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Preterm birth (PTB) is the leading cause of newborn deaths around the world. 
Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there 
remains an unmet need of detecting and preventing sPTB. Although the dysregulation 
of the immune system has been implicated in various studies, small sizes and irre-
producibility of results have limited identification of its role. Here, we present a cross-
study meta-analysis to evaluate genome-wide differential gene expression signals 
in sPTB. A comprehensive search of the NIH genomic database for studies related 
to sPTB with maternal whole blood samples resulted in data from three separate 
studies consisting of 339 samples. After aggregating and normalizing these transcrip-
tomic datasets and performing a meta-analysis, we identified 210 genes that were 
differentially expressed in sPTB relative to term birth. These genes were enriched in 
immune-related pathways, showing upregulation of innate immunity and downregu-
lation of adaptive immunity in women who delivered preterm. An additional analysis 
found several of these differentially expressed at mid-gestation, suggesting their 
potential to be clinically relevant biomarkers. Furthermore, a complementary analysis 
identified 473 genes differentially expressed in preterm cord blood samples. However, 
these genes demonstrated downregulation of the innate immune system, a stark 
contrast to findings using maternal blood samples. These immune-related findings 
were further confirmed by cell deconvolution as well as upstream transcription and 
cytokine regulation analyses. Overall, this study identified a strong immune signature 
related to sPTB as well as several potential biomarkers that could be translated to 
clinical use.
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iNtRODUctiON

Preterm birth (PTB), which is defined as giving birth before 
completion of 37  weeks of gestation, is the leading cause of 
newborn deaths worldwide. In 2010, 14.9 million babies were 
born preterm, accounting for 11.1% of all births across 184 coun-
tries, with the highest PTB rates occurring in Africa and North 
America (1). This high incidence of PTB is concerning since 29% 
of all neonatal deaths worldwide, approximately 1 million deaths 
total, are accounted to complications in PTB (2). Furthermore, 
children born prematurely are at increased risk for a milieu of 
short- and long-term complications including motor, cognitive, 
and behavioral impairments (3, 4).

Approximately 30% of PTBs are medically indicated due to 
maternal or fetal conditions; the other two-thirds are categorized 
as spontaneous preterm births (sPTB) that include spontaneous 
preterm labor and preterm premature rupture of the membranes 
(5). PTB is a syndrome with multiple etiologies. Numerous signs 
point to genetic factors as playing a role in birth timing including 
the observations that PTBs are likely to recur in mothers, women 
who are born preterm are more likely to deliver prematurely, 
and sisters of women who have delivered prematurely are at an 
increased risk of delivering preterm. Furthermore, twin studies 
suggest that genetics account for approximately one-third of the 
variation in PTB (6, 7). Other factors shown to influence risk for 
PTB include those associated with adverse lifestyle and behavior, 
such as stress, smoking, drug use, and nutrition (8). Although 
a variety of social (9, 10), environmental, and maternal factors 
have been implicated in PTB, causes of sPTB have remained 
largely mysterious and therefore, in most instances, not amena-
ble to effective interventions. Thus far, there exists no universal 
detection method to predict sPTB or intervention approach to 
prolong labor and extend the pregnancy to term. The complexity 
and multiple etiologies of sPTB, along with the inconsistency in 
clinical phenotyping and non-uniform classification system, have 
limited the identification of genetic factors and clinically relevant 
biomarkers (11).

Over the years, many different mechanisms have been 
identified to be associated with sPTB, including breakdown of 
maternal–fetal tolerance, decidual senescence, uterine overd-
istension, and procoagulant activity (12, 13). One particularly 
interesting mechanism that has been implicated is the dysregula-
tion of the interplay between the maternal innate and adaptive 
immune systems. The innate immune system, also known as the 
non-specific immune system, comprises cells and mechanisms 
including but not limited to macrophages, toll-like receptors, 
neutrophils, and cytokines which aid in host defense from infec-
tion (14, 15). This sub-system is responsible for the generalized, 
non-specific immune response, inflammation, and activation 
of the adaptive immune system through antigen presentation 
(14, 15). Contrastingly, the adaptive immune system comprises 
lymphocytes, specifically T cells and B cells, which are special-
ized white blood cells that provide long-term immunity (14, 15). 
In pregnancy, regulatory T-cells proliferate after implantation 
and function to prevent rejection of the fetus by creating an 
anti-inflammatory environment (16, 17). However, for labor to 
initiate and progress, the maternal immune system switches to 

a pro-inflammatory state by activating the pro-inflammatory 
nuclear factor-kB signaling pathway, which leads to an increase 
in the production of cytokines, chemokines, and interleukins and 
allows for infiltration of the fetal/maternal interface by activating 
leukocytes (16–19). The location and function of each immune 
cell is critical to sustain pregnancy to term; it has been proposed 
that a premature shift from the anti-inflammatory to the pro-
inflammatory state, and therefore a disruption in the balance of 
innate and adaptive immunity, could result in preterm labor and 
delivery (19).

There is a need to understand the mechanisms by which 
preterm labor is affected which could then lead to identifica-
tion, intervention, and prevention. Identifying immune-related 
genetic signatures as well as clinically relevant diagnostic bio-
markers specific to sPTB would enhance our ability to discern 
women who are at an elevated risk for delivering prematurely. 
However, findings have been limited due to small sample size and 
issues with irreproducibility (20). Meta-analysis, which combines 
information from multiple existing studies, is a powerful tool 
that improves reliability, generalizability, and ability to detect dif-
ferential gene expression by larger statistical power (20). With the 
development of databases such as the National Institute of Health 
Gene Expression Omnibus (NIH GEO) and Array Express, gene 
expression meta-analysis has been applied to investigate differ-
ent disease subtypes and discover novel biomarkers (21–24). In 
the area of obstetrics, a recent study performed a meta-analysis 
which integrated diverse types of genomic data, overlaying 
evolutionary data, and placental expression data in an effort to 
elucidate genes that may be involved in parturition and disrupt 
pregnancy (25).

As discussed in a recent systematic review (26), although there 
have been 134 genome-wide transcriptomic studies related to 
pregnancy and PTB, most of these studies have focused on PTB 
related to preeclampsia (one of the medical indications of PTB). 
sPTB was investigated in only 7% of all studies and 18% of pre-
term studies, even though sPTB is responsible for over two-thirds 
of all PTBs. Furthermore, 61% of the studies focused on placental 
tissue, which has limited utility in the diagnostic setting and upon 
comparison of results from the different studies, there was very 
limited overlap among differentially expressed genes; only 2 genes 
of 6,444 differentially expressed genes identified were present in 
10 or more gene expression studies (26). Therefore, there exists 
a need to aggregate data and perform meta-analyses to elucidate 
gene signatures that are robust and can be reproduced in studies 
of maternal blood, which allows for discovery of biomarkers that 
can be implemented as part of the standard prenatal care. The 
NIH GEO database has three sPTB related, publicly available 
datasets which have all been analyzed separately before. The first 
study, which included women who were diagnosed with threat-
ened preterm labor (median gestational age: 32  weeks), found 
469 differentially expressed genes and significantly increased 
leukocyte and neutrophil counts in women who had sPTB within 
48 h after initiation of labor (27). The second study, also by Heng 
et al., collected samples at two different time points and found no 
differentially expressed genes in the second trimester and 26 dif-
ferentially expressed genes in the third trimester when comparing 
sPTB and term birth (28). The last study analyzed eight tissue 
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taBle 1 | Datasets used in discovery analyses.

Dataset year author Platform Sample types Preterm births term births Gestational age at sampling*

GSE46510 2014 Heng GPL16311 Maternal whole blood 75 79 32 (24–36)
GSE59491 2016 Heng GPL18964 Maternal whole blood 51 (T2)

47 (T3)
114 (T2)
114 (T3)

19 (17–20)
29 (27–33)

GSE73685 2016 Baldwin GPL6244 Amnion (A) 12 12 NR
Cord blood 11 12
Chorion (C) 12 12
Decidua (D) 11 12
Fundus (F) 10 10
Lower segment 12 12
Placenta (P) 12 9
Maternal whole blood (WB) 12 12

Median (range) reported.
NR, not reported; T2, second trimester; T3, third trimester.
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types, comparing women who delivered preterm and term with 
or without labor; they found that pregnancy was maintained by 
downregulation of chemokines at the maternal–fetal interface but 
the work has not been published.

Using these three datasets, we performed a cross-study 
meta-analysis which identified a set of significant differentially 
expressed genes in maternal blood, many of which were immune 
related and a few of which could translate to clinically relevant 
biomarkers. An additional analysis of measurements collected 
during mid-gestation in one study revealed a smaller set of 
significant genes that were differentially expressed over time. 
Finally, a complementary analysis of fetal cord blood (CB) 
revealed that there were a number of differentially expressed 
genes on the fetal side, many of which overlapped with the sig-
nificant genes in maternal blood and showed opposing changes 
in regulation.

ReSUltS

Datasets
We identified three datasets, from the National Center for 
Biotechnology Information (NCBI) Gene Expression Omnibus 
(GEO) database (23, 24), which were comprised of whole blood 
gene expression profiles from women who delivered preterm and 
term, respectively. These three studies (GSE46510, GSE59491, 
and GSE73685) included 339 maternal whole blood samples, 
134 from women who delivered preterm, and 205 from those 
delivered at term. The gestational age of the preterm deliveries 
ranged from 24.4 to 36.9 weeks with a median of 34 weeks. One 
study (GSE59491) collected blood samples at two different time 
points, second trimester (17–23  weeks) and third trimester 
(27–33 weeks), respectively. In addition to whole blood samples, 
another study used in the meta-analysis (GSE73685) collected 
RNA samples from seven other different types of tissues includ-
ing amnion, CB, chorion, decidua, fundus, lower segment, and 
placenta (Table 1).

Overview
Our primary goal was to perform a meta-analysis to iden-
tify potential maternal plasma biomarkers by evaluating 

differentially expressed genes associated with sPTB and inves-
tigating whether certain cell types are enriched in sPTB, using 
time-matched maternal data from the three independent 
studies. Taking advantage of the repeated samples collected 
in mid-gestation from study GSE59491 and samples collected 
from seven additional tissues in study GSE73685, we performed 
secondary analyses to identify potential common gene expres-
sion signatures across different gestational stages and different 
tissues and to investigate the potential maternal–fetal interplay 
at the transcriptomic level. We investigated and compared 
the transcriptomic signature that was identified as part of the 
maternal meta-analysis to what was observed earlier in the preg-
nancy. The second additional analysis investigated differential 
gene expression in various tissue types to identify tissue specific 
transcriptomic signatures (Figure  1). Each of the signatures 
was further interrogated through pathway and transcriptional 
regulation analysis.

cross-Study Gene expression meta-
analysis in maternal Blood
Samples from the three studies were pooled together based on 
gestational age at time of sample collection. The women were split 
into two groups based only on whether they delivered before or 
after 37  weeks of gestation, with no regard to time of delivery 
relative to the initiation of labor.

When pooling samples from the different studies, study-
specific differences in gene expression were seen (Figure  2A) 
and corrected for using ComBat (29) to eliminate such 
biases (Figure  2B). When we imposed a false discovery rate 
(FDR) of 0.1, the normalized, merged gene dataset of 17,337  
was reduced to 4,648 significant genes. Setting a significance 
threshold at a fold change (FC) of 1.3-fold increase or decrease 
in gene expression (30) for PTB samples, relative to term birth, 
condensed our gene list from 4,648 genes to 210 differentially 
expressed genes (FC range: 0.46–1.94) (Figure  2C), with 65 
genes upregulated and 145 genes downregulated (Table S1 in 
Supplementary Material). We saw clustering of preterm samples 
and term samples based on the 210 significant genes; however, 
we did not see any clustering by study (Figure 2D). Only third 
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GSE59491 (n = 326)

Longitudinal Maternal Blood 
Samples (sPTB)

GSE46510 (n = 154)

Samples from Women with 
Threatened Preterm Labor

GSE73685 (n = 183)

Maternal Blood, Cord Blood and 
Six Fetal Tissue Samples (sPTB)

Correct for study (ComBat)
DE analysis (Limma with FDR < 0.1 & FC > 1.3)

Cross-study maternal blood meta-analysis
(n = 339 total: 205 term, 134 preterm; 27~36 gwks) 

210 genes
65 upregulated 

145 downregulated

Cord Blood
(n = 23)

DE analysis 
(Limma with FDR 
< 0.05 & FC > 1.3)

Tissue Specific Analysis

473 genes 
165 upregulated

308 downregulated

DE analysis on the subset of genes that 
were significant based on the main 

meta-analysis (Limma with FDR < 0.1)

Trimester 2 (n = 165)

18 genes
8 upregulated

10 downregulated 

Pathway Analysis
Biomarker Identification
Cell Type Deconvolution

Transcription Regulation Analysis

Other six tissues
DE analysis 

(Limma with FDR 
< 0.05 & FC > 1.3)

No significant 
genes

FiGURe 1 | Analysis of relationship of gene expression differences in term vs. preterm birth. We identified three independent studies from the Gene Expression 
Omnibus database (in yellow) to perform a meta-analysis using third trimester maternal blood samples (in green), an additional differential expression analysis with 
second trimester samples from GSE59491 (in orange), and a tissue-specific analysis with samples from GSE73685 (in blue).
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trimester samples from GSE59491 were used in the meta-analysis 
to better time-match all samples (Figure 2E).

Splitting our list of 210 genes into two sub-groups based 
on whether they were upregulated or downregulated in PTB, 
we found that the downregulated genes demonstrated strong 
network connectivity using the STRING database (31–33) 
(Figure  3A) and were functionally enriched in 36 different 
pathways using the ToppFun database (34) (Table  2), more 
than half of which were immune related. Specifically, the down-
regulated genes were highly involved in the adaptive immune 
response, showing significant clustering and connectivity in 
Gene Ontology Consortium (GO) biological processes (Table S2 
in Supplementary Material) including antigen receptor-mediated 
signaling pathway, leukocyte activation, lymphocyte activation, 
and T-cell activation (Figures 4A–D). Furthermore, there were 
six genes (CD8B, CLC, DPP4, NELL2, SERPINI1, and NUCB2) of 
145 downregulated genes that were found to be secreted as pro-
teins in humans from the UnitProt database (35) (Table 3). The 
65 upregulated genes showed less network connectivity relative to 
the downregulated genes (Figure 3B). Although the majority (5 
of 6) of the functionally enriched pathways were immune related 
(Table 2), the upregulated genes were specifically involved in the 
innate immune response, a stark contrast to the downregulated 
genes. In addition, there were 9 genes from the 65 upregulated 
genes that were found be secreted as proteins in humans [IL-1 
receptor type I (IL-1R1), IL-1R2, IL-1RAP, HPSE, NLRP3, tissue 

factor pathway inhibitor (TFPI), LRG1, CST7, LAMB2] in the 
UniProt database (35) (Table 3).

These immune pathways and secreted proteins associ-
ated with sPTB could have been missed in the single-study 
analysis due to limited sample size and thus not reaching 
statistical significance: only 26 significant genes were identi-
fied (FDR <  0.10) in the GSE59491 study and no significant 
genes were identified (FDR  <  0.10) in the GSE73685 study 
(analysis of maternal blood sample only). This highlights the 
importance and power of aggregating the data and performing 
a meta-analysis.

cell-type Deconvolution analysis in 
maternal Blood
Due to the heterogeneity of plasma samples, it is important 
to identify and quantify the various cell types that comprise 
peripheral blood. If not taken into account, the variability in 
cell composition in each sample can confound the results and 
limit interpretability (36). To examine the reproducibility of our 
experiments and test the hypothesis of aligning our pathways with 
cell type abundance when comparing preterm and term birth, 
we performed a cell-type deconvolution analysis. Specifically, 
since immune cells constitute a large portion of cell types in 
plasma, and a large part of differentially expressed pathways were 
immune related, we utilized xCell, a computational method that 
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FiGURe 2 | Results from the cross-study meta-analysis and distribution of gestational age at sampling. (a,B) Principal component analysis plots with all genes 
before (a) and after (B) ComBat. (c,D) Principal component analysis plot (c) and heatmap (D) of all samples based on 210 significant differentially expressed 
genes. (e) Gestational age at sampling was not significantly different between preterm and term maternal whole blood samples (n = 315, p-value = 0.125).
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is able to infer 64 various immune and stroma cell types using 
gene signatures (37).

Our xCell analysis of all 339 samples revealed that there were 
27 cell types that were enriched and significantly differentially 
expressed between preterm and term birth. Macrophages 
(M2 type) and microvascular endothelial cells demonstrated 
the largest and most significant (FDR  =  0.003) difference in 
enrichment between preterm and term maternal blood samples 
(Figure 5A) when comparing average xCell scores. We also saw 
some clustering of preterm and term birth samples by immune 
cell type, with term birth samples showing some clustering and 
upregulation of adaptive immune cells, such as Th2 cells, CD8+ 
T-cells, CD4+ T-cells, and B-cells, and PTB samples showing 
some clustering and upregulation of innate immune cells, such as 
NKT, macrophages M2, basophils, and neutrophils (Figure 5B). 
Adjusting for significant cell types as a covariate in our differential 
expression analysis for T3 samples resulted in 334 genes that were 
differentially expressed in PTB compared with term birth. Upon 
pathway analysis, we found that the innate immune pathway was 

upregulated in the preterm samples, which is consistent with our 
initial results.

additional analysis of maternal Signatures 
in the Second trimester
To investigate and compare expression profiles at two different 
time points in pregnancy, we utilized the samples collected at 
second trimester in the GSE59491 study and performed an addi-
tional analysis investigating whether any of our significant genes 
from the third trimester analysis were differentially expressed at 
an earlier time point to facilitate potential biomarker identifica-
tion. Implementing an FDR < 0.1 on the filtered list of 210 genes, 
there were 18 genes (8 upregulated and 10 downregulated) that 
were significantly differentially expressed (Figure 6A; Table S3 in 
Supplementary Material).

These 18 genes, which were differentially expressed in PTB 
relative to term birth at the second trimester (17–20 weeks) and 
the third trimester (24–36 weeks), showed similar FC direction 
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FiGURe 3 | STRING connectivity networks based on 210 differentially expressed genes. (a,B) Connectivity networks for significantly downregulated (a) and 
upregulated (B) genes from meta-analysis.
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and values when comparing second trimester samples from 
GSE59491 and the samples from the cross-study meta-analysis 
(Table S4 in Supplementary Material). Furthermore, when plot-
ting the raw expression data for the second and third trimester 
samples from GSE59491 for these 18 genes, the same trends were 
upheld, demonstrating similar FC direction and values between 
the two groups (Figure S1 in Supplementary Material). 2 of these 
18 genes (IL-1R1 and TFPI) showed potential as diagnostic bio-
markers; they were found to be secreted and detectable in human 
plasma in the UniProt database (35) (Table  3) and upheld the 
same fold-change directionality in both second and third trimes-
ter samples (Figures 6B,C).

Upstream transcription and cytokine 
Regulation analysis in maternal 
Signatures
To better understand the differential expression patterns, we 
explored the upstream regulation of differentially expressed 
upregulated genes for the second and third trimester separately. 
We first created a transcription factor regulation network for 
the second and third trimester (Figures 7A,B). In Figure 7A, 
we found four regulators for only two of the second trimester 
differently expressed genes. Out of the four regulators, one tran-
scription factor, BCL6 (38), has been shown before to regulate 

components of the immune system and another, MXD1, is 
involved in cell proliferation (39). In Figure 7B, we found nine 
regulators for 46 of the third trimester differently expressed 
genes. Out of those nine, a few are known to be involved in 
development of the immune system, such as SPI1 (40), BCL6, 
and UXT (41) while others are involved in embryonic cell devel-
opment such as CBX5 (42), RUNX2 (43), and TCF3 (44). The 
overlap between the groups is two transcription factors, BCL6 
and MXD1.

We then explored cytokine regulation in differentially 
expressed upregulated genes in second and third trimesters. In 
both trimesters, as shown clearly in Figures  7C,D, IL-7 is the 
only cytokine we found to be involved in the regulation. Given 
the known role for IL-7 signaling in lymphocyte differentiation, 
this finding is also consistent with the immune signature we 
observed.

Based on those four regulatory networks and two modes of 
regulation, we see enrichment of transcription factors involved 
with the immune system and with cell proliferation.

Differential Gene expression analysis in 
Samples From Other tissues
Since GSE73685 contained a set of diverse tissues, we also 
evaluated transcriptional signal in various maternal and fetal 
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taBle 2 | Functionally enriched pathways from cross-study meta-analysis.

iD Name Source p-value FDR B&H Genes 
from input

Genes in 
annotation

Upregulated
M12095 Signal transduction through IL1R* MSigDB C2 BIOCARTA (v5.1) 6.17E−06 3.04E−03 4 33
1269320 Interleukin-1 signaling* BioSystems: REACTOME 2.38E−05 5.86E−03 4 46
1457780 Neutrophil degranulation* BioSystems: REACTOME 6.52E−05 1.07E−02 9 492
1269203 Innate Immune System* BioSystems: REACTOME 1.81E−04 2.23E−02 14 1312
137944 IL1-mediated signaling events* BioSystems: Pathway Interaction 

Database
2.84E−04 2.54E−02 3 35

82974 Starch and sucrose metabolism BioSystems: KEGG 3.10E−04 2.54E−02 3 36

Downregulated
M1467 The Co-Stimulatory Signal During T-cell Activation* MSigDB C2 BIOCARTA (v5.1) 3.46E−07 3.21E−04 5 21
83080 T cell receptor signaling pathway* BioSystems: KEGG 8.04E−07 3.66E−04 8 103
138055 TCR signaling in naive CD8+ T cells* BioSystems: Pathway Interaction 

Database
1.24E−06 3.66E−04 6 48

1269171 Adaptive Immune System* BioSystems: REACTOME 1.58E−06 3.66E−04 20 826
137998 TCR signaling in naive CD4+ T cells* BioSystems: Pathway Interaction 

Database
4.71E−06 8.73E−04 6 60

1269175 Generation of second messenger molecules BioSystems: REACTOME 5.89E−06 9.10E−04 5 36
1269174 Translocation of ZAP-70 to Immunological synapse* BioSystems: REACTOME 1.77E−05 2.10E−03 4 22
M9526 T Cell Signal Transduction* MSigDB C2 BIOCARTA (v5.1) 1.81E−05 2.10E−03 5 45
1269173 Phosphorylation of CD3 and TCR zeta chains* BioSystems: REACTOME 3.00E−05 2.98E−03 4 25
1269172 TCR signaling* BioSystems: REACTOME 3.32E−05 2.98E−03 7 124
1269182 PD-1 signaling* BioSystems: REACTOME 3.53E−05 2.98E−03 4 26
M16519 HIV Induced T Cell Apoptosis* MSigDB C2 BIOCARTA (v5.1) 5.98E−05 4.62E−03 3 11
83078 Hematopoietic cell lineage* BioSystems: KEGG 7.48E−05 5.34E−03 6 97
M10765 Lck and Fyn tyrosine kinases in initiation of TCR Activation* MSigDB C2 BIOCARTA (v5.1) 1.03E−04 6.46E−03 3 13
1269176 Downstream TCR signaling* BioSystems: REACTOME 1.05E−04 6.46E−03 6 103
M13247 T Cytotoxic Cell Surface Molecules* MSigDB C2 BIOCARTA (v5.1) 1.30E−04 7.07E−03 3 14
M6427 T Helper Cell Surface Molecules* MSigDB C2 BIOCARTA (v5.1) 1.30E−04 7.07E−03 3 14
83125 Primary immunodeficiency* BioSystems: KEGG 1.47E−04 7.55E−03 4 37
1269177 Costimulation by the CD28 family* BioSystems: REACTOME 1.90E−04 9.25E−03 5 73
169352 Regulation of Wnt-mediated beta catenin signaling and target 

gene transcription
BioSystems: Pathway Interaction 
Database

2.75E−04 1.27E−02 5 79

1269183 Signaling by the B Cell Receptor (BCR)* BioSystems: REACTOME 3.25E−04 1.42E−02 8 236
M16966 Stathmin and breast cancer resistance to antimicrotubule agents MSigDB C2 BIOCARTA (v5.1) 3.36E−04 1.42E−02 3 19
M18215 Role of Tob in T-cell activation* MSigDB C2 BIOCARTA (v5.1) 4.57E−04 1.83E−02 3 21
1269201 Immunoregulatory interactions between a Lymphoid and a non-

Lymphoid cell*
BioSystems: REACTOME 4.74E−04 1.83E−02 6 136

1270272 Activation of NOXA and translocation to mitochondria BioSystems: REACTOME 5.21E−04 1.88E−02 2 5
1269102 Nef-mediates down modulation of cell surface receptors by 

recruiting them to clathrin adapters
BioSystems: REACTOME 5.26E−04 1.88E−02 3 22

M6327 Activation of Csk by cAMP-dependent Protein Kinase Inhibits 
Signaling through the T Cell Receptor*

MSigDB C2 BIOCARTA (v5.1) 6.84E−04 2.35E−02 3 24

1427859 Cargo recognition for clathrin-mediated endocytosis BioSystems: REACTOME 7.78E−04 2.58E−02 5 99
137922 IL12-mediated signaling events* BioSystems: Pathway Interaction 

Database
1.01E−03 3.24E−02 4 61

1269603 Binding of TCF/LEF:CTNNB1 to target gene promoters BioSystems: REACTOME 1.08E−03 3.24E−02 2 7
137936 IL12 signaling mediated by STAT4* BioSystems: Pathway Interaction 

Database
1.08E−03 3.24E−02 3 28

1269100 The role of Nef in HIV-1 replication and disease pathogenesis* BioSystems: REACTOME 1.20E−03 3.49E−02 3 29
83004 Propanoate metabolism BioSystems: KEGG 1.61E−03 4.52E−02 3 32
1269298 Fc epsilon receptor (FCERI) signaling* BioSystems: REACTOME 1.84E−03 4.94E−02 9 381
117293 Arrhythmogenic right ventricular cardiomyopathy (ARVC) BioSystems: KEGG 1.88E−03 4.94E−02 4 72
1269528 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription BioSystems: REACTOME 1.92E−03 4.94E−02 3 34

Pathways annotated with a * are immune related.
FDR B&H, false discovery rate using Benjamini–Hochberg method; Genes from input, number of significant genes included in given pathways; Genes in annotation, number of genes 
involved in functional pathway; MSigDB C2 BIOCARTA, Molecular Signatures Database curated gene set derived from BIOCARTA database; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.
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tissues separately. With an FDR  <  0.05, only one of the tissue 
types, CB, showed significant differentially expressed genes. 
Imposing a fold-change cutoff of 1.3 on the 507 genes that were 
identified from the differential expression analysis resulted in 

473 significant genes (Table S5 in Supplementary Material), 165 
upregulated and 308 downregulated genes in PTB relative to term 
birth, which clustered to create a distinct separation between PTB 
and term birth (Figure 8A). Based on the ToppFun database, 308 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
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FiGURe 5 | Cell deconvolution of 339 meta-analysis samples. Boxplot (a) and heatmap (B) of average xCell scores for enriched cell types.

taBle 3 | Secreted proteins from meta-analysis and T2 ad hoc analysis.

Genes Fc_GSe46510 Fc_GSe59491 Fc_GSe73685 Directionality p-value adj p value

HPSE 1.12502566 1.029755132 1.302481986 Upregulated 0.01472767 0.072407187
NLRP3 1.120388112 1.045936747 1.463420748 Upregulated 0.008637567 0.055169509
LRG1 1.304600844 1.012782905 1.266657092 Upregulated 0.001694397 0.02445227
CLC 0.77816604 0.925657768 0.460056969 Downregulated 0.013608709 0.06964973
DPP4 0.906503094 0.939578805 0.7254311 Downregulated 0.007598762 0.051200829
IL1R1* 1.088237667 1.085324456 1.324171306 Upregulated 0.006616252 0.047794152
IL1RAP 1.163741033 1.016218763 1.310389926 Upregulated 0.017000877 0.07821447
LAMB2 1.05178463 1.022848768 1.305601216 Upregulated 0.004096624 0.037683905
NELL2 0.785324082 0.91373226 0.642718858 Downregulated 0.000198362 0.010174565
NUCB2 0.749613912 0.965573738 0.800992598 Downregulated 0.000657135 0.01646351
SERPINI1 0.920203336 0.872420873 0.755891687 Downregulated 0.000180817 0.009596761
TFPI* 1.044097212 1.117168095 0.750437685 Upregulated 0.009325712 0.057394342
IL1R2 1.231921476 1.051452709 1.625438109 Upregulated 0.004772589 0.040619724
CST7 1.188969828 1.033458464 1.334064851 Upregulated 0.003500353 0.034868265
CD8B 0.856761369 0.909815767 0.742642806 Downregulated 0.006032779 0.045913205

Genes with * annotation are also found to be significant in the T2 analysis.
FC_GSE46510, fold-change calculated using GSE46510 samples; FC_GSE59491, fold-change calculated using GSE59491 samples; FC_GSE73685, fold-change calculated using 
GSE73685 samples; Adj p val, adjusted p-value.
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downregulated genes were highly enriched in multiple functional 
pathways, many of which were immune related (Table 4) (34). 
Specifically, PTB samples showed downregulation of many 
innate immune-related pathways relative to term birth samples. 
Conversely, the 165 upregulated genes showed low-functional 
pathway enrichment (Table 4) (34).

Comparing these 473 significant genes from the CB analysis 
to the 210 significant genes output from the maternal blood 
meta-analysis, we found that there were 13 genes including 
toll-like receptor 5 (TLR5) and other immune transcripts which 
overlapped and were significant in both analyses. Plotting the 
raw data for these 13 genes from GSE73685 revealed opposite 
directionality comparing preterm and term birth for CB and 
maternal blood, respectively (Figure  8B). While some genes 

were upregulated in preterm maternal whole blood samples (in 
both the meta-analysis and GSE73685 only samples), those same 
genes were downregulated in preterm CB samples; the same 
was true for many genes which were downregulated in preterm 
maternal whole blood samples but upregulated in preterm CB 
samples.

All the results and the data are available as an RShiny 
Application for the benefit of the research community: http://
comphealth.ucsf.edu/preterm_transcriptomics/.

DiScUSSiON

Given the role of the immune system in pregnancy, there exists a 
need to elucidate immune signatures specific to PTB at both the 
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FiGURe 6 | Results from additional second trimester analysis. (a) Heatmap of significant genes from second trimester analysis; genes which are secreted as 
proteins are boxed. (B,c) Boxplots of genes that encode secreted proteins at second (T2) and third (T3) trimester; raw gene expression values from GSE59491 
are plotted.
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maternal and fetal level. This study was thus designed to answer 
these questions by aggregating data from multiple independent 
experiments in an attempt to discover significant, differential 
genetic signatures in women who deliver preterm. Our cross-
study meta-analyses revealed 210 differentially expressed genes, 
15 of which were found to be secreted in the plasma. Interestingly, 
18 of these 210 genes also demonstrated differential expression 
in the second trimester, suggesting a possibility for early iden-
tification of patients who might deliver preterm. IL-1R1 and 
TFPI, both of which encode immune-related proteins, were 
found to be differentially expressed and secreted longitudinally. 
CB analysis also revealed significant differential gene expression 
and had clustering in immune related pathways. In contrast to 
preterm maternal whole blood, which showed upregulation of 
innate immunity and downregulation of adaptive immunity, CB 
showed downregulation in innate immunity. This juxtaposition, 
as well as the heavy involvement of immune-related pathways 
and biomarkers, bring to light novel findings which coincide with 
previous literature.

leveraging transcriptomics to identify 
New Biomarkers for sPtB
There is a crucial need to find biomarkers for PTB. There are 
classic negative predictors such as the absence of fetal fibronectin 

in the cervicovaginal fluid, but they are less useful as a routine 
screening tool to identify women with high risk of PTB (45–47). 
Identifying biomarkers predictive of PTB in maternal blood 
seems like an easier target as blood is easily accessible and can 
be collected in most women as part of the standard prenatal care 
(27). In our study, we found nine upregulated genes that encode 
secreted proteins in human (48). These markers may be further 
investigated regarding their values as biomarkers for identifying 
high-risk women for PTB, especially IL-1R1 and TFPI that were 
significantly over expressed among PTB cases as early as during 
second trimester.

IL-1 receptor type I belongs to the IL-1 family of receptors 
which contains 10 distinct but related gene products all of which 
are heavily involved in the innate immune response. This receptor 
has a variety of ligands which are involved in the initiation (IL-1α 
and IL-1β) and inhibition (IL-1Ra) of the immune and inflam-
matory responses (49). IL-1α belongs to a group of dual-function 
cytokines, constitutively present inside cells under normal 
homeostatic condition and playing a role as a transcription regu-
lator to trigger inflammation and immunity extracellularly (50). 
This ligand has been shown to induce an inflammatory response 
in absence of infection as well as is responsible for the stimulation 
and release of IL-1β from monocytes (51). Conversely, IL-1β is 
not expressed in homeostatic conditions and is active only upon 
cleavage of its precursor caspase-1 (50). Although IL-1Iα is the 
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initiator of sterile inflammation IL-1β has been shown to play 
a role as an amplifier of inflammation (50, 51). The binding of 
either of these molecules to IL-1R1 leads to the activation of many 
transcription factors including nuclear factor-kappa B (NF-kB) 
and ultimately leads to an inflammatory response (49).

IL-1 receptor type I has been studied as one of the potential 
biomarkers to predict heart failure in hypertensive patients (52) 
and was proposed as a candidate molecular target for rheumatoid 
arthritis treatment (53). In the pregnancy space, IL-1R1 has been 
investigated in endometrial tissues and chorioamnionitis (54, 55) 
and has been found to be increased in PTBs stimulated by RU486 
in rats (56). One study found an aberrant placental expression 
of interleukin 1 receptor-like 1 (IL-1RL1) in PTB cases (com-
pared with spontaneous term births) whose mRNA transcript 
were of higher detection in maternal plasma samples than their 
gestational age-matched controls that had term birth, suggesting 

IL-1RL1 to be a candidate PTB-associated marker (57). Other 
cytokines have also been identified as PTB biomarkers, including 
IL6, IL-1β, and IL2 (26). In case of infection, blocking a single 
factor on the pathway may not be sufficient to prevent preterm 
delivery (58). Our finding suggests that IL-1R1 could be one of 
the detectable markers of the dysregulated inflammatory network 
associated with PTB that bears further investigation.

The overall signature we observed is consistent with previously 
published literature supporting a role for the inflammasome and 
activation of the innate immune system in the onset of spon-
taneous preterm labor. For example, activation of the NLRP3 
inflammasome, which ultimately results in increased levels of 
mature IL-1β, has also been implicated in patients (59). There are 
increased levels of IL-1β in the amniotic fluid of patients with pre-
term labor (60) as well as in the chorioamniotic membranes (59). 
A GWAS study also reported that polymorphisms in the IL1R 
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antagonist locus were associated with PTB (61, 62). In mouse 
models, introduction of IL1 can induce PTB by activating the 
innate immune system, and blockade of IL1R can abrogate this 
phenotype (63). Given the extensive downstream effects of this 
signaling pathway in influencing neonatal morbidity in preterm 
infants (64), our findings have clinical relevance for discovering 
targetable molecular pathways.

Tissue factor is a key element for normal gestation (65). 
Maternal plasma concentrations of total TFPI, the main 
physiological inhibitor of the tissue factor-dependent pathway 
of blood coagulation, is shown to increase during the first half 
of pregnancy, remain relatively constant in the remaining half, 
and decrease during labor (66–68). Different profiles of maternal 

plasma tissue factor and TFPI concentrations have been observed 
among several obstetrical syndromes including preeclampsia 
(69), preterm prelabor rupture of membranes (70), and small for 
gestational age (69).

maternal and Fetal Signals elucidate the 
Role of adaptive and innate immunity in 
PtB
Immunity and inflammation have been shown to play an impor-
tant role in parturition timing (71–75). Specifically, infection and 
breakdown of maternal–fetal tolerance (rejection) are the two 
most important in this respect. These have different association 
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FiGURe 8 | Significant genes from cord blood (CB) tissue analysis and maternal–cord gene signature comparison. (a) Heatmap of significant differentially 
expressed genes from CB analysis. (B) Boxplot of overlapping significant genes from meta-analysis and CB analysis; raw gene expression values from GSE73685 
plotted.
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with gestational age, with infection (76) affecting mainly early 
PTB while rejection (77) affecting mainly late PTB cases. Healthy 
pregnancy involves multiple tolerance mechanisms that prevent 
the maternal and fetal immune systems from recognizing and 
rejecting each other (78, 79), whereas preterm labor may result 
from a breakdown in maternal–fetal tolerance (12). Kourtis 
et al. conclude that aspects of innate immunity are maintained 
or enhanced during pregnancy, particularly during the second 
and third trimesters and there are decreases in adaptive immunity 
seen in later stages of pregnancy (80). Before labor, the maternal 
immune system modulates inflammatory signaling pathways to 
avoid rejection of the fetus. Conversely, in pregnancies with PTB, 
the fetal immune system might undergo activation, resulting in 
recognition and rejection of maternal antigens. Implications of 
pregnancy as a modulated immunological condition are vast 
including prevention of fetal rejection, susceptibility to some 
infections and maybe even PTB (80).

The upregulated and downregulated gene signatures identified 
in the maternal meta-analysis demonstrate a clear enrichment in 
immune-related pathways. When looking at the regulation of the 
differentially expressed genes, we found that transcription factors 
regulating the differentially expressed genes were also immune-
related transcription factors. Looking at cytokine data, we found 
IL-1-related pathways are upregulated during the third trimester 
for women who deliver preterm. This supports the upregulation 
of inflammatory pathways involving cytokines and their recep-
tors among PTB cases reported by Heng et al.’s (28) study, whose 
data were included in the current meta-analysis. Genes encoding 
IL-1α and IL-1β, two founding members of the IL-1 family that 
have played a central role in several autoinflammatory diseases 
(81–83), and other cytokines such as IL-6 are also upregulated in 
our study, despite not being statistically significant after multiple 
testing correction. Past research suggests that pro-inflammatory 
cytokines IL-1β and TNF-α play a primary role in inducing 
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taBle 4 | Functionally enriched pathways from cord blood tissue analysis.

iD Name Source p-value FDR B&H Genes from 
input

Genes in 
annotation

Upregulated
169351 Validated targets of C-MYC transcriptional activation BioSystems: Pathway Interaction 

Database
7.733E−08 0.00008437 9 81

Downregulated
1269203 Innate Immune System* BioSystems: REACTOME 7.768E−26 9.578E−23 81 1312
1457780 Neutrophil degranulation* BioSystems: REACTOME 8.786E−25 5.417E−22 50 492
213780 Tuberculosis* BioSystems: KEGG 5.678E−07 0.0002334 15 179
83051 Cytokine-cytokine receptor interaction* BioSystems: KEGG 0.000001234 0.0003804 18 270
469200 Legionellosis* BioSystems: KEGG 0.000004663 0.0009906 8 55
144181 Leishmaniasis* BioSystems: KEGG 0.00000482 0.0009906 9 73
1427857 Regulation of TLR by endogenous ligand* BioSystems: REACTOME 0.000005868 0.001034 5 16
M9546 Chaperones modulate interferon Signaling Pathway* MSigDB C2 BIOCARTA (v5.1) 0.00001497 0.002122 5 19
1269204 Toll-Like Receptors Cascades* BioSystems: REACTOME 0.00001549 0.002122 12 153
1269310 Cytokine Signaling in Immune system* BioSystems: REACTOME 0.00002554 0.002599 30 763
1269158 IRAK4 deficiency (TLR2/4)* BioSystems: REACTOME 0.0000274 0.002599 4 11
PW:0000234 Innate immune response* Pathway Ontology 0.0000274 0.002599 4 11
1269160 MyD88 deficiency (TLR2/4)* BioSystems: REACTOME 0.0000274 0.002599 4 11
634527 NF-kappa B signaling pathway* BioSystems: KEGG 0.00004183 0.003636 9 95
122191 NOD-like receptor signaling pathway* BioSystems: KEGG 0.00004423 0.003636 12 170
1269156 Diseases of Immune System* BioSystems: REACTOME 0.00005093 0.003694 5 24
1269157 Diseases associated with the TLR signaling cascade* BioSystems: REACTOME 0.00005093 0.003694 5 24
1269318 Signaling by Interleukins* BioSystems: REACTOME 0.00005712 0.003913 23 531
M13968 HIV-I Nef: negative effector of Fas and TNF* MSigDB C2 BIOCARTA (v5.1) 0.00006456 0.00419 7 58
138052 Ephrin B reverse signaling BioSystems: Pathway Interaction 

Database
0.00009269 0.005531 5 27

193147 Osteoclast differentiation BioSystems: KEGG 0.0000942 0.005531 10 130
1383066 TP53 Regulates Transcription of Cell Death Genes BioSystems: REACTOME 0.0001239 0.006944 6 45
P00031 Inflammation mediated by chemokine and cytokine 

signaling pathway*
PantherDB 0.0001357 0.007273 12 191

1269545 Class A/1 (Rhodopsin-like receptors) BioSystems: REACTOME 0.0001744 0.00896 16 322
1269236 Activated TLR4 signaling* BioSystems: REACTOME 0.0001852 0.009001 9 115
114228 Fc gamma R-mediated phagocytosis* BioSystems: KEGG 0.0001898 0.009001 8 91
217173 Influenza A* BioSystems: KEGG 0.0002322 0.01017 11 173
1269239 Toll-Like Receptor TLR1:TLR2 Cascade* BioSystems: REACTOME 0.0002557 0.01017 8 95
1269238 Toll-Like Receptor 2 (TLR2) Cascade* BioSystems: REACTOME 0.0002557 0.01017 8 95
1269237 MyD88:Mal cascade initiated on plasma membrane* BioSystems: REACTOME 0.0002557 0.01017 8 95
1269240 Toll-Like Receptor TLR6:TLR2 Cascade* BioSystems: REACTOME 0.0002557 0.01017 8 95
137995 HIV-1 Nef: Negative effector of Fas and TNF-alpha* BioSystems: Pathway Interaction 

Database
0.0003326 0.01282 5 35

99051 Chemokine signaling pathway* BioSystems: KEGG 0.0003596 0.01294 11 182
137910 CXCR4-mediated signaling events* BioSystems: Pathway Interaction 

Database
0.0003598 0.01294 7 76

1269234 Toll-Like Receptor 4 (TLR4) Cascade* BioSystems: REACTOME 0.0003674 0.01294 9 126
147809 Chagas disease (American trypanosomiasis)* BioSystems: KEGG 0.0004156 0.01403 8 102
172846 Staphylococcus aureus infection* BioSystems: KEGG 0.0004209 0.01403 6 56
1457777 Antimicrobial peptides* BioSystems: REACTOME 0.0005053 0.0164 8 105
1269280 FCGR activation* BioSystems: REACTOME 0.0005221 0.01651 4 22
213306 Measles* BioSystems: KEGG 0.0005771 0.01779 9 134
M15285 NF-kB Signaling Pathway* MSigDB C2 BIOCARTA (v5.1) 0.0006234 0.01875 4 23
138022 Class I PI3K signaling events BioSystems: Pathway Interaction 

Database
0.0007051 0.02047 5 41

83060 Apoptosis BioSystems: KEGG 0.0007139 0.02047 9 138
375172 Salmonella infection* BioSystems: KEGG 0.0007631 0.02138 7 86
169642 Toxoplasmosis* BioSystems: KEGG 0.0008232 0.02256 8 113
1269161 MyD88 deficiency (TLR5)* BioSystems: REACTOME 0.0009052 0.02375 2 3
1269566 Hydroxycarboxylic acid-binding receptors BioSystems: REACTOME 0.0009052 0.02375 2 3
1269303 C-type lectin receptors (CLRs)* BioSystems: REACTOME 0.00112 0.02877 9 147
137964 Regulation of p38-alpha and p38-beta* BioSystems: Pathway Interaction 

Database
0.00117 0.02937 4 27

1269576 G alpha (i) signaling events BioSystems: REACTOME 0.001191 0.02937 12 243
1270241 Signal regulatory protein (SIRP) family interactions* BioSystems: REACTOME 0.00133 0.03216 3 13
1269308 Dectin-2 family* BioSystems: REACTOME 0.00154 0.03607 4 29

(Continued)
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iD Name Source p-value FDR B&H Genes from 
input

Genes in 
annotation

153910 Phagosome* BioSystems: KEGG 0.001551 0.03607 9 154
1470924 Interleukin-10 signaling* BioSystems: REACTOME 0.001602 0.03617 5 49
1269546 Peptide ligand-binding receptors BioSystems: REACTOME 0.001752 0.03617 10 188
1269332 TNFs bind their physiological receptors* BioSystems: REACTOME 0.001753 0.03617 4 30
137974 Caspase cascade in apoptosis* BioSystems: Pathway Interaction 

Database
0.001755 0.03617 5 50

138017 Signaling events mediated by PTP1B BioSystems: Pathway Interaction 
Database

0.001755 0.03617 5 50

PW:0000681 FasL mediated signaling pathway* Pathway Ontology 0.001789 0.03617 2 4
1269159 IRAK4 deficiency (TLR5)* BioSystems: REACTOME 0.001789 0.03617 2 4
PW:0000464 leukotriene metabolic* Pathway Ontology 0.001789 0.03617 2 4
83099 Amyotrophic lateral sclerosis (ALS) BioSystems: KEGG 0.001919 0.03816 5 51
P00020 FAS signaling pathway PantherDB 0.001986 0.03874 4 31
M17681 IL3 signaling pathway* MSigDB C2 BIOCARTA (v5.1) 0.002062 0.03874 3 15
M11736 Cytokines can induce activation of matrix 

metalloproteinases, which degrade extracellular matrix*
MSigDB C2 BIOCARTA (v5.1) 0.002062 0.03874 3 15

P00006 Apoptosis signaling pathway PantherDB 0.002073 0.03874 7 102
1269195 Antigen processing-Cross presentation* BioSystems: REACTOME 0.002192 0.04034 7 103
137939 Direct P53 effectors BioSystems: Pathway Interaction 

Database
0.002234 0.04051 8 132

1269357 GPVI-mediated activation cascade* BioSystems: REACTOME 0.002476 0.04291 5 54
M14775 G alpha s Pathway MSigDB C2 BIOCARTA (v5.1) 0.002506 0.04291 3 16
1270299 RIPK1-mediated regulated necrosis BioSystems: REACTOME 0.002506 0.04291 3 16
1270298 Regulated Necrosis BioSystems: REACTOME 0.002506 0.04291 3 16
1269544 GPCR ligand binding BioSystems: REACTOME 0.0027 0.04561 17 455
812256 TNF signaling pathway* BioSystems: KEGG 0.002867 0.04778 7 108
M4891 Regulation of transcriptional activity by PML* MSigDB C2 BIOCARTA (v5.1) 0.003003 0.04873 3 17
1270264 Ligand-dependent caspase activation* BioSystems: REACTOME 0.003003 0.04873 3 17
194384 African trypanosomiasis* BioSystems: KEGG 0.003129 0.04946 4 35
137944 IL1-mediated signaling events* BioSystems: Pathway Interaction 

Database
0.003129 0.04946 4 35

Pathways annotated with a * are immune related.
FDR B&H, FDR using Benjamini–Hochberg method; Genes from input, number of significant genes included in given pathways; Genes in annotation, number of genes involved 
in functional pathway, MSigDB C2 BIOCARTA, Molecular Signatures Database curated gene set derived from BIOCARTA database; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; PANTHER, Protein Analysis Through Evolutionary Relationships Classification system.
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infection-associated PTB (58, 84). These findings are consistent 
with the literature and are more reflective of early rather than 
late PTB. The upregulated inflammatory-related pathways in 
this study may be in part attributed to clinical or sub-clinical 
infection. However, diagnosis of infection is often not available 
in population studies, which precludes further exploration of the 
contribution of infection in the observed signal.

Based on the maternal data, we found that genes and cell types 
associated with innate immunity were upregulated in PTB while 
those relevant to adaptive immunity were downregulated in PTB. 
Genes identified in the fetal CB analysis showed enrichment in 
pathways that were immune related but the signature was flipped; 
innate immunity was downregulated in babies born preterm. One 
hypothesis is that the immune systems of women who deliver 
preterm are less responsive to specific foreign antigens such as 
infections which themselves could lead to PTB, while mothers 
whose adaptive immunity was stronger were able to maintain the 
pregnancy due to better immune coping mechanisms. Previously, 
polymorphisms of genes pertaining to the innate immune system 
were found to have only moderate effects on subsequent PTB, 
although they played a functionally relevant role in host immune 
response (85). On the other hand, babies that were born preterm 

showed a downregulation of innate immunity, which suggests 
opposing signals in the maternal and fetal immune tolerance but 
also could be a result of the incomplete development of immune 
defense. Since innate immunity serves as the first defense of the 
human immune systems, weaker innate immunity signals could 
be indicative of vulnerability and susceptibility to life-threatening 
infections (86). There is some evidence that this homeostasis of 
the fetal–maternal immune tolerance can be perturbed during 
infection, resulting in immune activation and the observed 
opposing signals can be indicative of the breakdown of the toler-
ance mechanism leading up to PTB.

Specifically, there are several genes that are reversed in the 
maternal and fetal signatures. TLR5 was one of the genes we 
found to have opposing differential gene expression when com-
paring mother and fetus. While TLR5 showed lower expression 
in PTB CB samples, TLR5 was upregulated in PTB maternal 
whole blood samples. TLR5, as well as other toll-like receptors, 
play an important role in pathogen recognition and subsequent 
activation of the inflammatory innate immune response. TLR5 
(along with TLR2 and TLR3) has previously been implicated 
in regulation of pro-inflammatory and pro-labor responses in 
primary human myometrium cells (87). One of the downstream 
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targets of this gene in the MyD88-dependent pathway is NF-kB, 
a critical transcription factor in the activation of genes related 
to immune and inflammatory responses (88–90). TLR5 has also 
been shown to increase production of various pro-inflammatory 
interleukins including IL-6 and IL-8 (87, 91).

Importance of TLR5 in pregnancy and its association with 
PTB has been shown repeatedly. The TLR5 (g.1174C>T) variant, 
which encodes a non-functional protein, is significantly associ-
ated with development of severe bronchopulmonary dysplasia in 
very low-birth weight infants born prematurely. This evidence 
shows that the non-functionality of TLR5 in preterm infants 
results in an insufficient immune response to flagellated bacteria 
(92). Furthermore, TLR5 mRNA expression has repeatedly been 
found to be increased in the placenta following spontaneous term 
labor (91, 93).

This study has several limitations that may be encountered in 
other similar studies. First, we were limited to the number of stud-
ies with publicly available data that could be aggregated together 
for our meta-analysis. In addition, a common shortcoming of 
using publicly available data is that samples lacked demographic 
information as well as detailed clinical annotations. Furthermore, 
samples included in our study are heterogeneous as they came 
from studies with different design (cohort or case–control), phe-
notype—late and early PTB, and different populations (dataset 
GSE46510 consisting samples from women with threatened 
preterm labor). Yet, the current comparison between sPTB cases 
and term birth controls were likely to be an underestimation 
of the underlying different gene expression profile between the 
two groups due to the inclusion of symptomatic women non-
differentially as both cases and controls (increasing the baseline 
risk of sPTB among the controls) as well as confounding factors 
such as infection and other obstetric complications. In addition, 
although we propose several potential novel biomarkers, our data 
are limited in discerning whether the differential expression sig-
natures observed reflect the membrane bound proteins or their 
secreted isoforms. However, despite these drawbacks, this paper 
presents novelty in being the largest published meta-analysis of 
PTB transcriptomics using publicly available data to date. Since 
PTB samples are difficult to obtain, the ability to aggregate data by 
using standardized methods to correct for heterogeneity is excit-
ing since it increases our statistical power and, as a result, allows 
for the discovery of novel pathways and biomarkers. For example, 
the pathways associated with sPTB and potential biomarkers for 
indication of early switch to a pro-inflammatory state of the 
maternal immune system could have been missed in the single-
study analysis due to not reaching statistical significance: only 26 
significant genes were identified (FDR < 0.10) in the GSE59491 
study and no significant genes were identified (FDR < 0.10) in 
the GSE73685 study (analysis of maternal blood sample only). 
Although additional validation is needed, we hope that this paper 
informs the design and interpretation of clinical biomarker stud-
ies. Furthermore, we hope that this meta-analysis incentivizes 
others to add their data to public repositories with the goal of 
creating a more comprehensive database for PTB.

This paper presents several future directions including valida-
tion of the observed cell type signals through methods such as 
flow cytometry and CyTOF (94) as well as further exploring 

the presented transcriptomic signatures for diagnostics and 
therapeutics. We may be able to validate TFPI and IL-1R1 in 
additional datasets collected prospectively in combination with 
clinical data and direct analysis of cell types to correlate with find-
ings in plasma. In addition, staining and imagining of these two 
proteins in preterm and term whole blood samples can elucidate 
their sub-cellular location and potential as a clinical biomarker. 
This could lead to additional large animal studies to identify 
pathways whose inhibition could be beneficial and efficacious, 
similar to IL1 signaling blocked by Anakinra in rheumatoid 
arthritis. Furthermore, although we evaluated the effect of cell 
type proportions as a covariate for our differential expression 
analysis, future studies involving single cell or sorted cell analysis 
will be much more informative.

cONclUSiON

Overall, our comprehensive analysis using publicly available data 
was able to elucidate genetic signatures associated with sPTB as 
well as identify potential biomarkers that could be translated to 
clinical practice. The novel finding of the reversal of regulation 
in innate immunity in maternal blood samples relative to fetal 
blood samples in PTB brings to light potential mechanisms that 
may be at play, which may allow for the prediction of sPTB as well 
as the development of therapeutics to extend pregnancy to term. 
In addition, the identification of two potential biomarkers, such 
as TFPI and IL-1R1, which are differentially expressed starting 
at mid-gestation, allows the possibility for clinically diagnostic 
biomarkers which may identify women at risk for PTB.

mateRialS aND metHODS

Study Design
The purpose of this study was to perform a cross-study meta-
analysis using multiple independent datasets to identify differen-
tial expressed genes comparing mothers who deliver preterm to 
mothers who deliver at term using maternal whole blood samples. 
Additional analyses across different time points and various tissue 
types were also performed to investigate differential expression 
between these two groups (Figure 1).

We searched the NCBI GEO database for public human 
microarray genome-wide expression studies using search terms 
including PTB and premature (23, 24). Abstracts were screened 
and only studies that met the following criteria were included: 
(i) had both spontaneous preterm cases and term delivery con-
trols in the same study, (ii) included samples collected before or 
at delivery, and (iii) had a sample size of 20 or more. We used 
samples from maternal blood for our main analysis as they have 
the most samples. Classification of samples as PTB or term birth 
was extracted from sample matrices downloaded from the GEO 
database.

cross-Study meta-analysis
We implemented the meta-analysis pipeline by Hughey and Butte 
(21) for data processing and normalization. All microarray data 
were renormalized from raw data and merged based on genes 
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meeting two criteria: those with non-missing values and those 
which were mutually inclusive across all three studies. The merged 
dataset was subsequently corrected for study-specific effects 
using ComBat, which implements an empirical Bayes method to 
correct for study-specific biases and batch effects by performing 
cross-study normalization (29). An F-test was performed to test 
the equality of variance across the three studies. Differential gene 
expression analysis was performed on this normalized merged 
dataset of genes to obtain significance level (p-values) of each gene 
using the R package limma which fits linear models to expression 
data for each gene (95). We corrected for multiple hypothesis test-
ing using the Benjamini and Hochberg’s (i.e., FDR) method (96) 
with a pre-specified cutoff of 0.1 to identify more significant genes.

Effect size of each gene is expressed in FC, which was cal-
culated for each study separately using the raw expression data 
before ComBat. Samples were divided with respect to preterm 
or term delivery and mean gene expression was calculated for 
each gene meeting the FDR  <  0.1 cutoff. The logged (base 2) 
average expression values were used to calculate fold-change  
[FC = 2(average expression for preterm samples − average expression for term samples)]. We fur-
ther filtered the significant genes that met the FDR < 0.1 criteria 
using a significance threshold at a FC > 1.3 for upregulated genes 
or <1/1.3 for downregulated genes (22). We obtained a list of 
genes that showed the largest fold-change and were most differ-
entially expressed, when comparing preterm and term births in 
the respective study. A final gene set was compiled by combining 
the significant genes from all three studies; if a gene met the FC 
cutoff of 1.3 in at least one of the studies, it was included in the 
final gene data set.

To investigate the relevance of these results, we performed 
a gene list functional enrichment analysis using ToppFun (34) 
to identify the pathways our genes were involved in and met a 
cutoff of FDR < 0.05, evaluated connectivity using the STRING 
database (31–33), explored biomarker identification using the 
UniProtKB database (35), and executed a cell type enrichment 
analysis using xCell (37). We extracted the significant cell types 
from the xCell output by performing a Student’s two-sided t-test 
and subsequent Benjamini and Hochberg’s (96) multiple testing 
correction (FDR < 0.05). A more stringent cutoff was used for 
cell deconvolution to extract the cell types that were robustly, 
significantly different between the two groups.

We utilized samples collected at the second trimester from 
GSE59491 (28) and samples from multiple tissues from GSE73685 
and performed (1) single-study analysis and (2) tissue-level anal-
yses to further investigate the common differentially expressed 
gene signatures across time points and different tissue types.

Single-Study Second trimester analysis
To perform a single-study gene expression analysis on the second 
trimester samples from GSE59491, we merged the gene expres-
sion values across all studies, extracted the second trimester 
samples from GSE59491, and implemented a linear model on that 
subset of samples. After calculating the p-value for each gene, we 
filtered our list of genes using the output from the cross-study 
meta-analysis done prior; this resulted in a list of overlapping set 
of genes which were previously found to be significant in the third 
trimester. To determine whether these genes were significantly 

differentially expressed in the second trimester as well, we cor-
rected the raw p-values for multiple hypothesis testing for this 
subset of genes using the Benjamini and Hochberg’s method and 
imposed an FDR < 0.1 (96).

As an exploratory analysis, we input the resulting genes from 
the FDR < 0.1 cutoff into the UniProtKB database to determine 
which genes are secreted as proteins in humans (35).

Regulatory Network analysis
Transcription factor regulation networks and cytokine networks 
were analyzed through the use of Upstream Regulator analytic in 
IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/prod-
ucts/ingenuitypathway-analysis). Only significant connections are 
included in our networks and all connections are based on prior 
knowledge in IPA Knowledge Base. The transcription factors were 
filtered and only those that were expressed in a specific trimester 
were kept, to allow as much accuracy in results as possible.

tissue-level analyses
To evaluate differential gene expression at a higher resolution, 
we performed gene expression analyses at an individual tissue 
level. Combining all tissue data into a merged dataset with all 
eight tissue types based on mutual genes, we extracted each 
tissue and created eight tissue-specific datasets for linear model 
fitting using limma (95). After correcting the raw p-values from 
limma using the Benjamini–Hochberg method for multiple 
hypotheses testing, seven of the eight tissues did not show 
significantly differentially expressed genes after implementing 
an FDR < 0.05; however, one tissue type, CB, had an output of 
genes which met the FDR criteria (96). A more stringent FDR 
cutoff was used to delineate the genes with the strongest dif-
ferential expression between the two groups since an FDR < 0.1 
resulted in 1,035 differentially expressed genes. These genes 
were further filtered by imposing a fold-change cutoff of 1.3 (22) 
which resulted in a list of significantly differentially expressed 
genes; the relevance of these genes was explored by performing 
pathway analysis using ToppFun in which a FDR  <  0.05 was 
used as a cutoff (34).

All the results and the data are available as an RShiny 
Application for the benefit of the research community: http://
comphealth.ucsf.edu/preterm_transcriptomics/.

Data availaBility StatemeNt

The datasets analyzed for this study can be found in the National 
Institute of Health Gene Expression Omnibus (https://www.ncbi.
nlm.nih.gov/geo/). All datasets as well as the results generated in 
this study are available on the RShiny application (http://com-
phealth.ucsf.edu/preterm_transcriptomics/) and the ImmPort 
database (accession: SDY1327).
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