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We should be using nonlinear 
indices when relating heart-rate 
dynamics to cognition and mood
Hayley Young & David Benton

Both heart rate (HR) and brain functioning involve the integrated output of a multitude of regulatory 
mechanisms, that are not quantified adequately by linear approximations such as means and 
standard deviations. It was therefore considered whether non-linear measures of HR complexity 
are more strongly associated with cognition and mood. Whilst resting, the inter-beat (R-R) time 
series of twenty-one males and twenty-four females were measured for five minutes. The data were 
summarised using time, frequency and nonlinear complexity measures. Attention, memory, reaction 
times, mood and cortisol levels were assessed. Nonlinear HR indices captured additional information, 
enabling a greater percentage of the variance in behaviour to be explained. On occasions non-linear 
indices were related to aspects for behaviour, for example focused attention and cortisol production, 
when time or frequency indices were not. These effects were sexually dimorphic with HR complexity 
being more strongly associated with the behaviour of females. It was concluded that nonlinear 
rather than linear methods of summarizing the HR times series offers a novel way of relating brain 
functioning and behaviour. It should be considered whether non-linear measures of HR complexity 
can be used as a biomarker of the integrated functioning of the brain.

The heart receives the brain’s commands through the central autonomic network1, with the prefron-
tal cortex playing a leading role2. Research has found that individual differences in heart rate varia-
bility (HRV) predict cognitive performance3, especially in tasks associated with the prefrontal cortex4. 
However, this research has focused on traditional methods of analysing interbeat (R-R) time series based 
on linearity and variance; such approaches are unable to detect subtle non-linear changes in interbeat 
intervals5. The present study demonstrated that linear and nonlinear HR indices are independently asso-
ciated with cognition and mood, suggesting that nonlinear HR analysis can capture information not 
obtained using traditional linear methods. For the first time the relationship between HR nonlinearity 
and behaviour was shown to be sexually dimorphic, with nonlinear HR relating to behaviour in females 
but not males, presumably reflecting gender-associated differences in brain structure and functioning. 
It is suggested that the nonlinearity of the R-R interval is a marker of the brains ability to subtly and 
appropriately respond, both cognitively and emotionally, to minor change in environmental demands.

Although many physiological processes are known to be nonlinear, linear approximations are com-
monly used to describe them6. A good example is describing the R-R time series in terms of the stand-
ard deviation of the inter-beat interval. This gives rise to a basic measure of variability yet provides no 
information regarding the pattern or regularity of changes in the inter-beat intervals. For instance, the 
time series 5, 10, 5, 10 has the same variability as the time series 5, 5, 10, 10 but a different underlying 
pattern. Nonlinear analysis allows the quantification of this extra information. In fact, although the 
autonomic nervous system (ANS) activity has a substantial influence on the R-R interval7, other factors 
are important including thermoregulation8, endocrine factors9, adenosine10 circadian rhythm11 and level 
of fitness12. Simply, a classical linear HRV analysis is unable to reflect the many factors involved in the 
regulation of the heart.
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In 1996, standards for the quantification of HRV were suggested13 which included indices from time 
and frequency domains. Since then, new methods based on systems and information theory and non-
linear dynamics have been proposed that quantify the complexity of the R-R time series. These include 
quantifying the fractal like structure of a time series14, entropy based measures15 and recurrence quan-
tification analysis16. Several of these nonlinear indices have been related to disease states: for example, 
cardiac disease17, autonomic dysfunction in depression18 and other psychiatric diseases19. However, in 
healthy individuals the relationship between nonlinear indices of HRV and cognitive functioning has 
been largely ignored.

Another question which has been ignored is the possibility that there are sex differences in the control 
of heart-rate. Female and male brains differ both functionally and structurally20. One example is that 
compared to males, females have a higher percentage of grey matter even after normalising for brain 
size21. Interestingly, MRI based studies have shown that females have volumetrically larger orbitofrontal 
cortices than males22, an area of the brain thought to be involved in HRV4. Indeed, many studies have 
reported sex-related differences in HRV23 including those using nonlinear measures24. However, it is not 
known whether sex differences moderate the relationship between HRV and cognition. Studies to date 
have either: used entirely male samples3; have not considered the influence of sex25; or, have matched 
samples on gender in order to control for any differences26.

Therefore, the present study had two aims. Firstly, it sought to determine the relative association of 
linear and nonlinear HR indices to cognition and mood. Secondly, to see whether the sex of the sub-
ject moderated any relationships found. To address these questions forty nine (twenty-four males and 
twenty-five females) healthy participants were recruited. R-R interval measurements were recorded while 
participants rested quietly for five minutes listening to relaxing music. After the relaxation period, heart 
rate was no longer recorded and participants completed standardised questionnaires about their recent 
mood and stress levels. Participants then took a series of neuropsychological tests designed to assess 
cognitive domains known to be associated with HRV4 (namely working memory, focused attention and 
reaction times). Salivary cortisol measurements were also retrieved at baseline (upon arrival at the lab), 
after relaxation, and again after completion of the cognitive tests. The procedure is illustrated in Fig. 1. In 
line with previous findings3,4, it was hypothesised that linear HRV would be associated with measures of 
attention and mood, in particular ratings of depression. Further, it was predicted that adding nonlinear 
HR indices would increase the amount of variance explained.

Statistical Analysis
Statistical analysis proceeded in three stages. In stage 1 HR indices were calculated which were then 
entered into a principal components analysis (stage 2). Finally, in stage 3 a series of hierarchical regres-
sions were conducted, that determined the relative associations between the HR components (derived in 
stage 2) and aspects of cognition and mood.

Stage 1 - Calculation of HR indices.  R-R interval data were analysed using Kubios HRV Analysis 
Software 2.0 (The Biomedical Signal and Medical Imaging Analysis Group, Department of Applied 
Physics, University of Kuopio, Finland). Data were visually inspected for artefacts caused by ectopic 
beats, poor conductivity etc. A very low correction threshold was chosen for artefact correction (0.45 
from local average) so not to distort natural variability. Less than 1% of beats were identified as artefacts, 
however, prior to the final analysis, two cases were removed based on very poor recording (both male) 
and two were removed based on abnormal HR responses (one male, one female). The latter cases were 
considered extreme outliers that without removal would have significantly altered the final analysis. 
These exclusions resulted in a remaining sample of twenty one males and twenty four females.

Time domain analysis.  Time domain HRV indices included mean interbeat interval (R-R) (a measure of 
basic heart rate) and the standard deviation of normal to normal R-R interval (SDNN) (measures total 
variability in the series).

Frequency domain analysis.  Spectral analysis was conducted to transform the time series into the fre-
quency domain. The R-R interval series was converted to equidistantly sampled series by cubic spline 
interpolation at a rate of 4Hz. Welsh’s periodogram, which divides the R-R series into overlapping win-
dows, was used to decrease the leakage effect, and the spectrum estimate was obtained by averaging 
the Fast Fourier Transform (FFT) spectra of these windowed segments. Average spectral power was 

Figure 1.  Schematic representation of the experimental procedure. 
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estimated within the Low frequency (LF) (0.04–0.15 Hz) and High frequency (HF) (0.15–0.4) bands, 
which represent the influence of sympathetic and parasympathetic activity respectively. Also considered 
was the ratio of LF to HF (LF/HF) which represents the overall balance of the autonomic nervous system. 
Data were expressed using normalised units (nu), and all procedures were conducted in accordance with 
the recommendations of the Task Force of the European Society of Cardiology and The North American 
Society of Pacing and Electrophysiology13.

Non-linear analysis.  Entropy.  Entropy refers to system randomness, regularity and predictability and 
allows systems to be quantified by the amount of information within the signal. Approximate Entropy 
(ApEn) is commonly used to quantify the entropy of the system. ApEn examines a time series for similar 
segments and measures the likelihood that patterns that are close will remain close for subsequent incre-
mental comparisons. A low value of ApEn reflects a high degree of regularity. However, ApEn has been 
criticized primarily due to its high dependence on the record length; with short records it is uniformly 
lower than expected15. As a result Richman and Moorman15 developed sample entropy (SampEn) which 
does not count self-matches and is less sensitive to data length. SampEn has been defined as the negative 
natural logarithm for conditional properties that a series of data points a certain distance apart, m, would 
repeat itself at m +  1 where self-matches are not included in calculating the probability27. A lower value 
of SampEn also indicates more regularity in the time series. The computation of sample entropy depends 
on two parameters; the embedding dimension m and the tolerance r. In the present study these were 
set as m =  2 and r =  0.2 SDNN. Formulae for calculating sample entropy (S1A) as well as a graphical 
representation (S1B) are available as supplementary information.

Detrended Fluctuation Analysis.  Detrended fluctuation analysis (DFA) quantifies fractal like correla-
tion properties of the time series and reveals short-range and long-range correlations. The DFA algo-
rithm includes four steps: (1) removing the global mean and integrating the time series of a signal; (2) 
dividing the integrated signal into non-overlapping windows of the same chosen size n; (3) detrending 
the integrated signal in each window using polynomial functions to obtain residuals; and (4) calculating 
the root mean square of residuals in all windows as fluctuation amplitude F(n). The same four steps 
are repeated for different time scale n and plotted against window size on a log-log scale28. The scaling 
exponent DFA α  indicates the slope of this line, which relates log(fluctuation) to log(window size). 
Formulae for calculating DFA (S2A) and an illustration of the double log plot (S2B) are available as 
supplementary information. Due to the length of the data series only short-term scaling exponent (α 1) 
(calculated within range of 4–16 beats) was used for the analysis. The scaling exponent can be seen as 
a self-similarity parameter, which is characteristic of a fractal. Values of α  around 1 indicate fractal like 
dynamics in healthy subjects; lower values indicate a loss of these dynamics.

Recurrence quantification analysis.  Recurrence plots can be used to visualise the recurrence behaviour 
of the phase space trajectory of dynamical systems and have been applied successfully to the HR time 
series16. First a phase space trajectory is reconstructed from a time series by the time delay embedding 
m. Close states in the phase space can then be plotted as a recurrence plot according to the threshold r. 
A recurrence plot is a symmetrical matrix of zeros and ones [N −  (m −  1)τ] ×  [N −  (m −  1)τ] where m 
is the embedding dimension and τ the embedding lag. In the present study m = 10 and r = √m SDNN, 
where SD is the standard deviation of the RR time series. A sample recurrence plot is shown in Fig. 2. 
Recurrence quantification analysis (RQA)29 defines measures for diagonal segments in a recurrence plot 
including; recurrence rate (RPrec) which is the percent of plot filled with recurrent points and is the 
probability of recurrence, determinism (RPdet) which is the percent of recurrent points forming diagonal 
lines with a minimum of two adjacent points and measures predictability, the Shannon entropy of line 
length distribution (RPshen) and maximum line length (RPmax) which is inversely related to the largest 
positive Lyapunov exponent30 and is a measure of system divergence; a positive Lyapunov Exponent (LE) 
can be taken as a definition of chaos provided the system is known to be deterministic. Larger values of 
the LE indicate more complex behaviour.

On occasions (e.g. frequency domain measures) the calculated HR indices were not normally dis-
tributed. To correct for skewed distributions, a logarithmic transform was used before proceeding with 
stage 2 of the analysis.

Stage 2 - Dimension reduction.  A principal components factor analysis with varimax rotation was 
applied to the eleven HR indices that were calculated in stage 1. This analysis served two main purposes. 
Firstly, to reduce the large number of HR indices to a smaller number of meaningful components and 
secondly, to prevent problems of multicollinearity in the subsequent analysis. The results of this analysis 
are presented in Table 1. The analysis yielded three factors with eigenvalues greater than 1 which were 
saved as standardised individual factor scores and subsequently used for the analysis in stage 3.

The first factor, which explained 34% of the variance, encompassed the frequency domain indices 
(LF power, HF power and LH/HF ratio) as well as α 1: a higher score on this factor indicates more vagal 
activity and more fractal-like dynamics (to aid interpretation it was multiplied by -1 so that a higher 
score was more positive). Due to the strong correlation with the frequency domain HR indices this 
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factor is subsequently referred to as Frequency HRV. The second factor explained a further 34% of the 
variance and encompassed the RQA indices and sample entropy. This component reflected a complexity 
or irregularity dimension and is therefore referred to as HR complexity; again this factor was multiplied 
by − 1 so that a higher score indicated greater complexity (i.e. more positive). The third factor, which 
explained 15% of the variance, included the time domain indices R-R and SDNN. This third component 
is referred to as Time HRV and a higher score on this component indicates a lower heart rate and greater 
variability (it was not multiplied by -1 because a higher score was already more positive). These factors 
were then entered into a multiple regression analysis to determine their relative association with aspects 
of cognition and mood (see below).

Figure 2.  Sample recurrence plot matrix for HRV time series. Data shown are taken from a female 
participant in the present study for illustrative purposes.

INDICES

FACTORS

Frequency HRV HR complexity Time HRV

R-R (ms) − 0.243 − 0.182 0.764

SDNN (ms) − 0.052 0.254 0.869

LF power (nu) 0.941 0.250 − 0.129

HF power (nu) − 0.941 − 0.252 0.127

LF/HF ratio 0.942 0.121 − 0.059

RPmax (beats) 0.380 0.503 − 0.429

RPrec (%) 0.105 0.935 − 0.023

RPdet (%) 0.380 0.858 − 0.113

RPshen 0.164 0.939 0.026

α 1 −0.837 0.250 − 0.316

SampEn − 0.204 −0.817 − 0.085

Table 1.   Loading matrix for the Principle Component Analysis. Correlations between each HR index 
and the factors are shown. The analysis gave rise to three components. Frequency domain HR indices 
loaded heavily onto component one while the nonlinear HR indices and time domain indices loaded 
onto components two and three respectively. R-R interval - The mean of RR intervals, SDNN – Standard 
deviation of RR intervals, LF – Low frequency, HF – High frequency, RPmax - Maximum line length of 
diagonal lines in recurrence plot, RPrec - Recurrence rate (percentage of recurrence points in recurrence 
plot), RPdet - Determinism (percentage of recurrence points which form diagonal lines in recurrence plot), 
RPshen - Shannon entropy of diagonal line lengths’ probability distribution, α 1 - Short-term fluctuations of 
detrended fluctuation analysis, SampEn - Sample entropy.
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Stage 3 – Regression analysis.  To examine the relationship between the HRV components (derived 
in stage 2) and mood/cognition a series of hierarchical multiple regressions were conducted using SPSS 
version 20. To determine the moderating effect of sex, cross products were calculated for each HRV 
component X Sex and entered into the regression as additional predictors. Each HRV component was 
entered together with each HRV X Sex cross product. To reduce multicollinearity between each compo-
nent and its respective cross product, variables were mean centred. Where interactions were significant, 
to elucidate any effect dependent on sex, conditional effects analysis was conducted using the SPSS 
macro PROCESS31. All regressions were carried out in a hierarchical fashion to determine the relative 
contribution of HR complexity after the other HRV factors had been considered. In the first model sex, 
frequency HRV (factor score 1), time HRV (factor score 3) and their respective cross products were 
entered. To ensure that any cognitive variation associated with HR complexity (factor score 2) and its sex 
cross product were not due to the other HRV factors, these were entered in the second step.

Detection of Possible Outliers: Cook’s Distance.  To detect possible outliers Cook’s Distance32 
was calculated. The Cook’s Distance reflects the extent to which model residuals would change if a 
particular subject’s data (in multivariate space) were excluded from the estimated regression coefficient. 
Larger Cook’s Distance values indicate more influential subjects. The threshold for determining influ-
ential observations was set as 4/N in line with previous recommendations33. When certain cases had a 
Cook’s Distance that exceeded this threshold (the highest Cook’s Distance detected on any analysis was 
0.3) those cases were excluded and the data re-analysed. On no occasion did this affect the outcome, 
and as there were no reasons to suspect these cases were unusual, the results reported included all cases.

Control of the proportion of type 1 errors.  Given the large number of associations tested in the 
present study there was a need to control the proportion of false positives among the set of rejected 
hypotheses. To do this Benjamini and Hochberg’s false discovery rate (FDR) was employed. The FDR 
was controlled at δ  =  0.05 (Table S3).

Results
Initially it was considered whether HRV differed in males and females at baseline. Independent t tests 
found no significant differences between males and females on any of the HRV indices (Table S4).

Subjective measures.  To measure subjective state participants completed the Profile of Mood States 
(POMS). The POMS measures six dimensions of mood: (1) Composed - Anxious; (2) Energetic - Tired; 
(3) Elated - Depressed; (4) Clear-headed - Confused; (5) Agreeable - Hostile; (6) Confident-Unsure. 
Participants also completed The Perceived Stress Scale (see methods).

Results for the individual mood dimensions and perceived stress are shown in Table 2. For Depressed/
Elated, Clearheaded/Confused and Confident/Unsure the addition of HR complexity to the model 
explained a significantly greater proportion of the variable (R2 change =  .21, F (2, 35) =  5.91, p <  0.006) 
for depression ratings; R2 change =  .15, F (2, 33) =  3.858, p <  0.03 for ratings of confusion and R2 
change =  .12, F (2, 34) =  3.36, p <  0.04 for confidence ratings) although the only measure to survive the 
FDR correction was the rating of depression (Table S3). In fact, with ratings of depression the initial 
models containing only the time and frequency components did not reach significance (R2 =  .15, F (5, 
37) =  1.36, p =  .260). Only when HR complexity was added did the model become significant (R2 =  .36, F 
(7, 35) =  2.92, p <  0.01) explaining an extra 21%, and in total 36% of the variance. Similarly, with ratings 
of confusion model one was non-significant (R2 =  .20, F (5, 35) =  1.84, p =  .129). When HR complexity 
was added the model became significant (R2 =  .35, F (7, 33) =  2.63, p <  0.02) explaining an extra 15%, 
and in total 35% of the variance of the ratings of confusion. Although with the ratings of confidence 
model one reached significance (R2 =  .25, F (5, 36) =  2.278, p <  .05), neither frequency nor time HRV 
were predictive; the only significant predictor was sex (β  =  − 6.402, p <  .005). When in model two HR 
complexity was added, it contributed significantly to the model (β  =  3.656, p <  .02) increasing the vari-
ance explained by 12%.

With ratings of confusion and ratings of depression there were significant interactions between sex 
and HR complexity (Table 2, Fig. 3), suggesting that sex moderates the relationship between HR com-
plexity and these aspects of mood. Conditional effects analysis revealed that HR complexity signifi-
cantly predicted depression in females (t(44) =  2.683, p <  .001) but not males (t(44) =  0.298, p =  .469). 
Similarly, HR complexity significantly predicted confusion in females (t(44) =  2.974, p <  .02) but not 
males (t(44) =  − 0.278, p =  .788). A higher HR complexity score was associated with a better mood in 
females.

HR complexity did not predict any other aspect of mood, rather with ratings of anxiety and perceived 
stress it was time HRV that was important (β  =  2.67, p <  .05 for anxiety; β  =  − 2.91, p <  .02 for perceived 
stress) (Table 2). A lower score on the time HRV component predicted more stress and anxiety. On these 
measures both the first and second models were significant, however the percentage of variance that was 
able to be explained was not increased by the addition of HR complexity (R2change =  .05, F (2, 36) =  1.43 
p =  .252 for anxiety ratings; R2change =  .05, F (2, 34) =  1.77, p =  0.185 for perceived stress). With per-
ceived stress (β  =  − 0.36, p <  .04) there was also a Sex X Frequency HRV interaction (Table 2), however 
conditional effects analysis did not identify any effects that depended on sex (females; t(44) =  − 1.486, 
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DV IV β R2 F p

Elated/Depressed

STEP 1 0.15 1.36 0.260

Gender − 0.206 0.191

Frequency HRV 0.348 0.082

Frequency X gender − 0.069 0.723

Time HRV − 0.055 0.795

Time X gender 0.205 0.336

STEP 2 0.36 2.92 0.016

Gender − 2.386 0.191

Frequency HRV 2.367 0.042

Frequency X gender − 0.883 0.628

Time HRV 0.919 0.476

Time X gender 0.473 0.802

Complexity HRV 4.603 0.002

Complexity X gender − 3.847 0.044

Change statistics R2change = 0.21, F (2, 35) = 5.91, p < 0.006

Anxious/Composed

STEP 1 0.23 2.34 0.060

Gender − 2.270 0.233

Frequency HRV 2.017 0.098

Frequency X gender − 0.979 0.611

Time HRV 2.023 0.126

Time X gender 0.511 0.789

STEP 2 0.29 2.11 0.011

Gender − 2.152 0.254

Frequency HRV 2.071 0.087

Frequency X gender − 1.080 0.572

Time HRV 2.671 0.053

Time X gender − 0.288 0.884

Complexity HRV 2.335 0.110

Complexity X gender − 1.805 0.350

Change statistics R2change =  0.05, F (2, 36) =  1.43 p =  0.252

Clearheaded/ confused

STEP 1 0.20 1.846 0.129

Gender − 1.982 0.305

Frequency HRV 2.038 0.079

Frequency X gender − 5.131 0.025

Time HRV − 0.152 0.903

Time X gender 1.217 0.520

STEP 2 0.35 2.636 0.028

Gender − 1.879 0.296

Frequency HRV 2.107 0.052

Frequency X gender − 4.964 0.021

Time HRV 0.702 0.561

Time X gender 0.684 0.710

Complexity HRV 3.442 0.012

Complexity X gender − 4.325 0.017

Change statistics R2 =  0.15, F (2, 33) =  3.858 p =  0.031

Continued
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DV IV β R2 F p

Agreeable/Hostile

STEP 1 0.098 0.807 0.552

Gender − 1.717 0.290

Frequency HRV − 0.964 0.341

Frequency X gender 1.437 0.374

Time HRV − 0.494 0.643

Time X gender 1.726 0.282

STEP 2 0.134 0.771 0.615

Gender − 1.786 0.275

Frequency HRV − 0.980 0.338

Frequency X gender 1.446 0.375

Time HRV − 0.586 0.599

Time X gender 2.484 0.158

Complexity HRV − 0.381 0.753

Complexity X gender − 1.120 0.531

Change statistics R2 =  0.03, F (2, 35) =  0.547 p =  0.497

Confident/Unsure

STEP 1 0.256 2.278 0.050

Gender − 6.402 0.005

Frequency HRV 1.722 0.183

Frequency X gender − 1.847 0.385

Time HRV 1.291 0.369

Time X gender − 1.713 0.423

STEP 2 0.379 2.965 0.015

Gender − 6.634 0.002

Frequency HRV 1.835 0.134

Frequency X gender − 2.159 0.285

Time HRV 2.322 0.107

Time X gender − 3.227 0.133

Complexity HRV 3.657 0.021

Complexity X gender − 2.405 0.241

Change statistics R2change =  0.12, F (2, 34) =  3.36, p <  0.041

Energetic/Tired

STEP 1 0.112 1.148 0.440

Gender 0.305 0.057

Frequency HRV − 0.053 0.786

Frequency X gender 0.146 0.455

Time HRV − 0.126 0.553

Time X gender 0.130 0.540

STEP 2 0.165 1.045 0.417

Gender 0.293 0.066

Frequency HRV − 0.052 0.789

Frequency X gender 0.151 0.437

Time HRV − 0.043 0.845

Time X gender 0.099 0.649

Complexity HRV 0.330 0.165

Complexity X gender − 0.337 0.157

Change statistics R2change =  0.05, F (2, 39) =  1.174, p =  0.320

Continued
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DV IV β R2 F p

Perceived stress

STEP 1 0.36 4.002 0.006

Gender 4.575 0.009

Frequency HRV − 2.065 0.050

Frequency X gender 4.306 0.012

Time HRV − 2.218 0.067

Time X gender 0.572 0.735

STEP 2 0.42 3.460 0.007

Gender 4.467 0.010

Frequency HRV − 2.123 0.040

Frequency X gender 4.339 0.011

Time HRV − 2.915 0.021

Time X gender 1.169 0.500

Complexity HRV − 2.261 0.072

Complexity X gender 2.583 0.121

Change statistics R2change =  0.06, F (2, 33) =  1.70, p =  0.198

Table 2.   Regression analyses evaluating the contribution of Time, Frequency and HR complexity to 
mood and perceived stress. Only effects that survived the FDR correction are highlighted.

Figure 3.  The associations between HR complexity and HR variability (frequency and time domain) and 
ratings of depression. HR complexity was related to ratings of depression (β  =  4.603, p <  0.002) however 
HR variability was not (Frequency: β  =  0.348, p =  0.08, Time β  =  − .055, p =  .795).
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DV IV β R2 F p

Working memory 

STEP 1 0.091 0.863 0.515

Gender − 0.078 0.624

Frequency HRV − 0.184 0.353

Frequency X gender − 0.127 0.519

Time HRV 0.078 0.717

Time X gender − 0.163 0.447

STEP 2 0.127 0.830 0.562

Gender − 0.075 0.639

Frequency HRV − 0.183 0.358

Frequency X gender − 0.137 0.490

Time HRV 0.129 0.567

Time X gender − 0.238 0.291

Complexity HRV 0.201 0.405

Complexity X gender − 0.004 0.988

Change statistics R2change =  0.03, F (2, 39) =  0.769, p =  0.471

Focused attention reaction times

STEP 1 0.19 1.889 0.117

Gender − 78.717 0.130

Frequency HRV − 23.061 0.478

Frequency X gender 9.975 0.849

Time HRV 65.476 0.070

Time X gender − 133.621 0.014

STEP 2 0.31 2.386 0.057

Gender 0.078 0.078

Frequency HRV 0.456 0.456

Frequency X gender 0.922 0.922

Time HRV 0.168 0.168

Time X gender 0.010 0.010

Complexity HRV 0.089 0.089

Complexity X gender .018 0.018

Change statistics R2change =  0.11, F (2, 37) =  3.093, p <  0.05

Focused attention inhibition 

STEP 1 0.03 0.203 0.959

Gender − 0.446 0.575

Frequency HRV − 0.194 0.701

Frequency X gender 0.361 0.657

Time HRV − 0.146 0.789

Time X gender − 0.225 0.807

STEP 2 0.26 1.807 0.117

Gender − 0.136 0.850

Frequency HRV − 0.178 0.692

Frequency X gender 0.346 0.634

Time HRV − 0.555 0.278

Time X gender 0.307 0.715

Complexity HRV − 1.597 0.005

Complexity X gender 2.506 0.003

Change statistics R2change = 0.23, F (2, 35) = 5.691, p < 0.007

Continued
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p =  .145; males; t(44) =  2.219, p =  .133). HRV did not predict ratings energy or agreeableness and with 
these dimensions none of the models were significant (Table 2).

Cognitive performance.  Results for each cognitive test are shown in Table  3. With focused atten-
tion inhibition (the ability to withhold responses to particular stimuli) the addition of HR complexity 
to the model increased the variance in behaviour explained increased by 23% (R2change =  .23, F (2, 
35) =  5.691, p <  0.007). The same pattern occurred with reaction times of the focused attention test; the 
addition of HR complexity explained an extra 11% of the variance in reaction times (R2change =  .11, F 
(2, 37) =  3.093, p <  0.05) although this time the effect did not survive the FDR correction (Table S3). 
With both reaction times and inhibition (incorrectly responding to crosses) there were significant Sex X 
HR complexity interactions (Table 3), thus sex moderated the relationship between HR complexity and 
focused attention. Conditional effects analysis revealed that HR complexity significantly predicted reac-
tion times in females (t(44) =  − 2.149, p <  .03) but not males (t(44) =  0.448, p =  .646; Fig. 4). Similarly, 
HR complexity predicted inhibition in females (t(44) =  − 2.279, p <  .02) but not males (t(44) =  1.003, 
p =  .321). A higher HR complexity score was associated with a better performance in females.

DV IV β R2 F p

Decision times

STEP 1 0.15 1.417 0.240

Gender 52.256 0.042

Frequency HRV − 23.399 0.145

Frequency X gender 24.971 0.334

Time HRV − 8.687 0.616

Time X gender 16.018 0.531

STEP 2 0.37 3.130 0.011

Gender 47.627 0.038

Frequency HRV − 23.404 0.101

Frequency X gender 26.214 0.253

Time HRV − 23.728 0.142

Time X gender 35.153 0.140

Complexity HRV − 58.373 0.001

Complexity X gender 44.063 0.060

Change statistics R2change = 0.21, F (2, 42) = 6.425, p < 0.004

Table 3.   Regression analyses evaluating the contribution of Time, Frequency and HR complexity to 
cognition. Only effects that survived the FDA correction are reported.

Figure 4.  The relationship between HR complexity and focused attention reaction times depending on 
gender. A higher HR complexity significantly predicted quicker reaction times in females (t(44) =  − 2.149, 
p <  .03) but not males (t(44) =  0.448, p =  .646).
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With decision times again only the second model, which contained HR complexity, was significant 
(R2 =  .37, F(7, 39) =  3.130, p <  .01). The addition of HR complexity increased the variance in decision 
times that could be explained by 21% (Table 3). The Sex X HR complexity interaction approached sig-
nificance; HR complexity significantly predicted decision times in females (t(44) =  − 2.562, p <  .01) but 
not males (t(44) =  − 1.192, p =  .239). A higher HR complexity score was associated with a better per-
formance in females.

There were no effects of HRV on working memory and neither the first nor the second models were 
significant (Table 3).

Cortisol.  Cortisol was measured at three time points: baseline, after relaxation, and after completing 
all of the tests. To evaluate whether HRV predicted cortisol levels a repeated measures ANCOVA was 
used. Cortisol was entered as a repeated measures factor (baseline, after relaxation, after cognitive tests) 
and sex as a between subjects factor. HRV components were entered as covariates and all main effects 
and 2-way interactions modelled. There was a main effect of measurement (i.e. baseline, after relaxation, 
after the tests) (F(2, 70) =  5.922, p  <  0.004); cortisol levels were lower once testing had finished (baseline; 
0.20(0.11), after relaxation; 0.18 (0.10) and after cognitive tests; 0.15(0.09)). There was a significant time 
HRV X Cortisol measurement interaction (F(2, 70) =  3.992, p <  0.02) such that time HRV predicted a 
change in cortisol measurement from baseline to after relaxation (r =  − .307, p <  .05); a higher time HRV 
predicted a greater decline in cortisol from baseline to after relaxation. Frequency HRV did not predict 
cortisol levels, however, the interaction Sex X HR complexity reached significance (F(1, 35) =  7.069, 
p <  0.01). Conditional effects analysis revealed that the effect of HR complexity approached significance 
in females (t(44) =  − 1.788 p  <  0.07) but not in males (t(44) =  1.544, p =  138); females with a higher 
complexity score tended to have lower cortisol levels.

•	 With ratings of depression, the speed of focused attention and decision times and inhibition, adding 
HR complexity to the model significantly increased the percentage of the variance that could be 
explained.

•	 HR complexity was independently associated with behaviour after accounting for any variation asso-
ciated with the other HRV components.

•	 The effects of HR complexity were dependent on sex; HR complexity was related to mood, cognition 
and cortisol levels in females but not males.

•	 Whereas HR complexity was related to hedonic aspects of mood (e.g ratings of depression) and cog-
nition, linear HRV was most strongly associated with perceived stress and anxiety.

Discussion
The present study determined the association between non-linear HRV indices, cognition and mood. It 
was found that on a number of occasions HR complexity significantly increased the percentage of var-
iance in behaviour that could be explained. HR complexity was independently associated with ratings 
of mood (Fig. 3), focused attention reaction times (Fig. 4), inhibition, and decision times. Importantly, 
these effects remained after any variance associated with frequency and time HRV indices had been 
considered. Thus HR complexity was able to capture additional information to that obtained using tra-
ditional HRV measurements. Previously it had been reported that HR complexity indices were able to 
identify considerable changes in autonomic regulation in those with clinical depression whereas linear 
HRV did not18. Similarly, Bornas et al.34 found that whereas frequency domain HRV did not predict 
the treatment outcome in those afraid of flying, the addition of HRV SampEn to the regression model 
increased its predictive power by an additional 18%. These studies suggested that HR complexity may not 
only capture additional information on top of that obtained with traditional HRV, but in some instances 
may be the essential component. Indeed, the present study supports this notion; only when HR complex-
ity was added to the model was it significantly related to ratings of depression (Fig. 3), focused attention 
reaction times, decision times and salivary cortisol – although frequency and time HRV were associated 
with perceived stress and anxiety.

A second aim was to establish whether sex moderated the relationship between linear and nonlinear 
HRV indices and behaviour. Previous evidence suggests that females exhibit greater parasympathetic 
activity at rest while greater sympathetic activity was found in males35. The existence of a sex difference 
in HRV suggested a possible role for gonadal hormones on vagal activity, a possibility which is supported 
by evidence from studies using rats. For example, the heart rate lowering effect of vagal stimulation is 
reduced by ovariectomy35. Similarly, studies of human females indicated higher HF-power, and thus vagal 
tone, during elevated oestradiol phases of the menstrual cycle36; although others report no differences 
across the cycle37. With regards to nonlinear HR dynamics, it was found that both entropy and the fractal 
nature of HRV were altered during the regular menstrual cycle of women; changes that were positively 
associated with the ratio of oestradiol-17 to progesterone in the blood9.

However, the present study did not detect sex differences in HRV at baseline (Table S3); rather it was 
the relationship between HRV at baseline and subsequent behaviour that depended upon sex. Whereas 
time and frequency HRV were associated with behaviour in males and females, HR complexity was more 
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strongly associated with behaviour in females (Table 3). Sex differences in brain structure and function 
have long been recognised38, but it is noteworthy that sex differences in the complexity of EEG signals 
have recently been found with females displaying a more fractal EEG activity39 and higher entropy40 
than males. It is also interesting that a positive correlation between cerebral complexity and cognitive 
performance has also been reported41,43), although it remains to be determined if these relationships 
differ according to sex.

It has been suggested that gonadal hormones in the central nervous system (CNS), including regions 
relevant for the functioning of the autonomic nervous system, may play a role in sex related HRV differ-
ences44. Several studies have investigated the brain circuitry correlates of ANS regulation and generally 
report activation of hypothalamic nuclei, brainstem regions, amygdala, hippocampus, and the frontal 
and cingulate cortices4. Interestingly, gonadal hormone signalling and their functions are highly sexually 
dimorphic in many of these regions42, supporting their possible role in modulating HRV. In support of 
this view, a recent study found that hypoactivation of the hypothalamus, amygdala, hippocampus, cin-
gulate cortex and orbitofrontal cortex were associated with lower parasympathetic activity in depressed 
women; associations that were attenuated when differences in oestradiol and progesterone were consid-
ered43. Yao et al.45, in a large meta-analysis of 26 datasets, examined the entropy of resting state BOLD 
signals depending on sex and age. Intriguingly, a crossover occurred at around 50 years of age; around 
the age that women experience the menopause. Males over the age of 50 had higher entropy, whereas 
below this age the roles were reversed. Cerebral entropy has been shown to correlate with HR entropy46; 
however, it is not known whether a similar pattern of findings to those of Yao et al45 would be observed 
with nonlinear HRV indices.

Although previous research has found connections between HRV and subjects’ cortisol response to 
cognitive tasks47, to our knowledge this is the first study to relate HR complexity to cortisol levels. It was 
interesting that only HR complexity predicted cortisol levels, and that this effect was confined to females. 
Sex differences in cortisol response have been recognised, which have again been suggested to reflect 
sexual dimorphic aspects of brain functioning and the role of circulating sex steroids48. A limitation of 
the present study is that sex hormone levels were not recorded. Thus it cannot be established whether 
sex hormone levels played a role in the present findings, although this possibility needs to be consid-
ered. In addition, the majority of females in the present study were taking some form of contraceptive 
pill (n =  20/24) such that natural hormonal variation would be supressed. Further research is needed to 
establish the connections between the hypothalamic gonadal axis, hypothalamic pituitary axis, nonlinear 
HRV, brain functioning and cognition.

Although the physiological underpinnings of nonlinear HRV remain elusive, there is clear evidence 
that these indices present a promising way of quantifying heart rate dynamics and using them as markers 
of the functioning of the CNS. Earlier studies have attempted to clarify the contribution of autonomic 
nervous system (ANS) activity to HR complexity using pharmacological intervention. Perkiomaki et al.49 
measured linear (SDNN, RMSSD, LF power, HF power) and nonlinear (short-term scaling exponent 
(α 1), approximate entropy (ApEn)) HRV for 5 minute periods before and after the intravenous injection 
of 0.6 mg of atropine (parasympathetic antagonist). Whereas α 1 increased significantly after atropine 
injection and correlated significantly with several linear HRV indices, ApEn did not. This suggested that 
vagal tone has a significant contribution to the fractal nature of the HR time series but is not a major 
determinant of its entropy. The present study supports this notion; principle component analysis revealed 
that α 1 loaded heavily onto the same factor as all the frequency domain indices; however SampEn and 
the recurrent plot (RP) indices loaded together onto a separate factor (Table 1). Therefore, it appears that 
both HR entropy and RP analyses are able to capture additional information contained with the HR time 
series that is not attributable to ANS activity. Given the strong relationship between these indices and 
cognition in females, the hypothalamic gonadal axis may be part of the physiological processes underly-
ing the information contained in HR entropy.

It remains to be determined what cerebral processes are captured by HR complexity. Normal phys-
iological functioning requires the integration of intricate networks of control systems, feedback loops 
and other regulatory mechanisms, to enable an organism to perform simultaneously, many and var-
ied activities. A dominant theory has been that complexity describes the dynamics of these integrated 
physiological processes. With increased complexity a system has greater adaptability; a reduction in 
complexity, as a result of aging or disease, would result in an inflexible system that is more easily com-
promised50. Indeed neurophysiological evidence has shown that as a mental task becomes more difficult 
EEG entropy is decreased51, suggesting a lack of spare cognitive capacity when a more difficult task is 
performed. Sokunbi et al.52 studied the relationship between BOLD signal entropy, childhood intelligence 
and current cognitive ability of older adults. Although cerebral entropy was associated with current cog-
nitive ability it was not related to childhood intelligence. Similarly, resting state BOLD signal entropy was 
associated with the level of cognitive impairment in those with dementia53 and correlates with cognition 
in those with traumatic brain injury54. Interestingly, Yang et al.41 examined the link between the entropy 
of resting-state BOLD activity and participant’s performance on a battery of cognitive tests. Not only was 
there an age-related loss of complexity in multiple brain regions but, in line with the present findings, 
the degree of complexity was positively correlated with attention, memory and verbal fluency, whereas 
traditional measures of variability (SD of BOLD signals) were not. A speculative suggestion is that phys-
iological complexity, of which HR complexity is one facet, may be an indicator of ‘cognitive reserve’ 
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and useful in the identification of those at risk of cognitive decline. Although HR complexity declined 
with age55, to date the link between HR complexity and ‘cognitive reserve’ has not been considered and 
research is needed to determine whether HR complexity predicts cognitive decline.

Whilst the present study raises some intriguing questions it is not without its limitations. There is a 
need to replicate the present findings in a larger sample. In addition, although the majority of studies of 
HRV have not measured respiration it is potentially a confounding variable, particularly with frequency 
domain measures. With a low rate of respiration parasympathetic activity moves into a lower frequency 
range that can overlap with the range that defines sympathetic activity56. However, it has been suggested 
that nonlinear HRV measures are not affected by the rate of breathing57,58 demonstrating that nonlinear 
measures of HRV did not result from a nonlinear respiration input. In fact, Lund et al.59 justified not 
monitoring breathing by the stating that nonlinear HRV were not susceptible to the nature of breathing. 
However, although there is no reason to believe that respiration varied systematically such that it would 
have biased the present findings, it is a question to be addressed in future studies as some have suggested 
that non-linear measures are influenced by respiration60.

Conclusion
In conclusion, many physiological processes are known to be nonlinear, including HRV and brain func-
tioning6, such that nonlinear rather than linear HR indices more successfully predict complex behaviour. 
The present study found that HR complexity (SampEn, RP analysis) was independently associated with 
aspects of cognition and mood and in some instances were able to explain behaviour when traditional 
linear methods could not. In addition, the relationship between HR complexity, cognition and mood 
was highly dependent on sex, thus these indices may be particularly useful when explaining the behav-
iour of females. Future research should consider the influence of the hypothalamic gonadal axis on the 
modulation of HRV, in particular HR entropy and recurrence quantification analysis indices. In addition, 
given the possible links between physiological complexity and ‘cognitive reserve’, further research should 
consider the potential usefulness of HR complexity in predicting cognitive decline and other neuropsy-
chological disorders.

Methodology
Participants.  Twenty one males and twenty four female undergraduates gave their written informed 
consent (sample characteristics are shown in Table 4). Participants were excluded if they had any health 
complaint that would affect cardiovascular functioning such as diabetes or hypertension. Similarly, 
anyone with a neuropsychological illness was also excluded as were those taking medication (with the 
exception of the contraceptive pill). All participants were non-smokers and were asked to refrain from 
drinking alcohol for at least 24 hours before the start of the study. In addition, participants were asked to 
fast (except water) and avoid any caffeinated beverages for at least two hours before the start of the study.

Procedure.  The procedure is outlined in Fig. 1. Upon arrival at the laboratory participants were fitted 
with a RS800 Polar heart rate monitor electrode transmitter belt (T61) using conductive gel as rec-
ommended by the manufacturer. Interbeat interval measurements were collected using a Polar RS800 
HR monitor set to R-R interval mode (Polar Electro, Kempele, Finland) at a sampling rate of 1000 Hz. 
This instrument has been previously validated for the accurate measurement of R-R intervals and for 
analysing Heart Rate Variability (HRV)61. Participants were seated comfortably and asked to relax for 
five minutes while listening to calming music (Tranquillity of Baroque, Warner Music). The HR time 
series was recorded during this five minute relaxation period. After the relaxation period participants 
completed a number of questionnaires about their recent mood and stress levels and a cognitive test 
battery (outlined below). The procedure was approved by Swansea University ethics committee (reference 
number: 07.25.2013.1) and carried out in accordance with the Declaration of Helsinki - Ethical Principles 
for Medical Research Involving Human Subjects.

Cortisol.  Salivary cortisol (ug/dl) levels were monitored on arrival at the laboratory (baseline), after 
relaxation and again after the cognitive tests had been completed. Testing was carried out in the after-
noon to avoid the high levels of cortisol that are found in the first five hours after waking. Samples were 
collected using Salimetrics SalivaBio Oral Swab and Swab Storage Tube and immediately frozen below 
− 20 °C. Analysis was carried out using an immunoassay supplied by Salimetrics Europe Ltd, Suffolk, UK.

MALES FEMALES

N 21 24

Age 21.2(2.1) 22.2(3.8)

BMI 23.4(3.4) 23.5(4.5)

Table 4.   Descriptive data for males and females. Data are mean (SD).
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Cognition.  Working memory – Serial sevens.  Serial Sevens involved presenting a participant with 
a starting number from which they must serially subtract 7, and is considered a sensitive measure of 
working memory. A computerised version of the Serial Sevens test was implemented. A randomly gen-
erated starting number between 800 and 999 was displayed on a monitor for two seconds. Participants 
were required to indicate by pressing one of two keys, that corresponded to yes or no, whether a second 
number was or was not exactly seven less. Two seconds after pressing the button the next trial started 
and a total of twenty-eight trials were completed. The test was scored as the average of the time taken, 
in milliseconds, to perform a subtraction.

Focused attention - Arrow Flankers Test.  A modified version of the Eriksen and Eriksen62 flanker 
task was used to measure focused attention. The Arrow Flankers test measures the ability to direct 
attention and ignore peripheral information. Participants were required to indicate whether the middle 
arrow was pointing to the right or left by pressing the corresponding arrow on the keyboard. Either 
side of the central arrow were distractors. The flanking pairs of symbols could be squares (□□ < □□), 
crosses (xx <  xx), congruent arrows (pointing in the same direction (≫  >  ≫ )) or incongruent arrows 
(pointing in the opposite direction (≫  <  ≫ )). Participants had to respond as quickly as possible to 
squares, congruent arrows and incongruent arrows but were instructed to inhibit their response when 
the peripheral information was crosses. A stimulus remained on screen for 1.8 seconds or until the key 
press was registered. There was a randomly varying inter-stimulus interval of between 1 and 3 seconds, 
on average 2 seconds. Seventy stimuli were presented of which 10 were crosses with the remainder occur-
ring pseudo-randomly with congruent, incongruent or neutral (squares) stimuli appearing on twenty 
occasions. The test was scored as the average response time in milliseconds. In addition, the number of 
incorrect presses was recorded as a measure of the ability to inhibit responses.

Simple and choice decision times.  The reaction time procedure was based on that of Jensen63. Eight 
lamps were arranged in a semicircle 5.5 inches from a central button (the home key). The index finger 
was placed on the home key. Within one to two seconds an auditory warning signal sounded and after 
a random interval of one to four seconds one of the lamps illuminated. The task was to extinguish the 
light by depressing a button directly below the lamp, using the finger initially on the home key. All par-
ticipants completed a practice session of 20 trials utilising all eight lamps. Participants were then told that 
they would complete four blocks or 20 trials and that they should respond as quickly as possible. Simple 
reaction times were measured for 20 trials using one lamp. Choice reaction times were then measured 
over three sets of 20 trials when one of 2, 4 or 8 lamps could be potentially illuminated. Decision times, 
the time in milliseconds taken to lift the finger from the home key, were analysed. Decision times of less 
than 150 ms were discarded as outliers, as it has been argued that physiological limits prevent shorter 
DTs61. Decision times over 999 ms were also discarded and replaced with an additional trial. In addition, 
all decision times exceeding three standard deviations above the subject’s mean DT were also discarded61.

Mood
Profile of Mood States.  The Profile of Mood States Bi-Polar Form (POMS)64 is a 72-item self-report 
questionnaire that measures six dimensions of mood: (1) Composed - Anxious; (2) Energetic - Tired; 
(3) Elated - Depressed; (4) Clear-headed - Confused; (5) Agreeable - Hostile; (6) Confident-Unsure. 
Participants were presented with a list of words or phrases and had to rate on a scale of 0–3 (0 ‘not at 
all’, 3 ‘a lot like this’) how much they had felt like this in the past week including today. There are twelve 
words for each mood dimension – six positive and six negative.

Perceived Stress Scale.  The Perceived Stress Scale65 is a 10-item self-report questionnaire that 
assesses the degree to which situations in one’s life are perceived as stressful. The participants were 
required to answer questions about the extent to which they have had stressful thoughts and feeling 
during the last week, for example, “In the last week, how often have you been upset because of something 
that happened unexpectedly?” The participant responds on a 5-point scale (ranging from 0 =  Never - 
4 =  Very Often). One overall score was produced by summing across all items.
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