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Abstract: CXCL12 are small pro-inflammatory chemo-attractant cytokines that bind to a specific
receptor CXCR4 with a role in angiogenesis, tumor progression, metastasis, and cell survival. Globally,
cancer metastasis is a major cause of morbidity and mortality. In this study, we targeted CXCL12
rather than the chemokine receptor (CXCR4) because most of the drugs failed in clinical trials due to
unmanageable toxicities. Until now, no FDA approved medication has been available against CXCL12.
Therefore, we aimed to find new inhibitors for CXCL12 through virtual screening followed by
molecular dynamics simulation. For virtual screening, active compounds against CXCL12 were taken
as potent inhibitors and utilized in the generation of a pharmacophore model, followed by validation
against different datasets. Ligand based virtual screening was performed on the ChEMBL and in-house
databases, which resulted in successive elimination through the steps of pharmacophore-based and
score-based screenings, and finally, sixteen compounds of various interactions with significant crucial
amino acid residues were selected as virtual hits. Furthermore, the binding mode of these compounds
were refined through molecular dynamic simulations. Moreover, the stability of protein complexes,
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and radius of gyration
were analyzed, which led to the identification of three potent inhibitors of CXCL12 that may be
pursued in the drug discovery process against cancer metastasis.

Keywords: chemokines; metastasis; cancer; pharmacophore based virtual screening; CXCR4;
molecular dynamic simulation

1. Introduction

The chemokine family consists of relatively small proteins (around 10 kDa) with high potency
as chemo attractants [1]. Twenty chemokine receptors have been identified for 50 currently known
chemokines. Chemokines are mainly hemostatic or inflammatory and are divided into four different
families (C, CC, CXC, and CX3C) on the basis of conserved cysteine residues in the N-terminus [2].
CXCL12 is a CXC hemostatic chemokine and is mainly known as stromal derived factor-1 (SDF-1) [3].
SDF-1 is expressed in several organs and tissues including the liver, testis, lungs, placenta, skin, kidney,
pancreas, brain, and colon [4]. CXCL12 is known to have several isoforms, among them, CXCL12-alpha
(α), CXCL12-β (beta), CXCL12-γ (gamma), CXCL12-δ (delta), CXCL12-ε (epsilon), and CXCL12-ϕ (phi)
are particularly important. The most expressed isoform in humans is CXCL12-α [5]. CXCL12 expression
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is enhanced in response to damage caused by toxicities including liver damage, total body irradiation,
excessive bleeding, chemotherapy, and tissue injury. CXCL12 has an important physiological role in
diverse processes including embryonic development, inflammation, organogenesis, immune mediation,
and cancer metastasis [6]. CXCL12-α binds to a specific receptor (CXCR4), a seven transmembrane
G-protein coupled receptor that belongs to the G-protein coupled receptor (GPCR) family. CXCR4 is
the most common chemokine receptor that is considered to be overexpressed in more than 23 different
human cancers [7]. The binding influences intra-cellular signaling pathways including Janus kinase
(JNK), mitogen activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and
protein kinase B (AKT). It plays an important role, in addition to chemotaxis, in cell survival, cellular
proliferation, and metastatic spread of cancer cells that express CXCL12, leading to the formation of
secondary colonies [8–14], and a particular role in HIV infection has also been discovered. Cancer
cell metastasis contributes to most of the mortality rates. Prevention of cancer cell migration is one
of the most paramount medical concerns [15]. The development of novel inhibitors to block the
CXCL12–CXCR4 signaling axis could serve as a potential cancer therapeutics. Recently, it has been
reported that chemokine neutralization is a successful approach to cancer therapy. Several Tetrazole
and Chalcone derivatives have been reported as CXCL12 inhibitors that prevent it from CXCR4 binding,
up to some extent [1,16].

Virtual screening (VS) is a standard technique for the identification of novel lead
compounds/chemical probes in drug discovery for targeting a receptor of interest. In VS, large
libraries of compounds are screened for potential active chemical probes, reducing the size of a
large library prior to using other expensive tools [17]. In ligand based virtual screening, potential
chemical probes are compared with experimentally identified hits as this technique is based on “the
similarity principle”, stating that similar biological responses are produced by similar compounds.
Novel potentially active chemical probes are identified using large ligand libraries and by efficiently
searching for active compounds nearly similar in chemical properties to the known actives. By using
these techniques, potentially active compounds can be proposed, thus reducing the time and expenses
of experimental screening of large libraries of compounds in drug discovery [18]. The aim of this
study was to identify novel and potential inhibitors of CXCL12 that could be beneficial in limiting the
cancer metastasis through various in silico techniques such as virtual screening, molecular docking,
and molecular dynamic simulation.

2. Results and Discussion

2.1. Validation of Docking Software via Re-Docking Run Approach

MOE 2019.0101 was used to validate the co-crystallized ligand pose by the re-docking experiment
to check the experimentally determined pose conformation and docking pose. The re-docking result
showed minimal RMSD of 0.22 Å.

2.2. Pharmacophore Model Generation and Validation

One of the most significant applications of pharmacophore model generation is to point out the
potent interactions that are involved in binding and increasing selectivity. Ligandscout4.3 software
was used for the generation of the pharmacophore model. The ligand-based pharmacophore model
was generated on the basis of common chemical features in the active dataset. The pharmacophore
model was generated by aligning shared features of different compounds from the active dataset as
demonstrated in Figure 1. Random, decoys, actives, and inactive databases were screened against the
pharmacophore model generated from shared features of the training dataset (active dataset). Directory
of useful decoys (DUDE) [19] is a web0-based program utilized for decoy generation. A maximum five
features were found in the final 3D pharmacophore model in the form of two hydrophobic (Hyph), two
hydrogen bond acceptors, and one aromatic ring (Aro) feature, as illustrated in Figure 2. The optimum
3D pharmacophore was validated by greater hit-rate in terms of screening active compounds. While
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screening the random, inactive, and decoy compounds, we observed the lowest hit rate. Table 1 shows
all the hit rates of the screening library.
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3 Decoys 550 20 3.61
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2.3. Pharmacophore Based Database Screening

Two libraries ChEMBL and in-house were selected for pharmacophore based virtual screening
which contain ~1.75 million compounds. The 2D structure of these compounds were converted to
3D and their energy minimization using MMFF94 force field by using Openbabel. Lipinski’s rule of
five was applied on the prepared data bases which reduced the databases to 30,669 compounds which
were then screened by validated pharmacophore to identify new potent compounds. 1459 hits were
retrieved by screening the two data bases from validated pharmacophore. The hits were evaluated
further by using Molecular Docking.

2.4. Molecular Docking

94 compounds which were retrieved from pharmacophore-based virtual screening were subjected
to molecular docking studies to analyze the binding mechanisms. All the compounds were docked
into the binding pocket (active site) of the CXCL12 (4UAI). The top ranked conformations of each
compound by means of highest docking score were selected. The docking results were further analyzed
through protein ligand interaction fingerprint (PLIF) protocol implemented in MOE. PLIF analysis led
to finger printing the hot spot active site residues; GLU15, ALA19, ASN22, ASN44, and ARG47 with
regards to the ligand interactions. Fifteen out of 94 compounds were selected as hit compounds, which
show strong/good binding interaction with the target protein. These top ranked compounds consist of
five different classes such as amide, urea, pyridine, piperidine and pyrimidine. Four compounds were
selected from amide, urea, pyridine, and 2 from piperidine and pyrimidine for MD Simulation studies.

It was observed from docking conformations that almost all the compounds show strong hydrogen
bonding with crucial residues such as GLU15, ALA19, ASN44, and ARG47, while VAL18, and LEU42
form hydrophobic interactions. GLU15 form strong H-bonding with all compounds beside compound
4. ASN44 exhibit strong hydrogen bonding with all the compounds beside compound 16 while
ALA19, ASN22, and ARG47 were observed for making strong H-bonding with all the compounds
(Supplementary data, Table S1). Besides these some other residues also exhibit interaction with the top
hits compounds as shown below in (Table 2) and 3D format (Figure 3). The hits were further subjected
to MD Simulation to observe their stability.

Table 2. Molecular interactions between protein-ligand complexes.

Compound ID Docking Score H-Bonds Hydrophobic Salt Bridges Pi-Stacking

Reference
compound −5.970 Glu15, Ala19, Asn22,

Asn44, Arg47 Val18, Leu42 —- —-

CHEMBL1881008
(A) −6.1680 Glu15, Ala19, Asn22,

Asn44, Asn45, Arg47
Val18, Leu42,

Val49 —- —-

CHEMBL1173124
(B) −6.1645 Ala19, Asn22, Asn44,

Arg47, Gln48, Cys50 Phe13, His17 —- —-

CHEMBL1438901
(C) −5.8470 Glu15,Ala19, Asn22,

Arg47 Leu42 —- —-

CHEMBL2393181
(D) −5.6232 Glu15, Ala19, Asn22,

Asn44, Arg47 —- —- —-

CHEMBL1461227
(E) −5.2401 Glu15,Ala19, Asn22,

Asn44, Arg47 Ala19 —- —-
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2.5. Molecular Dynamic Simulation

To further check the stability of the hits along with reference with the cognate ligand of the protein,
they were subjected for Molecular Dynamic Simulation (MD) studies. Out of fifteen hits from docking
study, one hit from each class were selected for Molecular Dynamic Simulation. 50 ns Molecular
Dynamic Simulation runs were performed to elucidate the binding stability, conformational variation
and their behavior with the target protein.

2.6. Analysis and Visual Inspection of Molecular Dynamic Simulation

The binding mode analysis of all the simulated compounds demonstrated that all the compounds
were residing well into the binding pocket of target protein during the course of simulation. Most of
the docking interactions were persistent during the 50 ns of simulation. All the simulated compounds
observed to mediate hydrogen bonding with GLU15 throughout the whole simulation. Similarly
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Compound A, B and D establish hydrogen bonding with ALA19, ASN22, ASN44 and ARG47 while
Compound C and E observed to establish hydrogen bonding with ALA19 and ARG47. In addition to
hydrogen bonding, hydrophobic interactions with VAL18 and LEU42 were also persist throughout the
simulation. The time dependent binding interactions demonstrated the potencies of these compounds
against CXCL12.

2.6.1. Root Mean Square Deviation (RMSD)

Root mean square deviation is used to determine the backbone differences between the initial
structure conformations with its final position. The stability is determined in the form of deviation
produced in Molecular Dynamic Simulation. The smaller deviation indicates the more stable complex
structure. RMSD of all the system is calculated to evaluate the cα backbone stability for 50 ns simulation.
During 50 ns MD run, the average RMSD of Apo protein, reference compound, CHEMBL1881008 (A),
CHEMBL1173124 (B), CHEMBL1438901 (C), CHEMBL2393181 (D), and CHEMBL1461227 (E), were
found to be 0.55, 0.61, 0.56, 0.33, 0.57, 0.54 and 0.54 Å respectively (Figure 4). The RMSD of compound
A shows deviation from 0.1 to 0.65 nm in the range of 12 ns after this it is reduced to 0.58 nm till
40 ns and then again its RMSD deviates from 40 to 50 ns due to the slight unfolding of the loops
but overall it is quite stable than the Reference compound complex. At the beginning, the RMSD of
compound B increase from 0.1 to 0.37 nm in the range of 4 ns, but after that it decreased to 0.28 ns
and was consistent till 14 ns, then again the RMSD increased from 0.27 to 0.4 nm and then stabilized
throughout 50 ns. While compound C showed deviation from 0.1 to 0.88 nm throughout the MD
Simulation but its average RMSD is less than the Reference compound complex. Compound D RMSD
initially increase from 0.1 to 0.72 nm in the range of 18 ns, but afterwards it reduced to 0.6 nm and
become constant to 50 ns while the RMSD of compound E increased from 0.1 to 0.7 nm throughout the
range of 50 ns, like the Reference compound complex during the MD Simulation. The average RMSD
of all the hits compound is lesser than the Reference compound complex during 50 ns MD Simulation.
Furthermore, it was observed that the hits compound complexes were more stable than the Reference
compound complex.
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2.6.2. Root Mean Square Fluctuation (RMSF)

RMSF provides information about the fluctuations per residue of protein-ligand complexes.
In protein complexes region of turns, coils and loops show higher fluctuation as compared to beta sheet
and alpha helix. The average RMSF values for Apo protein, Reference compound and compounds A-E
were found to be 0.26, 0.26, 0.24, 0.20, 0.33, 0.25 and 0.23 nm, respectively as shown in Figure 5. The
RMSF values reveal the relative stability of the protein upon binding of virtual hits/compounds. The
average atomic fluctuation of the active site residues showed similar binding patterns and reveals that
all the compounds stabilize the protein in their adopted conformation for inhibition.
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2.6.3. Radius of Gyration

The radius of gyration (Rg) was determined to observe the compactness of the protein in the
absence and presence of virtual hits. The radius of gyration is defined as the radial distance of
mass weighted of atoms from their center of mass. Hence this analysis gives the overall folding and
unfolding of protein structure upon binding of virtual hits. The average Rg values calculated for Apo
protein, Reference compound, and compounds A–E were 1.34, 1.30, 1.27, 1.20, 1.41, 1.26 and 1.34 nm,
respectively as defined in the Figure 6. The analysis of Rg plot demonstrated that the protein remains
compact upon binding of Compound A, B and D during the course of 50 ns of simulation. In contrast,
variable uncompactness was observed in the Rg plot of compound E and reference compound while Rg
value of compound C fluctuate more than Apo protein. The results indicate that binding of compound
A, B and D significantly stabilized the protein structure.
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3. Materials and Methods

3.1. Preparation of Dataset

The structure of eleven reported compounds of diverse classes with the reported biological activity
against CXCL12 were retrieved from literature as indicated in Figure 7. By using MOE 2019.01, [20]
3D structures of all inhibitors were sketched and prepared using MMFF94 force field for energy
minimization [21]. The same protocol for energy minimization and preparation were also used for
ChEMBL [22] and in-house databases. Over all workflow of virtual screening is depicted in Scheme 1.
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3.2. Receptor Preparation

X-ray Crystal structure of CXCL12 protein with PDB ID 4UAI [23] was retrieved from protein
data bank. It is a homodimer protein comprised of two chains: A and B. ligand was present in chain A,
so chain B along with SO4, and water molecules were removed [24]. The 3D structure of target protein
was protonated and energy minimized by using AMBER99 force field implemented in molecular
operating environment software (MOE).

3.3. Re-Docking Experiment

The cognate ligand in the crystal structure extracted and docked back in the binding pocket of
protein. Deviation from crystal pose of ligand was analyzed in term of Root mean square deviation to
select the docking protocols.

3.4. Pharmacophore Model Generation

Ligandscout4.3 Essential [25] were used to generate a 3D pharmacophore model [26]. The most
important step in pharmacophore model generation is to select suitable chemical features e.g., HBA
(hydrogen bond acceptor), HBD (hydrogen bond donor), Aro (aromatic ring) and Hyph (hydrophobic)
in training set. Chemical features present in training set molecules were consider for mapping
pharmacophore model generation. All the shared feature of training set molecules was aligned and
assembled together for generation of final pharmacophore model. In final pharmacophore model 5
features were present. Pharmacophore model performance and quality was validated from its ability
of distinguish between decoys, inactive random and active compounds.
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3.5. Pharmacophore Validation

Validation of pharmacophore model were done by screening entire ligand data base file such
as decoys, random, actives and inactive [27]. Using pharmacophore fitness score function in
LigandScout4.3, were utilized to ranked the poses of compounds. For Validation of pharmacophore
model, its ability to discriminate between decoys, random, actives and inactive data sets was evaluated.
All the four data sets of compounds were screened against the selected pharmacophore model which
gave a genuine hit-rates.

3.6. Pharmacophore-Based Virtual Screening

Two libraries such as the ChEMBL and in-house databases were screened against the validated
pharmacophore model. The two main purposes of virtual screening was (1) the validation of the
pharmacophore model with the help of known inhibitory activity of compounds, and (2) finding new
drug like compounds that may be potent for further assessment. Lipinski’s rule of five [28] was applied
to retrieved drug like hit compounds. Ninety-four hit compounds were retrieved by screening from
the validated pharmacophore model.

3.7. Molecular Docking

Pharmacophore screened compounds were further subjected for docking into the active site
of CXCL12. Docking studies were performed by using the default parameter implemented in the
Molecular Operating Environment (MOE) program 2019.01 [29]. Form docking hit compounds and
top best pose on the basis of docking score were selected for further evaluation. The binding pose of
protein and hit compounds were visualized by using MOE.

3.8. Molecular Dynamic Simulation

To further observe the stability of the hit compounds in the binding pocket, molecular dynamic
simulation of the respective and reference compound was done by using GROMACS-2018 [30] by
employing the GROMACOS9653a6 force field [31,32]. The topologies of the ligand were generated
through Antechamber Python Parser interface (ACPYPE) [31,33]. Counter ions were added to neutralize
the SPCE water model present in the cubic box. The initial structure was clean from unwanted contacts
by performing the energy minimization using steepest descent algorithm, which was followed by
Constant Number of particles, Volume and Temperature (NVT) and Constant Number of particles,
Pressure and Temperature (NPT) equilibration steps [34]. The counter ions along with the solvent
molecules were allowed to simulate restraining the back bone of the protein. Both steps were executed
by 20 ns at a pressure of 1 bar and 300 K, respectively. The Berendsen thermostat and barostat were
employed to maintain the pressure of the system [35,36]. The atoms involved in hydrogen bonding
and geometry of the water molecule were constrained employing Linear Constraint Solver (LINCS)
and SETTLE, respectively [37]. Long-range electrostatic interaction was calculated through the particle
mesh Ewald (PME) method [37,38]. The equilibrated structures were subjected to production Molecular
Dynamic (MD) for 50 ns and the results were visualized by VMD [36].

4. Conclusions

CXCL12 is an important target in cancer metastasis and up until now, there has been no FDA
approved drug available in the market for its inhibition. In this study, pharmacophore based virtual
screening and molecular docking, along with molecular dynamic simulations, were performed to
discover new hits and investigate the binding conformation and stability of the target protein. The
generated pharmacophore model had two hydrogen bond acceptors, two hydrophobic, and one
aromatic feature. Different test sets were used to validate the pharmacophore model, and subsequently
screen two databases from it. A total of 94 compounds were retrieved from the pharmacophore-based
virtual screening and docking. A further fifteen compounds were selected on the basis of docking score
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and significant protein ligand binding interaction. Finally, five compounds were selected for molecular
dynamic simulations in which the RMSD, RMSF, and Rg results revealed that these compounds
significantly stabilize the protein upon binding. In conclusion, compounds A, B, and D can act as
promising leads in the development of potent inhibitors against CXCL12 to reduce cancer metastasis.

Supplementary Materials: The following are available online. Table S1: Molecular interactions between
protein-ligand complexes of all screened compounds.
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CXCL12 C-X-C motif chemokine 12
CXCR4 C-X-C chemokine receptor type 4
SDF-1 Stromal Derived Factor-1
JNK Janus kinase
MAPK Mitogen Activated Protein Kinase
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
Rg Radius of gyration
VS Virtual Screening
ERK Extracellular Signal-Regulated Kinase
AKT Protein kinase B
MMFF94 Merck Molecular Force Field 94
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NVT
Constant Number of particles, Volume and
Temperature

NPT Number of Particles, Pressure and Temperature
LINCS Linear Constrain Solver
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