity against tumour cells. 
Important effector T cells, cytotoxic T lymphocytes (CTLs) are de-
rived from the clonal proliferation of CD8 CTL precursor cells and kill 
tumour cells by releasing granules or inducing FasL-mediated apop-
tosis.38,39 Analogously, NK cells perform broad-spectrum antitu-
mour functions employing similar cytotoxicity activities.40 Increased 
NK cell abundance and enhanced cytotoxicity in LC1 mean more NK 
cells were available for recruitment to exert antitumour cytotoxicity. 
As the only cells that lack a pro-tumorigenic role, NK cells with a 
high proportion in peripheral blood or infiltration in tumour tissue 
often indicate a favourable outcome in cancer patients.41 Moreover, 
the high expression of stimulatory IMs may play an important role in 
the regulation of antitumour immunity in LC1. For example, CXCL9 
mediates the trafficking of CD8 T cells, and CD70 is involved in the 
activation of CD8 T cells.39,42

For LC2, we first observed activation of blood coagulation. 
Previous findings suggest that activation of blood clotting leads to 

F I G U R E  6  Nomogram model 
construction with RS, age and stage. 
A, Nomogram model for predicting 
the probability of 1-, 2-, 3- and 5-year 
OS for LC patients. B, The prognostic 
performance was compared among the 
RS model, age, stage and the nomogram 
model by calculating the C-index
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fibrin deposition around the tumour, which can build up a provi-
sional matrix to sustain and boost angiogenesis and induce the cel-
lular responses of adhesion, proliferation and migration of tumour 
cells.43,44 On the other hand, a higher neutrophil proportion and 
cytokine-cytokine receptor interaction, regarded as crucial aspects 
of inflammation, were prominent in LC2. A growing body of evidence 
shows that inflammation promotes tumorigenesis and cancer pro-
gression.45 As the first responders to inflammation, active neutro-
phils release several soluble neutrophil granule proteins that can 
promote tumour progression by inducing tumour cell proliferation, 
stimulating angiogenesis and disabling T cell–dependent antitumour 
immunity.46,47 Neutrophils facilitate the metastasis of circulating tu-
mour cells, and cancer-associated thrombosis by NETosis is consid-
ered to be an important factor in tumour progression.48 Cytokines 
are a double-edged sword for carcinoma progression that are pro-
duced by host stromal cells and immune cells, either in response to 
molecules secreted by cancer cells or as part of the inflammation 
that frequently accompanies tumour growth. Through activating 
various downstream effectors, cytokines control the immune and in-
flammatory milieu to either favour antitumour immunity or enhance 
tumour progression and have direct effects on tumour cell growth 
and survival. For example, the Th1-type cytokine IFN-γ participates 
in the antitumour immune process, while TGF-β and IL13 have the 
opposite action.49-51 In addition, the high expression levels of inhib-
itory immune checkpoint factors and low expression  levels of NK 
cell activation receptors in LC2 demonstrate restrained lymphocyte 
activation and depletion of NK cells.29,52 In general, the peripheral 
immunity of LC2 presents an inflammatory status, and antitumour 
immunity may be suppressed.

Considering the PBL transcriptome characteristics, we measured 
the prognostic relevance of DEG signatures derived from LC2. In 
terms of the ten signatures, in LC2, four risk factors were highly ex-
pressed (HR > 1; CEACAM6, CEACAM1, HK3 and SLC36A1), and four 
protective factors showed low expression levels (HR  <  1; NR3C2, 
RLN2, TRPC1 and FXYD7), suggesting their potential important roles 
in the macroenvironment of LC among tumorigenesis and tumour 
progression (Figure S8F). The risk factors may be related to immu-
nosuppression and inflammation. For instance, CEACAMs mediate 
cell adherence and transcellular transcytosis, resulting in the sup-
pression of immune cell activities, as predictors in LC.53,54 HK3 cor-
related positively with inflammatory activities and multiple immune 
checkpoints.55 SLC36A1 may be involved in cancer metabolism.56 
As for the protective factors, they may play a role in immune acti-
vation and anti-inflammatory. NR3C2 is considered to be a tumour 
suppressor and may be correlated with T cell activation.57 It is tra-
ditionally believed that M2 macrophages are generally associated 
with immunosuppression and tumour metastasis. TRPC1 and MSR1 
can induce M2 to polarize into M1 macrophages.58,59 RLN2 has anti-
inflammatory properties.60 However, the role of FXYD7 and HCG27 
in the immune response is unclear.

The predictive ability of the RS model developed from PBMC 
data was validated even for patients with the same stage, proving 

the reliability of signature gene selection. The good performance 
of the prognostic model, especially the prognostic prediction for 
early-stage LC patients, may help improve follow-up treatment 
after surgical resection. More meaningfully, the RS contributed 
to constructing a comprehensive quantitative method for survival 
prediction, which performed better than existing clinical prognos-
tic indicators.

We recognize limitations in our study. Due to the limitation of in-
sufficient clinical data, we cannot demonstrate the potential clinical 
value of the heterogeneity between LC subsets directly in our data 
set. Moreover, both the heterogeneity of the PBL transcriptome and 
the universality of the RS prognostic model still require further vali-
dation with multicentre and larger scale studies.

In summary, to our knowledge, this study is the first to cover 
multiple LC histological types and stages and to target the peripheral 
blood transcriptome based on RNA-Seq. We characterized the PBL 
transcriptional profiles and interpreted the heterogeneity of periph-
eral immunity in LC hosts for the first time. A robust RS prognostic 
model, as a non-invasive and unbiased method to predict LC patient 
survival, was established and may help guide clinical treatment in 
the future.
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