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Abstract

Infrastructure development, specifically road paving, contributes socio-economic

benefits to society worldwide. However, detrimental environmental effects of road

paving have been documented, most notably increased deforestation. Beyond

deforestation, we hypothesize that road paving introduces “unseen” regional scale

effects on forests, due to changes to vegetation dynamics. To test this hypothesis,

we focus on the tri-national frontier in the southwestern Amazon that has been

subject to construction of the Inter-Oceanic Highway (IOH) between 1987 and

2010. We use a long-term remotely sensed vegetation index as a proxy for

vegetation dynamics and combine these with field-based socio-ecological data and

biophysical data from global datasets. We find 4 areas of shared vegetation

dynamics associated with increasing extent of road paving. Applying Dynamic

Factor Analysis, an exploratory dimension-reduction time series analysis

technique, we identify common trends and covariates in each area. Common

trends, indicating underlying unexplained effects, become relatively less important

as paving increases, and covariates increase in importance. The common trends

are dominated by lower frequency signals possibly embodying long-term climate

variability. Human-related covariates become more important in explaining

vegetation dynamics as road paving extent increases, particularly family density
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and travel time to market. Natural covariates such as minimum temperature and soil

moisture become less important. The change in vegetation dynamics identified in this

study indicates a possible change in ecosystem services along the disturbance

gradient. While this study does not include all potential factors controlling

dynamics and disturbance of vegetation in the region, it offers important insights

for management and mitigation of effects of road paving projects. Infrastructure

planning initiatives should make provisions for more detailed vegetation

monitoring after road completion, with a broader focus than just deforestation.

The study highlights the need to mitigate population-driven pressures on

vegetation like family density and access to new markets.

Keywords: Environmental science, Geography

1. Introduction

The Amazon region in South America holds the largest areas of forest in the world

[1, 2], which are of great importance to the global and regional climate system, biodi-

versity and carbon sequestration [3, 4]. There is great concern about changes in for-

est cover in the Amazon, and the global and local impacts of such changes [4, 5, 6].

Anthropogenic disturbances have direct impacts on forest cover by deforestation,

and on forest structure and composition that vary with the extent and frequency of

the disturbances. For example, logging and burning result in structural and pheno-

logical changes like reduction in basal area, vegetation composition [7], understory

composition and vine cover [8]. Degradation of healthy forest reduces local, regional

and global ecosystem services [4].

Road construction and infrastructure upgrading have been found to be a main driver

of deforestation [9, 10, 11, 12]. Large infrastructure projects also cause land degra-

dation, effects on abiotic processes (such as hydrology), disruption of movement of

organisms and increased mortality, alteration of natural disturbance regimes (e.g.

fire), and pollution. While infrastructure has been demonstrated to bring socio-

economic benefits, it can also lead to rural-urban migration, and violent conflict

over natural resources [11, 13, 14, 15, 16]. Increasing interest in the relationships

between infrastructure development and the environment has given rise to the field

of ‘road ecology’ [17], mostly focused on effects in the vicinity of roads. Most

studies have considered straightforward direct impacts such as deforestation [10,

12], and localized impacts such as edge effects on vegetation [13, 18, 19]. For

example, environmental impact assessments conducted for Amazonian highway

construction in Brazil only considered very limited areas of impact along the roads,

neglecting the potential regional impacts of road construction [11], such as forest

degradation and changing vegetation dynamics in larger areas. Vegetation dynamics

refer to temporal fluctuations and spatial variability in vegetation associated with
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disturbance regimes resulting from natural and anthropogenic drivers. Vegetation

can experience changes in for instance density, composition, growth rate, establish-

ment and mortality in time and space. Changes in vegetation dynamics are indicative

of shifting phenology and structure (the morphology and architecture of a plant com-

munity [20]), and the corresponding ecosystem services, which have social as well

as ecological impacts [4]. It is therefore important to study changes beyond land and

forest cover changes, and to do an analysis that addresses both natural and human

processes, thus considering the system from a socio-ecological perspective.

An area where many of these issues have come to the fore is a tri-national frontier in

the southwestern Amazon, the so-called MAP area after the provinces of Madre de

Dios (Peru), Acre (Brazil) and Pando (Bolivia) [21, 22] (Fig. 1). It has been charac-

terized as a “biodiversity hotspot” [1, 3, 15] where rural livelihoods are partly depen-

dent on management of natural resources. The area is a useful example of a complex

socio-ecological or coupled natural-human system [15, 16, 21]. This means that dis-

turbances to the system can result from natural and anthropogenic drivers and their

interactions [6, 23, 24, 25, 26, 27]. One important anthropogenic disturbance in

MAP is infrastructure upgrading, which has been a key part of regional economic

integration and development in recent decades [15, 28, 29]. In particular, the

Inter-Oceanic Highway (IOH), connecting the Atlantic and Pacific Oceans and

traversing the MAP region, is one of the key infrastructure projects of the Peru-

Brazil axis of integration [30]. This infrastructure upgrade, road paving, is a major

part of the Initiative for the Integration of Regional Infrastructure in South America

(IIRSA) that targeted infrastructure investments for “strategic growth corridors for

regional commerce” [16].
Fig. 1. Location and map of the study area and communities. Maps were created using Esri ArcGIS Arc-

Map 10.5 (http://www.arcgis.com).
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Previous research on natural and anthropogenic disturbances and vegetation dy-

namics found that even limited logging disturbances, without significant forest cover

loss, had a permanent local effect on forest structure in Madagascar [31]. Differences

in vegetation dynamics between natural and anthropogenic treefall gaps 1e4 years

after logging were also identified in a Bolivian forest, despite almost identical forest

cover percentages (mean 88% for the anthropogenic gaps, and 91% for the natural

gaps), with lower mean numbers of flowering and fruiting plants in anthropogenic

gaps, as well as more regeneration of non-commercial pioneer species in these

gaps [8]. Vegetation recovery after fire differs when there is anthropogenic activity

[27], and a review study concluded that in Neotropical secondary forests, the recov-

ery trajectory of vegetation in terms of various characteristics is uncertain in anthro-

pogenic settings, and dependent on site-specific factors and land use [32]. Changes

in vegetation dynamics will in turn impact ecosystem service provision: changes in

tropical forest structure have been linked to modifications in wildlife populations in

Panama [33], and ecosystem productivity was found to be driven by canopy

phenology in the Amazon [34]. A forest inventory study in the MAP region [35]

found differences in forest value (based on biodiversity, carbon stocks and timber

and non-timber forest products) across the frontier, and highlighted that deforesta-

tion and degradation do not necessarily respond similarly to road paving. Unfortu-

nately, in situ vegetation structure assessments, while extremely valuable for

purposes of biodiversity valuation [35], are time-intensive, limited to discrete loca-

tions and usually have a limited time dimension (synaptic), making it difficult to

assess changes in vegetation dynamics over longer time periods and larger areas.

This study comprehensively assessed spatially distributed changes in vegetation dy-

namics due to road paving to gain a better understanding of the long-term system-

wide effects of infrastructure development, and thus of the resilience of the system

[22, 36, 37].

Based on evidence from these previous studies, we formulated a hypothesis that

even if forest cover is maintained, the vegetation dynamics will be regionally

impacted over time in the presence of advancing road paving. Our hypothesis asserts

that there are different forest dynamics across a gradient of road paving, from dirt

road to fully paved. Further we suggest that forest change responds to different

drivers as one moves along the paving gradient. Specifically, anthropogenic covari-

ates are expected to become more important under conditions of advanced paving,

which in turn is associated with increasing regional disturbances that are integral

to driving and changing vegetation dynamics [38, 39].

To test this hypothesis, we required a long-term time series of vegetation dynamics

that coincided with periods before and after road paving. The long-term monthly

Enhanced Vegetation Index (EVI), a remote sensing product, has been found to indi-

cate vegetation dynamics [40, 41]. It is preferred over the Normalized Difference

Vegetation Index (NDVI), as the latter is more sensitive to background reflectance
on.2018.e00721
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and tends to saturate in high leaf areas such as tropical forests [40, 42]. Comparisons

between EVI and biophysical measures such as Leaf Area Index and leaf flushing

[40, 43] and other local radiometric measurements [40, 42, 43] have shown the use-

fulness of EVI. While EVI cannot provide information on the exact vegetation

change at the local level (without site-specific validation), it is able to provide a

regional overview of vegetation dynamics and variability. It has been used in previ-

ous studies to evaluate phenology, structure and ecosystem functioning [44, 45, 46,

47, 48]. We were able to match the vegetation index data with long-term field-based

socioeconomic and biophysical data, which served as indicators of drivers of vege-

tation change. Socio-ecological survey data was available for the research area, as

well as biophysical covariates from global data sets (see Methods). Paving of the

IOH has occurred at different times in different countries across the MAP frontier

starting in 1984, offering a valuable long-term regional study site with a road paving

gradient (before, during and after).

The objective of this study was to test our road-paving regional disturbance hypoth-

eses by applying advanced statistical time series analyses. We employed an innova-

tive analysis framework based on hierarchical clustering and dynamic factor

analysis to explore the structural and phenological changes of forests at a regional

scale and determine how they are associated with the progression of road paving

and natural and human drivers. We analyzed a full set of 99 unique, southwestern

Amazonian communities based long-term time series of vegetation dynamics and

human and environmental covariates, without having to resort to simplification

techniques. Our approach provides a new way for systematic and continuous assess-

ment of forest degradation, represented in our study area by the shift in the impor-

tance of common trends and human and natural covariates under increased highway

paving.
2. Materials and methods

2.1. Study area

Included in this study are 99 areas defined as communities in the MAP region [15,

16]. Of these 99 communities, 38 are located in Madre de Dios, Peru, 25 in Acre,

Brazil, and 36 in Pando, Bolivia (Fig. 1, Supplementary Table S1). The area lies be-

tween 9�480 S and 13�10 S latitude and 67�100 W and 70�310 W longitude, at the foot

of the Andes Mountains and in the headwaters of tributaries of the Amazon River.

Elevations are low across all communities with an average of 239.7 meters above sea

level (s ¼ 47:6) [21]. The climate is classified as ranging from equatorial winter dry

to monsoonal to fully humid (Aw, Am and Af in the K€oppen-Geiger climate classi-

fication [49, 50]). The types of forest in the area are dense tropical forest, open trop-

ical forest with palm trees, and open forests dominated by bamboo e with many
on.2018.e00721
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locations containing a mix of these forest types [51, 52, 53]. Detailed information on

soil types in the area was unavailable as classification schemes differed between

countries [21]. A previous Amazon-wide study classified soils in the MAP frontier

as Acrisols, Cambisols, Ferralsols and some Lixisols. Fluvisols and Gleysols are

found along rivers [54].

The Inter-Oceanic Highway running through the area was paved between 1992

(Brazil) and 2010 (Peru). Communities in Bolivia still had unpaved roads during

the time period studied since road paving had not progressed much from Cobija

by 2010 (Fig. 1). The communities are resource-dependent rural communities that

were part of earlier studies [15, 16, 21]. They are defined as being “distinct land

tenure units and/or population centers” [15]. Population densities are low, with an

average family density of 0.07 families/ha and a maximum of 3.17 families/ha for

the study period. Land use is described as complex and shifting, and includes urban

areas, subsistence agriculture, cattle pasture, logging, gold mining, conservation

areas, secondary forest and old-growth forest in which non-timber forest products

(such as brazil nuts and rubber) are harvested [55].
2.2. Data

We sourced data on dynamic variables from global data sets and from previous

studies in the area, for the period of road paving. Based on the time period

with most available data, the period selected for analysis was 1987 (January

1987) to the start of 2010 (December 2009). We sought out the highest spatial res-

olutions available. Variables such as elevation and soils were assumed to be sta-

tionary throughout the study period and were not included in the time series

analyses.
2.2.1. Vegetation dynamics (EVI2)

Data for the enhanced vegetation index (EVI2) used in this analysis were obtained

from the University of Arizona’s Vegetation Index and Phenology (VIP) lab

(Table 1). EVI2 is a relatively new product [56], consisting of EVI extended back

in time from two-band Advanced Very High Resolution Radiometer (AVHRR)

data (1982e1999) and three-band EVI from the Moderate Resolution Imaging Spec-

troradiometer (MODIS, 2000 and after). An algorithm has been applied by the VIP

lab to translate two-band data from the AVHRR into MODIS EVI [56] to create the

long-term EVI2 time series. The data used in this analysis (1987e2010) were ob-

tained from the VIP lab in October 2013 in monthly time steps and at a 0.05� reso-
lution. Area-weighted time series were extracted for each community polygon; each

monthly value was an average of the values of the grid cells intersecting the commu-

nity polygon, weighted by the area they covered.
on.2018.e00721
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Table 1. List of covariates used in the analysis, their unit of measure, and source.

Covariate Units Source

Response
variable

EVI2 Enhanced
Vegetation Index

0 to 1 University of Arizona Vegetation Index
and Phenology lab, https://vip.arizona.edu/
viplab_data_explorer.php [56]

Human
covariates

ENF Enforcement of
tenure rules

0 to 1: with
0 ¼ least,
1 ¼ most

University of Florida, Department of
Sociology [15, 16, 21]

FAM Number of
families
in the
community
(polygon)

Count University of Florida, Department of
Sociology [15, 16, 21]

FAMD Family density Families/ha University of Florida, Department of
Sociology [15, 16, 21]

PAV Paving 0 to 1, with
0 ¼ no paving,
1 ¼ fully paved

University of Florida, Department of
Sociology [15, 16, 21]

PNC Population at
state capital

Count University of Florida, Department of
Sociology [15, 16, 21]

PNM Population at
nearest market

Count University of Florida, Department of
Sociology [15, 16, 21]

TEN Tenure rules:
fraction of
deforestation
allowed of
community area

0 to 1 University of Florida, Department of
Sociology [15, 16, 21]

TTC Travel time to
capital

Minutes University of Florida, Department of
Sociology [15, 16, 21]

TTM Travel time to
nearest
market

Minutes University of Florida, Department of
Sociology [15, 16, 21]

Natural
covariates

AVET Mean
temperature

�C University of East Anglia, Climate
Research Unit, https://crudata.uea.ac.uk/cru/
data/hrg/[54]

FOR Forest area as fraction
community
area

University of Florida, Department of
Geography [12, 21, 59]

MAXT Maximum
temperature

�C University of East Anglia, Climate
Research Unit, https://crudata.uea.ac.uk/cru/
data/hrg/ [57]

MINT Minimum
temperature

�C University of East Anglia, Climate
Research Unit, https://crudata.uea.ac.uk/cru/
data/hrg/ [57]

P Precipitation mm University of East Anglia, Climate
Research Unit, https://crudata.uea.ac.uk/cru/
data/hrg/ [57]

PET Potential
evapotranspiration

mm University of East Anglia, Climate
Research Unit, https://crudata.uea.ac.uk/cru/
data/hrg/ [57]

SM Soil moisture mm NOAA Climate Prediction Center (PCP),
https://www.esrl.noaa.gov/psd/data/gridded/
data.cpcsoil.html [58]

SR Species richness Alpha
diversity

University of Florida, Department of
Agricultural and Biological Engineering
[60, 61]
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Data correction was performed to address outliers and discrepancies between

AVHRR-derived EVI (1982e1999) and MODIS EVI (2000e2010), because

AVHRR-derived EVI exhibited consistently lower values (an overall average of

0.387 vs. 0.513). This was attributed to the lower quality of AVHRR data in areas

with high cloud density (pers. comm. Dr. K. Didan). The final data set generally

had the lowest EVI2 occurring in the driest months (June, July and August). Minima

across the 99 communities ranged from 0.05 to 0.38. EVI2 peaks during the wet sea-

son, in November, December and January. Maxima ranged between 0.56 and 0.76.

Variations in monthly medians across communities were larger during the wet sea-

son than the dry season (Supplementary Fig. S1).
2.2.2. Candidate covariates related to human activity

Annual data sets for a variety of covariates associated with human activity in the

study area were available from previous studies [15, 21]. These data were calculated

from surveys conducted in communities in 2007 and 2008 by faculty and students

from the University of Florida, the National Amazonian University of Madre de

Dios, the Amazonian University of Pando and the Federal University of Acre, sup-

plemented with key informant interviews on paving status to certain cities by a given

year, up to 2011. Variables used in this study were: number of families in a commu-

nity (FAM), family density (FAMD, number of families/ha), population in the cap-

ital (PNC), population in the nearest market (PNM), paving (PAV), deforestation

allowed under tenure rules (TEN), enforcement of tenure rules (ENF), travel time

to the capital (TTC) and travel time to the nearest market (TTM), see Table 1.

Annual data sets were linearly interpolated to create monthly time series.

Paving was a value between 0 and 1 representing proportion of a road segment

paved and was derived from field work. It is referred to as ‘paving extent’. The

year when paving of the road segment along which a community sat was finalized

was taken as the starting point to estimate increments in the proportion paved. For

example, if a community was along a highway segment between two towns that

was fully paved by 1999, that community got a value of “1” for 1999 (and subse-

quent years). Proportions paved in the years prior were derived from field notes of

the timing of the onset and conclusion of paving of that segment, with a linear inter-

polation of paving proportions during the intervening time period. The value “0”

for a period indicated that the road or highway segment was not paved or upgraded

(yet).

Travel times, representing connectivity, were measured in minutes and based on the

distance to the capital or nearest market, and average travel speeds taking into ac-

count paved and non-paved segments. For some communities, the nearest market

was also the capital, rendering the same time series for these covariates (Fig. 1).
on.2018.e00721
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Deforestation allowed under tenure rules and enforcement of tenure rules were simi-

larly based on fieldwork, which included workshops with stakeholders, and official

rules for resource use given by governments in policy and planning documents.

Deforestation allowed under tenure rules was simply the percentage of forest a com-

munity was allowed to cut down. Values vary between 0 and 1, representing

0e100% deforestation allowed. Enforcement of tenure rules were perceptions by ex-

perts as to the extent to which those use rules are actually enforced by government

agencies responsible for oversight, which roughly corresponds to the probability of

infractions being detected and punished. Also taken into account was knowledge of

known police actions in communities. Here again, the values ran from 0 to 1, with

higher values indicating more likely enforcement.
2.2.3. Candidate covariates associated with biophysical processes

Monthly data sets were sourced in June 2013 from the Climatic Research Unit

(CRU) at the University of East Anglia (Table 1). Covariates included the mean,

minimum and maximum temperatures, precipitation and potential evapotranspira-

tion (AVET, MINT, MAXT, P, PET). The mean, minimum and maximum temper-

atures (in �C) and precipitation (in mm) were obtained at a resolution of 0.5 � 0.5�

[57], and were assigned to each community polygon in an area-weighted manner.

Potential evapotranspiration (in mm) was also included in the CRU data set, and

was calculated from a variant of the Penman-Monteith formula, using mean, mini-

mum and maximum temperature, vapor pressure and cloud cover [57].

Soil moisture (SM) came from the NOAA Climate Prediction Center (CPC) model at

a resolution of 0.5 � 0.5�, which uses CPC precipitation data and temperature data

from the NCEP/NCAR Reanalysis (Table 1) [58]. The data were provided as average

soil moisture in terms of water height equivalents (mm). As with the other data sets,

the soil moisture data were calculated as an area-weighted time series for each com-

munity polygon.

Forest area as a percentage of community polygon area (FOR) was sourced from

deforestation and land cover change studies conducted in the area (Table 1) [12,

21, 59]. Forest and non-forest percentages for each community were available for

the years 1986, 1991, 1996, 2000, 2005 and 2010, and were interpolated to obtain

monthly values.

Inferred species richness (SR, alpha diversity), was computed from Landsat imagery

by applying a texture-based method from earlier studies; this method is based on the

Shannon entropy of pixel reflectance for the green band (Table 1) [60, 61]. At the

microscale different species have different reflectance levels, and at the macroscale

the gradient of Shannon entropy is linearly proportional to the gradient of species

richness. This method regards higher ranges of reflectivity as higher entropy, thus
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assessing species diversity as a macro-ecological variable rather than a precise count

of all species in a geographical area. The method from the previous studies [60, 61]

was applied to 30 m resolution Landsat images at the annual scale [62], with linear

interpolation to obtain monthly time steps.
2.3. Statistical analysis

We applied three main steps aimed at reducing the dimensionality of multivariate

time series and identifying drivers of vegetation dynamics (Fig. 2aec). Dimension

reduction is an important step since the number of parameters in a time series model

increases quickly with the number of time series covariates involved [63, 64, 65].

After compiling and quality checking the extensive time series data set (Fig. 2a),

we identified areas of similar spatiotemporal vegetation dynamics along a road

paving gradient by means of cluster analysis (Fig. 2b). For each of the resulting clus-

ters with common vegetation dynamics drivers, we separated and attributed the rela-

tive importance of latent effects (unexplained shared variance, also termed common

trends) and explanatory natural and human covariates (explained variance or direct
Fig. 2. Flow chart of methods.
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effects) by means of Dynamic Factor Analysis (DFA, Fig. 2c), a specialized

dimension-reduction time-series analysis technique [66, 67, 68, 69].
2.3.1. Clustering, lagging and reduction of covariate data set

To find the “optimum” number of clusters representing shared vegetation dynamics,

3 steps were implemented (Fig. 2b): 1) calculation of a dissimilarity matrix, 2) appli-

cation of Ward’s hierarchical clustering, and 3) calculation of the Dunn index and

Silhouette width as measures of compactness and separation of the clusters.

Each EVI2 time series was normalized by subtracting the mean and dividing by the

standard deviation, and a time series-based dissimilarity matrix D was established

[70].D contained aspects of Euclidian distance between time series, as well as a tem-

poral correlation measure. First, the temporal correlation coefficient was

cortðS1;S2Þ ¼
PN�1

i¼1 ðuiþ1 � uiÞðviþ1 � viÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼1 ðuiþ1 � uiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼1 ðviþ1 � viÞ2

q ð1Þ

in which S1 and S2 represent time series of length N, u and v their respective points

at time i. Second, the conventional Euclidian distance measure was

dconvðS1;S2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi XN

i¼1

ðui � viÞ2
!vuut ð2Þ

These measures were used in the dissimilarity matrix D calculation as

DðS1;S2Þ ¼ f ðcortðS1;S2ÞÞ$dconvðS1;S2Þ ð3Þ

with

f ðxÞ ¼ 2
1þ ek$x

; x� 0 ð4Þ

with parameter k � 0. Therefore, the proximity measure was related to similarity of

values and time series behavior. Behavior is defined as the increase or decrease of

values between points in time, as well as the rate of this change e incorporated in

the temporal correlation coefficient. Parameter k in the automatic adaptive tuning

function (Eq. (4)) determined how much behavior and value proximity contribute

to D. At k ¼ 0, D is only based on values, and at k > 5 behavior contributes 100%.

Ward’s hierarchical clustering was then applied to D to group communities together

[71, 72]. Ward’s method calculates the distance between clusters as the increase in

the sum of squares if they are merged. All series start out with the value zero, as they

are all regarded as their own cluster, and series or clusters are merged for those that

have the smallest distance increase. The Dunn Index [73] and the Silhouette Width
on.2018.e00721
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[74] were used as metrics to determine the suitability of the clusters. These are

widely used metrics that focus on compactness and separation of clusters [75, 76,

77, 78, 79]. They are known as internal validation measures: evaluation of the clus-

ters is based on the data and clustering only and no additional (‘outside’) information

is required. The number of clusters with the highest Dunn index indicated the opti-

mum number of clusters; i.e. the highest separation between clusters, and the least

spread of data within clusters. The index was the ratio of the minimum distance be-

tween observations not in the same cluster, and the maximum distance between ob-

servations within a cluster. The Silhouette width also needed to be optimized. It

ranged from -1 to 1, with higher values meaning that the clusters were cohesive

and well separated. This measure took the lowest average distance of a series with

other clusters and subtracted the average distance of the series with its own cluster.

The “silhouette” is then the ratio of this number to whichever average distance is the

highest: if the average distance with the neighboring cluster is larger than the average

distance within-cluster, this yields a positive number � 1. The average silhouette is

the final metric. The Dunn index and Silhouette width were calculated for 2 to 10

clusters with varying values for k to determine the appropriate k for Eq. (4) and num-

ber of clusters. All candidate covariate time series were clustered according to the

regions that resulted from the EVI2 clustering analysis, and subsequent analyses

were applied to each cluster independently.

To evaluate paving in relation to the clusters, two paving measures were calculated

from the paving extent (PAV) dataset. The first was a stationary measure, the

average paving for each community for the study period. The second entailed a

time series, the area-weighted average paving extent per cluster over the study

period.

To account for delayed responses of vegetation dynamics to covariates, lags were

applied to candidate covariates (Fig. 2b). All candidate covariate time series

(1987e2010) were reduced to a single time series for each cluster as an area-

weighted average. Based on the highest statistically significant cross-correlation

with area-weighted EVI2 of its clustered spatial region, each regional candidate co-

variate was lagged anywhere from 0 to 19 time steps (months, t). Variance Inflation

Factor (VIF) analysis was applied to candidate covariates in each cluster to detect

collinearity (VIF � 10, Fig. 2c) [80, 81], with covariates with the highest VIF

excluded from the data set in an iterative manner until a final covariate data set re-

mained with all VIFs < 10.
2.3.2. Dynamic factor analysis

Dynamic Factor Analysis (DFA) is a dimension-reducing statistical analysis that was

applied to explore relationships between response covariates and common (shared)

covariates in dynamic systems over time [63, 81, 82, 83]. It aims to explain shared
on.2018.e00721
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variation of observed time series using a set of common trends, with the number of

common trends being substantially smaller than the number of observed time series.

These common trends across time seriesmodel temporal variation across the response

covariates as linear combinations and represent driving factors across time series. The

coefficient (factor loading) associatedwith a common trend in amodel for a time series

gives an indication of the importance of that common trend for that time series. The

trends are estimated using an Expectation Maximization (EM) algorithm, which per-

forms maximum likelihood estimation in situations where there are latent random co-

variates in a model [81, 84, 85]. Covariates can be added to the model in a linear

fashion. The Dynamic Factor Model (DFM) being estimated was

SnðtÞ ¼
XM
m¼1

gm;namðtÞ þ mnðtÞ þ
XK
k¼0

bk;nnkðtÞ þ εnðtÞ ð5Þ

amðtÞ ¼ amðt� 1Þ þ hmðtÞ ð6Þ

SnðtÞ is the value of the n-th response variable (i.e. EVI2 time series for commu-

nities within each cluster) at time t; amðtÞ is the m-th unknown common trend at

time t; gm;n represents the unknown factor loadings; mnðtÞ is the n-th constant level

parameter for displacing each linear combination of common trends up and down;

bk;n represents the unknown regression parameters for the K covariate time series

(i.e. one time series for each covariate type per cluster) nkðtÞ; εnðtÞ and hmðtÞ are
the error components. εnðtÞ can be interpreted as the process errors of the hidden

trends, and hmðtÞ as the observation errors, which are independent Gaussian noise

with zero mean and a variance-covariance matrix that can take different forms. For

this analysis, the variance-covariance matrices were implemented as symmetric (di-

agonal) matrices. The constant level parameter (mnðtÞ) was set to zero since normal-

ized data was used.

The Dynamic Factor Models (DFMs) were assessed based on their goodness-of-fit

(Nash-Sutcliffe coefficient of efficiency, Ceff) and parsimony (Bayesian Information

Criterion, BIC). The Nash-Sutcliffe coefficient of efficiency [82, 86] was calculated

as

Ceff ¼ 1�
PN

i¼1ðOi �PiÞ2PN
i¼1

�
Oi �O

�2 ð7Þ

where O and P represent the observed values and model estimates of length N, and

O the mean of the observed values. The ratio of the mean squared error of observed

and predicted values and the variance of the observed values (the subtrahend in Eq.

(7)) will be very small at good model fits, hence Ceff takes the values �N � Ceff �
1. The BIC [87] evaluates the goodness-of-fit and penalizes for the number of pa-

rameters in order to obtain a parsimonious model:
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BIC ¼�2 lnL þ k lnðNÞ ð8Þ
where L is the maximized value of the likelihood function for the model, k is the

number of parameters estimated in the model and N is time series length. The aim

throughout model development was to add enough covariates to explain most of the

shared variance across all response covariate time series, so that reliance on the

trends was minimized, with minimal lowering of the goodness-of-fit or worsening

model parsimony [66, 67, 68, 82, 83, 88].

DFMs I contained only common trends, DFMs II contained both trends and covari-

ates. The best DFMs II (with covariates) for each cluster were obtained by stepwise

backward elimination of covariates or trends until the lowest BIC was reached. We

started with initial ‘full’models with all covariates and the number of trends from the

best DFM I (lowest BIC). Elimination was based on the average importance of each

model component per cluster. The importance of trends and covariates in the DFMs

was examined by variance partitioning [81, 89, 90]. This was implemented as the

average semi-partial R2 over all possible orders of model components, as well as their

‘relative importance’ [91, 92]. The latter measure is relative to the total coefficient of

determination (R2), is non-negative and the values for all model components add up

to 1, or 100% of R2 (also known as the Lindeman, Merenda and Gold (LMG) method

[92]). Since DFA estimated a unique DFM for each community, based on common

trends and covariates, we averaged the relative importances of each trend and covar-

iate across the cluster, and then eliminate the one with the lowest average importance.

This approach of taking the average semi-partial R2 over all possible orders of model

components was driven by the fact that the order in which non-orthogonal regressors

appear in the regression determines the amount of variance they explain e which

could lead to biased results if not all orders are taken into account.

Finally, to gain insight into the periodic components of the common trends, spectral

analysis was performed [93]. If time series of physical processes are (partially) a

result of the sum of various frequencies [94], spectral analysis can help disentangle

them. Frequencies with the highest power spectral density contribute most to ex-

plaining variance in relative terms (this method does not quantify absolute contribu-

tion). Dominant periods or frequencies were identified by spectral density

estimation: higher values indicate relatively more importance of a particular fre-

quency in explaining oscillations in the trend. For each trend, the spectral density

was estimated using a fast Fourier transform with a modified Daniell kernel with

dimension 2 as a smoother, and the 3 frequencies with the highest densities were

selected for display in the results.
2.4. Software used and data availability

All data cleaning was done in R 3.2.4 [95] and Python 2.7 [96]. Maps were rendered

in ArcGIS ArcMap 10.5. R (3.2.4e3.3.3) was used for all subsequent analyses and
on.2018.e00721
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figures. The following R packages were used: TSclust (adaptive dissimilarity index

[70, 97]), clValid (cluster validation [98], adjusted to be able to work with the adap-

tive dissimilarity index as input), fmsb (VIF [99]), MARSS (DFA [85]), relaimpo

(relative importance in linear regressions [92]), hydroGOF (Nash-Sutcliffe coeffi-

cient [100]), ggplot2 [101], reshape2 [102], zoo [103], gridExtra [104], cowplot

[105] and gtable [106] (figures).

The datasets generated and/or analyzed for the current study, and code, are available

from a figshare repository, https://doi.org/10.6084/m9.figshare.c.3858064.
3. Results

3.1. Identification of clusters of vegetation dynamics and their
association with road paving extent

Hierarchical cluster analysis of normalized monthly EVI2 time series (1987e2010)

showed that for k¼ 2 (Eq. (4)) and 4 clusters, the Dunn index was highest (0.085) as

well as the Silhouette width (0.36, Supplementary Figs. S2e3). These 4 clusters will

be referred to as Vegetation Dynamics Clusters (VDCs) in this study (Fig. 3a).
Fig. 3. Characteristics of the study area and clustering analysis results. a) Map of the study area, with 4

Vegetation Dynamics Clusters (VDCs). VDCs are based on the adaptive dissimilarity index of the

Enhanced Vegetation Index (EVI2). Maps were created using Esri ArcGIS ArcMap 10.5 (http://www.

arcgis.com). b) Minimum, median, maximum monthly EVI2 time series per VDC. c) The study area

with average paving extent for the period 1987e2009 for 99 communities. Values range from 0 to 1,

indicating that road sections associated with communities are unpaved, to fully paved. d) Area-

weighted average paving extent over time per VDC. e) Average paving extent of the communities in

each VDC for the study period, with an upward non-linear tendency from VDC 1 to 4. The tendency

is a loess curve through the medians.
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Characteristics of the EVI2 time series of each VDC are given in Fig. 3b and Sup-

plementary Table S2, and of the candidate covariates in Supplementary Table S3.

The normalized values that were used in this study retained the focus on the time

series dynamics and facilitated interpretation of model results.

Average paving for each community for the period January 1987 to December 2009

(Fig. 3c) and the area-weighted average paving extent per VDC over the study period

(Fig. 3d) were calculated in relation to the 4 VDCs. Similar patterns of increased

paving extent were identified between VDCs and their average paving over time

(Fig. 3d), and between VDCs and average paving extent of communities

(Fig. 3e). Thus, VDC 1 represented the unpaved system state, VDC 2 and VDC 3

transition states, and VDC 4 the mostly paved system state. Subsequent analyses

and models were conducted and developed separately for each VDC. The candidate

covariates were grouped per VDC (Supplementary Table S3), and area-weighted av-

erages were calculated. The appropriate lags (t) were determined based on the high-

est cross-correlation and applied (Supplementary Table S4). VIF analyses yielded

the final covariate sets for each VDC (Supplementary Table S5).
3.2. Common trends and shared variability in each VDC (DFM I)

Dynamic Factor Models (DFMs) for VDC 1 through 4 simulated EVI2 with com-

mon trends only (DFMs I) and identified 4, 7, 6 and 3 distinct trends, respectively

(Table 2), based on the lowest Bayesian Information Criterion (BIC). The median

goodness-of-fit (Nash-Sutcliffe coefficient, Ceff) ranged between 0.67 and 0.76, indi-

cating that the models captured the shared variability within regions well. The ma-

jority of DFMs I for VDC 1 through 4 had an acceptable Ceff > 0.60, for 83%, 75%,

81% and 71% of the communities, respectively [69] (Supplementary Table S6 for

details). Overall, 98% of Ceff were higher than 0.50 (97 out of 99), which is deemed

a good overall fit [67, 107] considering the possible residual noisiness of AVHRR-

transformed data [108]. The analysis thus identified regional, shared variance e

common trends e underlying the vegetation dynamics for each VDC.
3.3. Importance of covariates across VDCs (DFM II)

Based on the identification of common trends, we developed DFMs with both trends

and the area-weighted averaged covariates (DFM II) to attempt to explain the shared

variance within each VDC. The covariates included in model building differed

across VDCs, based on the VIF analysis results (Supplementary Table S5), and as

a result the order of importance of covariates was not the same for the models

(Table 2, see Supplementary Table S7 for more detailed results). The results showed

that final DFM IIs (bold in Table 2) were based on the same number of trends as

DFM Is, but with 6e8 covariates each. Each DFM II contained both natural and hu-

man covariates. The models’ goodness-of-fit Ceff stayed the same or increased (Ceff
on.2018.e00721
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Table 2. Results of Dynamic Factor Analyses of Enhanced Vegetation Index (EVI2) for 4 Vegetation Dynamics Clusters (VDCs). Dynamic Factor

Model I (DFM I): only trends are fitted, no covariates. Dynamic Factor Model II (DFM II): both trends and covariates are fitted. Covariates are listed

according to their relative importance in each model, covariates in italics are human (see Table 1 for the abbreviations). BIC is the Bayesian Information

Criterion, Ceff is the Nash-Sutcliffe coefficient of efficiency. Model results in bold are the selected models for further discussion.

VDC DFM Number of
trends

Covariates BIC Median Ceff (95% confidence
interval)

1, unpaved
(n ¼ 18)

I 1 10205 0.54 (0.27e0.81)
I 2 10011 0.62 (0.30e0.85)
I 3 9876 0.71 (0.32e0.87)
I 4 9789 0.74 (0.49e0.87)
I 5 9796 0.75 (0.50e0.89)
II 4 ENF AVET MINT PET FOR SR SM FAMD

MAXT P
9994 0.75 (0.52e0.87)

II 4 ENF AVET MINT PET SR SM FOR MAXT
FAMD

9958 0.75 (0.52e0.88)

II 4 FOR ENF AVET MINT PET SR SMMAXT 9923 0.75 (0.51e0.87)
II 4 FOR AVET MINT ENF PET SM SR 9896 0.75 (0.50e0.87)
II 3 FOR AVET MINT SR PET ENF SM 9939 0.73 (0.40e0.86)

2, transition
(n ¼ 24)

I 1 14379 0.41 (0.14e0.84)
I 2 10915 0.49 (0.18e1.00)
I 3 10305 0.60 (0.24e1.00)
I 4 10144 0.72 (0.29e1.00)
I 5 10055 0.77 (0.39e1.00)
I 6 10043 0.80 (0.48e1.00)
I 7 10007 0.80 (0.51e1.00)
I 8 10034 0.82 (0.53e1.00)
II 7 TTM PAV PET SM MAXT P MINT AVET

SR TEN
10390 0.83 (0.54e1.00)

(continued on next page)
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Table 2. (Continued )
VDC DFM Number of

trends
Covariates BIC Median Ceff (95% confidence

interval)

II 7 PAV TTM PET SR MAXT SM P MINT
AVET

10323 0.83 (0.54e1.00)

II 7 PAV TTM SR PET SM MAXT P MINT 10266 0.83 (0.54e1.00)
II 7 PAV TTM PET SM MAXT P SR 10244 0.82 (0.53e1.00)
II 7 PAV TTM PET SM MAXT SR 10262 0.83 (0.46e1.00)

3, transition
(n ¼ 43)

I 1 23129 0.63 (0.40e0.76)
I 2 22261 0.66 (0.41e0.82)
I 3 21573 0.71 (0.48e0.85)
I 4 21223 0.74 (0.55e0.90)
I 5 18230 0.74 (0.55e1.00)
I 6 18082 0.77 (0.56e1.00)
I 7 18134 0.78 (0.56e1.00)
II 6 PET SM MINT FAMD AVET MAXT P

TEN SR ENF
19010 0.79 (0.59e1.00)

II 6 PET MINT SM MAXT AVET FAMD P
TEN SR

18900 0.79 (0.59e1.00)

II 6 PET MINT SM MAXT AVET FAMD P
TEN

18817 0.79 (0.59e1.00)

II 6 FAMD PET MINT SM MAXT AVET P 18695 0.79 (0.59e1.00)
II 6 FAMD PET SM MINT AVET MAXT 18590 0.78 (0.58e1.00)
II 5 FAMD PET SM MINT AVET MAXT 18664 0.77 (0.58e1.00)

4, paved
(n ¼ 14)

I 1 8224 0.59 (0.35e0.77)
I 2 7992 0.66 (0.35e0.89)
I 3 7986 0.68 (0.36e0.89)
I 4 8007 0.70 (0.39e0.91)
II 3 FAMD TTM PET MINT AVET MAXT P

ENF SM TEN
8100 0.69 (0.38e0.90)

II 3 FAMD TTM PET MINT AVET MAXT ENF
P SM

8076 0.68 (0.38e0.90)

II 3 FAMD TTM PET MINT AVET MAXT
ENF P

8054 0.69 (0.38e0.90)

II 3 FAMD PET MINT TTM AVET MAXT ENF 8056 0.69 (0.38e0.90)
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� 0.50 for 98% of DFM IIs, see Supplementary Fig. S4 for an example of model

fits), indicating that the importance of the trends became smaller. In DFM II a portion

of the unexplained variance of DFM I was shifted to the covariates (explained vari-

ance) while maintaining model fit. The importance of all trends and covariates was

calculated and compared to average paving extent in communities. While total ex-

plained variance (R2) stayed fairly constant across all average paving extent

(Fig. 4a), once average paving extent passed 0.50 (50%), the importance of trends

and covariates shifted (Fig. 4b). Specifically, covariates explained approximately

25% of variance under unpaved conditions, and 50% under paved conditions, while

trends decreased their explanatory power. This implies that for communities where

paving started longer ago, much of the vegetation dynamics can be explained with

covariates directly. Supplementary Tables S8eS11 contain details on covariate time

series, model fits, relative importance of model components, and weighting and

loading coefficients for each community.
3.4. Importance of human covariates across VDCs (DFM II)

The explained variance by covariates in the DFMs II was subdivided into that asso-

ciated with natural and human covariates, indicating the importance of each group in

the models (Table 1, Fig. 4c). Communities with more recent road paving (low

average road paving extent, 0.10) showed an increase in variance explained by hu-

man covariates compared to communities with no road paving at all (Fig. 4c), but

this decreased again for communities with higher average road paving (0.25). Even-

tually though, the importance of human covariates increased as paving extent

increased, and there was an inversion of importance of natural and human covariates

that occurred after paving extent reached past the halfway point (Fig. 4c).

Travel time to market, family density and enforcement of tenure rules were the most

important human covariates in the DFM IIs (highest average semi-partial R2, Fig. 5).

The covariate time series used in the DFM IIs for each VDC are summarized in

Fig. 6. The standardized regression coefficients (b) of the DFM IIs gave additional

information beyond the explained variance as their signs indicate an inverse (nega-

tive) or direct (positive) effect of the covariates on vegetation dynamics (Fig. 7). Hu-

man covariates were applied with lags ranging from 5 to 13 months at higher paving

extents.

Family density showed the largest increase in importance with increased paving

extent. The effect is negative (negative b): higher family density implies lower

EVI2. Similarly, the importance of travel time to market is related to the average

paving extent of communities in each VDC. For later paved communities (low

average paving extent, VDC 2), the decrease in travel time is associated with

decreased EVI2 (positive b). However, for communities that had paved roads earlier

in the study period (higher average paving extent, VDC 4), decreased travel time is
on.2018.e00721
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associated with increased EVI2 (negative b). Enforcement of tenure rules on defor-

estation also had a positive effect on EVI2 in communities that had unpaved roads

during the study period (VDC 1), as expected. While enforcement also increased

over time for the communities that had paving longer, in VDC 4 (Fig. 6) its effects

appeared negative (i.e. lower EVI2).
3.5. Importance of natural covariates across VDCs (DFM II)

Temperature time series played a role in all VDCs (Fig. 5). Normalized minimum,

maximum and average temperature had different temporal patterns (Fig. 6) and com-

bined appeared relevant in simulating vegetation dynamics (Fig. 5): on average,

across all communities, the variance explained by the three temperature time series

(average semi-partial R2) taken together is 32% of all variance explained by natural

covariates. In terms of hydrological controls, precipitation was less important than

potential evapotranspiration and soil moisture (Fig. 5). For the latter two, their

importance decreased in areas with higher average road paving extent, soil moisture

more so than potential evapotranspiration. The type of effect of soil moisture (the b

coefficient) was mixed in cases with less road paving (Fig. 7). As road paving

increased to 0.5, it became more distinctly negative (�0.40 < b < 0.0), meaning
Fig. 4. Contributions of model components of the final VDC DFMs II for each community to explaining

variance in vegetation dynamics. Average paving extent of each community is plotted along the x-axis,

colors indicate the VDC. a). Proportion of explained variance, R2, of the DFMs I and II. b) Average pro-

portion of explained variance over all possible orders of the model components, average semi-partial R2,

for trends and covariates. Loess curves indicate respectively a downward and upward tendency with

increased paving extent, with a transition identified between a paving extent of 0.50 and 0.90. c) Average

proportion of explained variance over all possible orders of the model components, average semi-partial

R2, for natural and human covariates. Loess curves indicate a downward and upward trend respectively

with increased paving extent, with a transition identified between a paving extent of 0.50 and 0.90.
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lower soil moisture lead to a higher EVI2. Overall, soil moisture dynamics appear to

be an important control in vegetation dynamics, but this effect disappears when

average road paving extent increases.

While the importance of potential evapotranspiration was fairly constant across com-

munities (Fig. 5), the effect was negative for communities in a transition paving state

(Fig. 7) until the most paved state, where potential evapotranspiration had a positive

effect on EVI2. The early negative effect indicated that higher evapotranspiration re-

sults in lower EVI2. Species richness appeared important when average paving

extent was below 0.25 (Fig. 5), with mostly negative coefficients in the models

(Fig. 7). The forest cover percentage of a community predictably had a positive ef-

fect on EVI2 (positive b coefficient, Fig. 7), but only played a role in VDC 1 with no

paving (Figs. 5 and 7).
3.6. Remaining trends and their frequency components (DFM II)

The fact that the goodness-of-fit from DFMs I to DFMs II remained the same was a

sign that the effects of certain covariates on vegetation dynamics were present in the
Fig. 5. Proportion of variance explained by each covariate for each community. Average paving extent

of each community is plotted along the x-axis, colors indicate the VDC. Covariate plots are grouped in

columns according to the maximum variance explained: low (left column) and moderate to high (middle

and right column). MAXT, MINT, AVET and P are maximum, minimum and average temperature and

precipitation. PET, SM, SR and FOR are potential evapotranspiration, soil moisture, species richness and

forest area. PAV, TTM, FAMD and ENF are paving, travel time to market, family density and enforce-

ment of tenure rules on deforestation.
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common trends in DFM I and were removed from the trends in DFM II. The variance

explained by each of the common trends for each community (expressed as average

semi-partial R2) differed per community (Fig. 8a). The common trends over time are

summarized in Fig. 8b. It is of interest to note that even for communities with a

similar paving history (x-axis for Fig. 8a), there was a range in the variance ex-

plained by each common trend across communities.

The spectral power density of signals contained in the common trends was deter-

mined, and for each common trend the three signals with the highest density were

visualized in Fig. 8c. Low-frequency signals (22.5, 11.25 and 5.625 years) appear

across all VDCs. A number of common trends in DFMs II contain 4.5 and 7.5

year frequencies. There was a decrease in higher frequency signals (<18 months)

across the VDCs with increased paving extent (Fig. 8c). Especially for VDC 4,

more of the variance of the common trends was captured in the low frequency signals.
3.7. Unpaved and paved states as alternative system states of
vegetation dynamics

A transition state between unpaved and paved conditions was identified across

VDCs (Fig. 4bec). There was a shift in the importance of trends and covariates
on.2018.e00721

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00721
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 7. b coefficients of the covariates used in the final Dynamic Factor Models (DFMs II) for each

VDC. The applied lags (t) are specified in the grey bar above the plots, and in Supplementary Table

S4. Negative covariates (in the grey area in the plot) imply that the covariate has an inverse (negative)

effect on EVI2. Colors are associated with VDCs. Grouping of subplots in columns is according to the

extent of explained variance of the covariates from Fig. 5: note the differences in y-axis scaling for the

columns. MAXT, MINT, AVET and P are maximum, minimum and average temperature and precipita-

tion. PET, SM, SR and FOR are potential evapotranspiration, soil moisture, species richness and forest

area. PAV, TTM, FAMD and ENF are paving, travel time to market, family density and enforcement of

tenure rules on deforestation.

23 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 Published

(http://creativecommons.org/li

Article Nowe00721
explaining EVI2 dynamics, as well as a shift in importance between natural and hu-

man covariates, as was noted above. Both of these shifts happened around an

average paving extent of 0.75.
4. Discussion

4.1. Main findings

We have found distinct areas with common temporal vegetation dynamics, associ-

ated with road paving progression in the southwestern Amazon, supporting our hy-

pothesis that vegetation dynamics are altered with increased road paving. While a

previous study put the area in the same phenoregion [109], this research showed

there are differences at the regional scale, associated with road paving. With a

time series dimension reduction technique, DFA, we uncovered common trends

and a number of (lagged) socio-economic and biophysical covariates that explain

shared variance of EVI2 for each VDC. We found differences in the DFMs between

VDCs in terms of covariates and common trends included, their importance in
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explaining variance, and whether effects were positive or negative. At the extremes

of the paving extent, the unpaved and paved states both have a small number of com-

mon trends but differ in terms of the relative importance of human and natural factors

driving vegetation dynamics.

Human covariates are relatively more important in the paved state (family density

and travel time to markets); conversely, the natural covariates are important in

the unpaved state. In the unpaved state and the transition states, there is greater in-

fluence from natural variables like potential evapotranspiration, soil moisture, and

minimum and average temperatures. The importance of temperature is probably

due to its effect on photosynthesis, which affects phenological signatures. With

increased average paving, maximum temperature becomes relatively more impor-

tant than minimum and average temperature (Fig. 5). Minimum temperature is

used unlagged in the models, indicating an immediate effect of this covariate in

the simulation; average and maximum temperatures are lagged 12e13 and

13e14 months, respectively (Fig. 7). Maximum and average temperature poten-

tially have a stronger effect on germination, flowering and other reproductive pro-

cesses [110], which would explain the longer lag in their effect. Previous work

(on deciduous broad leaf and evergreen needleleaf forest phenology) found similar

importance of minimum and maximum temperature [111] on vegetation dynamics.

Particularly the increased importance of maximum temperature with higher paving

extent points to potentially more change in the future. Climate change is projected to

affect temperatures significantly in the future, including its anomalies [112],
Fig. 8. Characteristics of the trends (unknown explained variance) in the selected DFMs II. a) Average

semi-partial R2 of trends for each community indicates trends contribute differently to explaining vari-

ance per community and across paving extent (x-axis). b) Monthly values of trends over time. c) The

three strongest frequencies for each trend in each VDC, identified with spectral density estimation, are

depicted by large, medium and small circles. Where trends have signals of the same frequency in com-

mon, not all n trends � 3 signals are visible due to overlap.
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indicating that areas under the influence of road paving disturbances will be more

sensitive to these changes.

The findings on soil moisture also correspond to results from previous work. The

importance of soil moisture for VDC 1, VDC 2 and VDC 3 is supported by previous

research [113] which pointed to the relevance of the hydrologic cycle in combination

with soil properties in these areas withmostly natural disturbances and limited anthro-

pogenic disturbances. A key component in interpreting the negative effect of soil

moisture in most communities is the lag of 3e4 months applied to this covariate.

While soil moisture usually peaks at the beginning of the year during the later portion

of the wet season (MarcheApril), EVI2 generally reaches its lowest points around the

middle of the year during the dry season (JuneeSeptember). By implementing the soil

moisture with a lag, EVI2 and soil moisture essentially displayed opposite dynamics,

and thus the timing of soil moisture peaks and valleys became a factor in simulating

EVI2 dynamics for most communities. For the communities where soil moisture had

mostly positive effects (VDC 2) the longer lag of 10 months that was applied ensured

that soil moisture and vegetation dynamics lined up again:MarcheApril soil moisture

peaks were now aligned with EVI2 peaks in DecembereFebruary.

While the relative importance of potential evapotranspiration was expected [111],

the negative effect on vegetation dynamics in some communities was initially coun-

terintuitive. We expected that higher evapotranspiration would relate to more photo-

synthetic activity and thus higher EVI2 values. However, potential

evapotranspiration data were only driven by climatic variables and did not take

into account available water [68]. Since our analyses focused on normalized values

and not absolute values this result did not necessarily implied a water deficit; but it

could indicate that in the communities where potential evapotranspiration and vege-

tation dynamics behaved in an opposite manner, available water might play a role.

Considering the importance of the soil moisture covariate, this was plausible: espe-

cially in the light of results for VDC 4, where soil moisture did not feature as impor-

tant (Fig. 5), and all potential evapotranspiration effects were positive (Fig. 7). The

opposite effect (negative coefficients) of species richness (Fig. 7) for some commu-

nities were similar to earlier findings [114], which established that there are trade-

offs between plant diversity and forest structure covariates in the region, i.e.

increased forest structure was associated with less diversity.

In terms of human covariates, the initial rise and then decline of their importance

before the 0.25 point of paving extent (Fig. 3c) could be due to disturbance and

then adaptation of the ecosystem to the disturbance regime. The detailed results

show that this pattern was mostly driven by the importance of paving and travel

time to markets (Fig. 5). The initial effect of travel time to markets was positive

(meaning lower travel times correspond to less EVI2 and vice versa), potentially

due to increased pressure and exploitation associated with better access to markets
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for locals and better access to forest products by outsiders. For VDC 4, at higher

paving extents, the effect is reversed. The change in travel time for this VDC is

less pronounced and occurs over a longer time period (Fig. 6), so it is possible

that over time communities shift their focus to more urban sources of income

such as wages rather than forest-based activities, as observed in another study

[115], prompting higher EVI2 over time.

A possible explanation for the seemingly counterintuitive result of a negative effect

of enforcement of tenure rules on vegetation dynamics for VDC 4 are the specific

circumstances in this area in Acre, Brazil. Extraction of forest resources and conver-

sion to agriculture had been going on since the 1970s in this area, and in the 1980s

several groups (ranchers, rubber tappers, colonists) clashed over land use and defor-

estation [116]. Most of the enforcement increase occurred in the early years

(1990e1991, Fig. 6), after which enforcement stayed high and fairly constant (Sup-

plementary Table S3 indicates the non-standardized values). While enforcement

even increased slightly in subsequent years, vegetation may have been too degraded

already to experience positive effects. Another possibility is that people engaged in

covert or illegal forest exploitation. This is an option if the payoff from these activ-

ities is worthwhile despite enforcement.

The importance of travel time to markets was found in a previous study on land cover

change in the area [21], but family density did not appear significant in that case, as it

did in this study. The importance and negative effect of family density are intuitive:

increasing family density (Fig. 6) leading to decreasing EVI2 could be linked to

increased pressure on vegetation due to rising forest resources exploitation.

The number of trends in the unpaved and paved state was similar and low (VDC 1

and VDC 4 in Table 2 and Fig. 8a). The presence of only a few common trends ex-

plaining most of the variance across a number of communities pointed to the spatial

uniformity of vegetation dynamics in the communities in these VDCs. This was

possibly because the dynamics reached a similar state in all communities considering

the longer duration that they were unpaved or mostly paved. This assumed that the

levels of disturbance had stabilized. The transition states, with 6 and 7 trends, had

more heterogeneity in paving and impacts across the communities in their regions

and a variety of vegetation responses. This highlights that while paving was

ongoing, changes and system states at a regional level were more heterogeneous

and more difficult to predict. Once the system stabilized again (VDC 4), the system

state was different than before the disturbance (VDC 1): this is visible, in addition to

the DFM specification of covariates, in the frequencies contained in the trends. But

the shift in importance of common trends and covariates at a paving extent of 0.75

indicated that vegetation dynamics are potentially resilient to the effects of early

paving. An average paving extent of 0.75 means that paving has to be quite advanced

before a shift takes place.
on.2018.e00721

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00721
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 Published

(http://creativecommons.org/li

Article Nowe00721
When paving was present sufficiently advanced though, the results show that there

was a change in common trends from the unpaved to the paved system state, with

trends losing both importance (Fig. 4b) and overall number of unique signals,

notably high-frequency signals (Fig. 8c). We deduced that these phenomena were

related: less high-frequency signals were probably due to covariates explaining

more variance in the paved state directly. Within VDCs, common trends varied in

their contribution to explained variance. This suggested that there were missing co-

variates or non-linear interactions between variables that had spatial variation in

importance. Low-frequency signals that showed up consistently in each VDC

(5.625, 11.25 and 22.5 years) were attributed to solar and climatic influences. Solar

activity and its associated radiation have an influence on the earth’s biosphere [117,

118] and its variation is acknowledged as a natural climate forcing [112]. The solar

cycle has an 11- to 22-year frequency, and a 5.6-year periodicity [119]. The Pacific

Decadal Oscillation (PDO), a pattern of ocean-atmosphere variability, has been

found to play a role in the Amazon in previous studies [120, 121, 122]. The PDO

contains a 4.8- and 8-year frequency (Supplementary Table S12), close to the 4.5-

and 7.5-year frequencies also found in a number of the DFM trends.

This study adds an important dimension to our understanding of the effects of roads on

vegetation. It complements a previous finding that forest degradation and deforestation

do not always respond in a similar way to infrastructure change [35]: in that study road

paving did not always increase degradation as it did deforestation.By adding a temporal

component and a number of human and natural covariates to our analysis, wewere able

to distinguish the positive and negative effects of these covariates with increased road

paving; contributing to the expanding body of knowledge on road impacts.

Potential phenological changes due to global change have been identified in previous

studies [110, 123], and the combination of these changes with anthropogenic im-

pacts such as road paving increases the uncertainty of future trajectories. As this

could alter ecosystem functions, ecosystem services would also be affected [124].

While this study does not quantify these possible effects, it contributes to the

growing body of research on road paving impacts in the Amazon [11, 21, 59]. It

also highlights the effects beyond deforestation alone [12, 21] and the changes in

drivers of vegetation dynamics with increased road paving.
4.2. Limitations and further research

While remote sensing products are increasingly available and useful for doing large-

scale regional analyses, inherent noise in the data should be carefully evaluated. This

is especially true in humid tropical regions, which exhibit extended periods of cloud

cover contributing to observation error. While the models exhibit an acceptable

goodness-of-fit for most communities, their performance is low in some areas partly

due to observation error. Further research on signals and frequencies in EVI2 data
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would be beneficial to quantify differing vegetation dynamics in more detail in order

to assess errors, as well as field studies that measure biomass and vegetation structure

combined with higher resolution remote sensing studies.

DFA is efficient at capturing variance in ecological time series because of its autor-

egressive approach to modeling trends, but if the variance is not accounted for

among the covariates in expanded models and instead remains captured in the trends,

it stays unexplained. This requires more detailed investigations into issues such as

logging, the role of fire, and species composition in terms of functional groups. It

is however challenging to obtain reliable data on these concepts for sufficiently

long periods of time, for a large area.

DFM IIs add covariates linearly, and while possible lagged responses have been ac-

counted for, interactions are not explicitly accounted for. Future research should

focus on untangling interactions between both human and natural covariates, in

particular with mechanistic models. This would also assist in identifying causal re-

lationships, since DFA does not account for this. The mechanisms behind the im-

pacts of changes in travel time and family density on vegetation dynamics should

also be investigated in more detail, as these are factors that could be managed (as

opposed to e.g. temperature as a driver).
5. Conclusions

This study has shown the power of Dynamic Factor Analysis when applied to a com-

plex data set where time series are subject to change over an extended period of time

and space. DFA offers a continuous overview of the dynamics in the importance of

the effects of different covariates, as opposed to snapshots in time. DFA thus pro-

vides a systematic framework to study how forest degradation evolves over time

as a process like road paving unfolds. Other areas in which this method could prove

useful are experimental interventions in biological and health fields to assess how

complex systems respond, or how application of governmental regulations affects

constituency behaviors with regard to intended outcomes.

This research offers support for the hypothesis that there are areas that have distinct

vegetation dynamics along a road paving gradient and provides support for the sec-

ond part of the hypothesis, that different covariates and mechanisms drive vegetation

dynamics across the road paving gradient. The results of the study can benefit local

and regional planners, as well as conservation initiatives at a practical level. The find-

ings show which covariates impact regional vegetation dynamics positively or nega-

tively, and show how these differ with road paving progress. The results thus point to

covariates that could be managed to minimize the impact of road paving on regional

vegetation dynamics, such as enforcement of tenure rules and population density. The

analysis also provides insights into the relationships of natural covariates with
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vegetation dynamics; and some of these covariates could be affected by climate

change.With temperature anomalies projected to change in the future [112], the effect

on areas in a paved state will be stronger. Most importantly, the study indicates that

vegetation dynamics - and thus potentially ecosystem services - will differ with road

paving progress. Future research on changes in ecosystem services due to altered

vegetation dynamics is relevant for both conservation as well as future economic op-

portunities in the study area. Previous research has considered degradation and

ecosystem services in general [4], but more research on roads impacts specifically

is needed. Both roads and ecosystem services are important to livelihoods and eco-

nomic development, so infrastructure planning initiatives should account for their po-

tential effects on regional vegetation dynamics and ecosystem services. Provisions

should be made in the planning stages of a road project to monitor vegetation dy-

namics after project completion, beyond only deforestation. More detailed and local-

ized technologies, such as Light Detection And Ranging (LiDAR) or products from

the Fluorescence Explorer (FLEX), will provide useful in extending this analysis to

more local scales [37, 125, 126]. Data from these technologies is not yet available for

the longer term, and thus could not be used in this current study. Governments and

research institutes should invest in these technologies for ongoing monitoring.

Lastly, this study adds a large scale regional analysis to the field of road ecology. As

national governments and banks continue to pursue development and trade via infra-

structure investments, road paving is likely to extend into many forested areas such

as the Amazon, Central Africa and Southeast Asia, and thus pose threats of disturb-

ing ecosystem services provision [127].
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