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According to several studies, the most influencing factor in a household’s

energy consumption is user behavior. Changing user behavior to improve

energy usage leads to e�cient energy consumption, saving money for

the consumer and being more friendly for the environment. In this work

we propose a framework that aims at assisting households in improving

their energy usage by providing real-time recommendations for e�cient

appliance use. The framework allows for the creation of household-specific

and appliance-specific energy consumption profiles by analyzing appliance

usage patterns. Based on the household profile and the actual electricity

use, real-time recommendations notify users on the appliances that can be

switched o� in order to reduce consumption. For instance, if a consumer

forgets their A/C on at a time that it is usually o� (e.g., when there is no one

at home), the system will detect this as an outlier and notify the consumer.

In the ideal scenario, a household has a smart meter monitoring system

installed, that records energy consumption at the appliance level. This is also

reflected in the datasets available for evaluating such systems. However, in

the general case, the household may only have one main meter reading. In

this case, non-intrusive load monitoring (NILM) techniques, which monitor a

house’s energy consumption using only onemeter, and datamining algorithms

that disaggregate the consumption into appliance level, can be employed.

In this paper, we propose an end-to-end solution to this problem, starting

with the energy disaggregation process, and the creation of user profiles

that are then fed to the pattern mining and recommendation process, that

through an intuitive UI allows users to further refine their energy consumption

preferences and set goals. We employ the UK-DALE (UK Domestic Appliance-

Level Electricity) dataset for our experimental evaluations and the proof-

of-concept implementation. The results show that the proposed framework

accurately captures the energy consumption profiles of each household and

thus the generated recommendations are matching the actual household

energy habits and can help reduce their energy consumption by 2–17%.

KEYWORDS

real-time recommendations, sequential rulemining, disaggregation, loadmonitoring,

energy e�ciency, recommender systems
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1. Introduction

Global energy usage is on the rise with no indications

of slowing down. With the increase in standards of living,

the domestic household has seen an unprecedented increase

in electricity demand. The EIA (US Energy Information

Administration) predicts that energy consumption in the

building sector (i.e. commercial and residential structures),

would rise by 65% between 2018 and 2050 (Shrestha, 2020).

Electricity consumption in the residential sector constantly

rises as income and standard of life rise. According to the

Residential Energy Consumption Survey (RECS) from 2015,

31% of U.S. households have difficulty paying their electricity bill

or maintaining a comfortable home temperature with 20% of the

households choosing to reduce or forgo necessities such as food

or medicine to pay electricity bills (Administration, 2018). The

recent Annual EnergyOutlook (AEO) (Center, 2020) released by

theU.S. Energy InformationAdministration foresees an increase

of 1% per year to the annual electricity use, which projected to

2050 results to an increase in the residential sector from 1,500 to

1,900 billion kWh.

In order to mitigate this problem, there has been an

increasing interest in the development of smart energy-saving

solutions. Researchers are learning about the most influential

aspects in energy consumption patterns in parallel to their

study on smart energy-saving technologies. Existing smart

home solutions come with monthly summaries of energy use

by appliance, but this is insufficient to encourage consumers

to maintain a long-term energy-saving behavior. Given that

the energy consumed in a household is mainly dominated

by construction-related factors, which demand expensive

transformations to achieve energy efficiency, user behavior

seems to be the most easily changeable variable (Gavalas and

Kenteris, 2011; Baltrunas et al., 2012; Savage et al., 2012;

Sardianos et al., 2019; Starke et al., 2020). In particular, it

has been shown that giving direct and real-time feedback to

the customer on their energy consumption has a much better

effect than monthly bills or weekly recommendations in terms

of encouraging energy conservation (Abrahamse et al., 2005).

In addition, building repetitive energy-saving activity patterns

can assist in forming better habits and consequently to reduce

energy consumption (Gram-Hanssen, 2013). This has been our

motivation in this work. Providing real-time recommendations

to save energy and change user habits into efficient energy

utilization behavior is the key to solve this problem. However,

one must find a balance between behaviors that make sense and

those that depart significantly from the user’s regular behavior, as

the latter may result in a poor user acceptance rate (Starke et al.,

2017).

In the ideal scenario, a household has a smart meter

monitoring system installed, that records energy consumption

at the appliance level. This is also reflected in the datasets

available for evaluating such systems (Kelly and Knottenbelt,

2015; Sun et al., 2019). Although this method provides a

systematic, comprehensive, and convenient way of collecting

data, it still has shortcomings. Intrusive load monitoring is

complicated to implement and maintain, is not always cost-

effective, and faces problems with customer acceptance since

customers do not like the intrusion of their privacy. As a result,

in the common scenario the household has only one main

meter and not separate consumption meters for each appliance.

These non-intrusive load monitoring (NILM) techniques use

this single monitor and data mining techniques to estimate

the consumption of each appliance (Aladesanmi and Folly,

2015; Jiang et al., 2019; Nalmpantis and Vrakas, 2019). In

NILM, the main meter reading data is acquired as an input,

and then is disaggregated to obtain power consumption of

each appliances present in a house. It is a low cost solution

without the interference of third-party monitoring devices into

the customer’s household while monitoring energy consumption

data.

In this work, we focus on the entire process as applicable

to most households, including the energy disaggregation step.

We present a framework that learns a household’s energy

usage habits and provides real-time recommendations for

energy conservation throughout the day. We extend our

previous work (Dahihande et al., 2020) that focused solely

on the recommendation algorithm and offered a glance of

the UI, by providing more background, technical details,

and experimental results spanning the entire process, from

disaggregation to post-processing, giving a holistic view of

the proposed framework. The system architecture, depicted

in Figure 1, includes offline modules for preprocessing the

single meter data, disaggregating the readings per appliance,

and mining frequent appliance usage patterns, and a real-time

module that employs an interactive user interface to send energy

saving recommendations.

To support our claim that NILM techniques can be

combined with recommender systems in order to reduce

domestic energy consumption and in an attempt to identify

the most accurate energy disaggregation method, we compare

various NILM techniques on the UK-DALE dataset (Kelly

and Knottenbelt, 2015). The main idea behind disaggregation

methods is to recognize transitional changes in the power

consumption, and associate these changes to the respective

appliance that is causing it. This is a process that analyzes the

level of change and associates it with the energy footprint of

one or more appliances. We ran an experimental evaluation

on various disaggregation methods, but first resampled the

raw data at 2 min intervals, in order to rectify anomalies

in the time periods recorded. We observed that the Factorial

Hidden Markov Model (FHMM) performed better for energy

disaggregation for theUK-DALE dataset (asmeasured by RMSE,

and precision/recall/F1).

The pattern mining module is the heart of the proposed

recommender system and is used to extract appliance usage
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FIGURE 1

The main processing flow of the proposed framework.

profiles. The profiles retrieved from the appliance-level data

are considered as the standard user behavior, since we don’t

have any other explicit set of optimum electricity usage. So

when outliers are detected, the engine generates personalized

recommendations on which appliances must be turned on/off,

which are communicated with the user through a UI. For

example, if an appliance is turned on at a time that differs from

the user’s appliance usage pattern (e.g., the coffee machine is

turned on at 11 p.m.), the user will receive a recommendation to

turn it off. This approach allows lowering the consumers’ daily

power use and optimizing energy utilization. The prototype

that we designed and implemented is a proof-of-concept

(POC), evaluated on the UK-DALE dateset, that shows how

personalized recommendations may vary depending on the

user/household and the time of day.

Several association rule mining algorithms, such as Apriori

and FP-Growth, and sequential pattern mining methods, such

as CMRules, RuleGrowth, ERMiner, and CMDeo, have been

considered for extracting interesting appliance usage patterns

form the UK-DALE dataset. The nature of the data, which

consists of detailed power consumption readings at a few

seconds’ intervals, recorded for several months, present many

challenges for the pattern mining algorithms. Data must be

properly preprocessed and resampled in order to get useful

and interpretable patterns that can be the basis for generating

recommendations. As shown in the experiments, the resulting

recommendations captured most of the household’s appliance

usage habits with a high recall, and could have helped in

reducing the households’ energy consumption from 2 to 17% if

implemented (Dahihande et al., 2020). The discovered patterns

are also empirically verified using 2D plotting with the help of

t-SNE, that captures the time/appliance associations.

In a nutshell, the contributions of this work are summarized

in the following:

• A comparison of non-intrusion monitoring techniques and

disaggregation algorithms.

• A methodology for extracting appliance usage patterns

from household consumption data.

• A recommender system that uses house energy

consumption profiles to generate energy-saving

recommendations, prompting users to turn off appliances.

• A proof-of-concept application that visualizes

consumption, allows to control devices and delivers

real-time recommendations.

The rest of the paper is organized as follows: In Section 2,

we review the various models used for energy disaggregation

and energy consumption pattern extraction, and list the main

datasets used for experiments in the related works. Section

3 details on non-intrusive load monitoring techniques that

we have implemented in this study and Section 4 describes

the approach followed for extracting appliance usage patterns.

Section 5 illustrates our proof-of-concept implementation and

discusses its main features. In Section 6, we discuss the

experimental evaluation setup and present the most important

findings. Finally, Section 7 concludes the paper with our plans

for extending this work on recommender systems for energy

efficiency. Throughout the paper, we use data from UKDALE’s

House 2 energy readings as a running example.
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2. Related work

2.1. Energy disaggregation models

Non intrusive load monitoring (NILM) is a practical way

of analyzing energy consumption and the state of operation

of individual appliances based on the main meter reading.

In NILM we estimate which appliances are being used, and

calculate the energy consumption of individual appliances by

analyzing voltage and power reading fluctuations in main

power. It is called non-intrusive since it does not require any

third-party device.

Aladesanmi and Folly (2015) proposed an approach for non-

intrusive load monitoring to identify the appliance’s electrical

consumption. In their approach, every appliance’s energy

signature is calculated and plotted on a 2D plane, and once

this is done, K-means was used to classify each moment to the

appliance that is currently turned on. However, this approach

was not able to detect continuous variable appliances, such

as light dimmers. He et al. (2016) proposed a graph signal

processing approach to distinguish between the appliances that

evoke a measured aggregate active power at any moment.

Again, this method assumes only two-state appliances (on/off).

Altrabalsi et al. (2016) pointed out that NILM techniques (note

that in their paper they call them “NALM”) that can disaggregate

power loads at low sampling rates are not accurate enough

and require substantial input and long training periods. They

proceed to propose two approaches based on a combination

of K-means and SVM. They used a house-agnostic training

data from a database of over 200 house appliance signatures

for training and compared it to house-specific training data,

a comparison that highlighted the trade-off between accuracy

and complexity.

Jiang et al. (2019) investigate the problem of energy

disaggregation together with the problem of the appliance

on/off detection. Experiments with the recently proposed

WaveNet model for energy disaggregation conclude that

WaveNet is better at handling long sequences and it

outperforms the previous works based on CNN and RNN

models. They also study the performance of two learning

frameworks, regression-based, and classification-based.

Classification based learning model performs better in terms of

F1 scores.

Sadeghianpourhamami et al. (2017) suggest that the

effectiveness of the Non-Intrusive Load Monitoring algorithm

to identify various electrical appliances depends upon the

selection of discriminative features. Nalmpantis and Vrakas

(2019) extensively discuss 10 different algorithms that were

compared using various factors. While evaluating these NILM

systems, the authors concluded that there is a lack of metrics for

the majority of requirements and it is suggested to use simple

metrics. According to the authors, neural networks show the

promise of meeting the requirements of generalization.

Liu et al. (2021) were also based on motif discovery to

mine appliance power consumption patterns for the first time,

and explored the possibility of applying the same method in

unsupervised NILM. Codispoti et al. (2022) introduced the

K-Active-Neighbors (KAN) algorithm that jointly learns the

user behavior and the appliance signatures, by asking the

user feedback when necessary. The method requires the user

availability in order to improve the confidence score of the

detected signatures.

Himeur et al. (2021a) propose a non-intrusive load

monitoring scheme that is based on 2D phase encoding of

power signals. The authors extract time-domain (TD) features

of the power signal using sliding windows, then take a two-

dimensional representation of the signal, aiming to encode more

power features than 1D representations, and finally apply a local

phase encoding process on the frequency representation of the

obtained matrix using a block splitting method. The histogram

of the 2D phase encoding of power signals (2D-PEP) is generated

by converting the binary codes to decimal representations and

various classifiers, such as k-nearest neighbors (Himeur et al.,

2021b) and ensemble bagging tree (Himeur et al., 2020), are

tested in order to detect the appliance behind each on/off event.

Deep neural networks, and more specifically 1D CNN

combined with MLPs, have been employed by Faustine et al.

(2020) in UNet-NILM for detecting the state and estimating

the power consumption of various appliances, as a multi-

task learning problem. The approach was based on the UNet

architecture, initially proposed for image segmentation, and a

multi-label classification technique. Although NILM systems

have significantly progressed in the task of disaggregation, when

they are employed in the problem of energy efficiency, they do

not provide appropriate attention to the context in which the

users interact with the appliances, which is of utmost importance

in the case of recommender systems.

Murray et al. (2019) have also proposed two neural

network architectures (a GRU and a CNN) for processing

low rate measurements (1–60 s sampling rate), and detecting

the appliance on/off state or predicting its consumption,

respectively. They trained one model for each target appliance

and tested the transferability of the models across different

NILM datasets. In a similar task, Zhao et al. (2020) tested

Factorial Hidden Markov Models, graph signal processing,

CNN, and other techniques and concluded that CNNs our

perform all other methods. They also found that unsupervised

methods, which are based on manufacturer information about

consumption, estimation and removal of the baseload, can be

comparable in efficiency.

Sardianos et al. (2019) approach the energy disaggregation

problem using K-means centroids. The authors design

combinations for all available appliances in a room based on the

wattage of an appliance. Then using K-means they find centroids

equal to the number of combinations of appliances and associate

the voltage power change to a respective combination. Although
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this approach is impressive, it assumes most of the appliance

combinations and their energy consumptions and generates a

large number of clusters.

Kaselimi et al. (2020b) introduce a non-causal adaptive

context-aware bidirectional deep learning model for energy

disaggregation, which combines LSTM networks, with non-

causality and adaptivity to context (e.g., seasonality). The same

authors have also proposed a Generative Adversarial Network

(GAN) approach which is capable of making more long-term

estimations (Kaselimi et al., 2020c). Their approach was tested

mainly in terms of predicting the amount of power consumed

by each appliance, although it could be used for detecting on/off

actions. Finally, in Kaselimi et al. (2019) they propose a CNN-

based architecture that incorporates past estimation outputs

and is robust to noise, and in Kaselimi et al. (2020a) they

combine GANs with a CNN in the discriminator for rapid

processing and optimal extraction of features. The latter method

further improves the performance of Kaselimi et al. (2020c) in

predicting the appliances’ consumption.

2.2. User energy consumption pattern
extraction

Understanding appliance usage trends is the first stage in

developing energy-saving suggestions for users. Without having

to search the complete dataset for frequent itemsets, Singh and

Yassine (2019) were able to extract inter-appliance relationships

more quickly. For this purpose, they used association rule

mining and incremental frequent pattern extraction techniques.

The extracted itemsets, however, include the combined use of

appliances and not associations of individual appliances with

time that show which appliances are on or off at specific times

throughout the day.

Ong et al. (2013) have collected data from 53 plug-based

meters for 3 months and they detected on and off events using

only frequency and voltage measurements. A post-processing of

these events, with the use of sequential rule mining algorithms,

such as Apriori-Inv, FPGrowth, and TRuleGrowth lead to the

extraction of interesting usage patterns. Setting a confidence

threshold above 0.7 and various support thresholds they found

patterns which are either combos of appliances used together,

such as TV with speakers, or sequentially, such as coffee

machine used after toaster. Using smaller support values they

found usage patterns comprising rare devices, which have to be

further analyzed.

Processing the retrieved patterns is challenging since the

number of obtained rules can be huge when very low support

thresholds are employed. Additionally, because the patterns

were not associated with specific time-zones within the day, they

cannot be used directly to provide recommendations during

the day.

Another group of works, focuses on the analysis of smart

meter data for the extraction of energy consumption profiles

(Sial et al., 2014) and the detection of outlying and abnormal

behaviors (Sial et al., 2018, 2021). Such abnormalities can be the

triggers for recommendations or alerts to the user in order to

reduce energy.

In an attempt to design real-time recommender systems

that provide energy-efficient recommendations based on various

contexts, Sardianos et al. (2019) and Alsalemi et al. (2020)

propose a recommendation engine that attempts to shape

the daily habits of users and help them lower their energy

footprint. Their engine examines various contexts and offers

recommendations for actions that promote energy-saving. In

order to detect when the monitored appliances are used from

a single meter data they apply energy disaggregation algorithms.

Then they extract utilization patterns at the appliance level using

the Apriori algorithm with a support threshold of 0.02, which

corresponds to more than 12 appliance usages per month. The

resulting recommendations are based on general energy-saving

rules, which match actual usage patterns, and are associated

to external factors like temperature, humidity, user presence,

etc. The goal of our work, on the other hand, is to create

personalized suggestions that are tailored to a household’s energy

consumption and usage of appliances and assist in achieving

energy footprint reduction objectives by reducing excessive

energy use.

Table 1 summarizes the main works on energy consumption

profiling and their main features. Our proposed work differs

from them in that it combines a novel data engineering

technique to disaggregate energy-usage data from a single

meter with pattern extraction algorithms and a recommendation

engine that takes advantage of the extracted knowledge to

promote energy savings.

2.3. NILM and energy saving
recommendations

Adomavicius and Tuzhilin (2011), discuss the importance

of “situated actions” in recommender systems. The absence of

information about the overall situation, including the user and

environment state, the user habits etc., restricts the ability to

provide more useful and smarter recommendations. Various

contextual factors such as time and location of the performed

action, the purpose of the action, etc. need to be used to make

powerful recommendation systems.

Several studies have looked at the challenge of reducing

energy use from the perspective of environmental psychology.

The work of Abrahamse et al. (2005) is a survey of interventions

targeted at household energy saving, and concludes that users

either want to change or are motivated by a reward. Knijnenburg

et al. (2014) conducted an experience research on the elicitation
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TABLE 1 Pattern extraction methods from energy usage data.

Method Item-sets Pattern type References

Association rule mining,

Incremental Frequent

Pattern extraction

Appliances that are on or off

at the same timeslot

Inter-appliance relationships Singh and Yassine, 2019

Sequential rule mining Appliances that are used

together

Appliance combos Ong et al., 2013

Percentage change

in consumption,

k-Nearest Neighbor days,

Histogram buckets

Appliance usage over time Abnormal usage of appliances Sial et al., 2021

Sial et al., 2018

Manual classification Power consumption per

time slot

Peak energy usage slots

Location groups based on

energy usage

Sial et al., 2014

Association rule mining Appliances that are turned

on or off per timeslot

Associations of on or off

events with timeslots

Sardianos et al., 2019

Alsalemi et al., 2020

of users’ preferences and found that the energy savings of a user

depends on his/her awareness and knowledge of the operation

of the system, and that this can be addressed by a simplified

user interface. Starke et al. (2017) came to a similar conclusion,

finding that picking personalized recommendations that are

simple to implement leads to more energy-efficient choices and

user satisfaction. In a later study, they discovered that users

who seek advice to reduce energy consumption have more trust

in recommender systems and their output. As a result, giving

individuals a choice of recommended actions, can improve their

trust to the recommender system (Starke, 2019). This field of

research also adds the dimension of psychology to recommender

systems, and examines how they can be more easily adopted

by end users regardless of how the recommendations are

created. Such discoveries influenced the design of our system’s

user interface.

There exist several research projects that are motivated

by these findings on how psychology can be an important

factor in energy-efficient choices and perform NILM and/or

some sort of appliance usage pattern extraction in order

to promote better energy consumption profiles and trigger

behavior change. Garcia-Garcia et al. (2017) employ an open

IoT data management platform and a gamified approach to help

users adopt energy saving habits. ChArGED (Dimitriou et al.,

2018) is a similar framework that combines IoT for sensing,

NILM and pattern extraction via analytics, as well as serious

games for motivating users to reduce power waste in public

buildings. A similar framework is proposed in the BENEFFICE

project (Garbi et al., 2019) where the authors propose to

leverage IoT devices to capture appliance usage patterns and

recommendations, incentives and challenges to gradually shape

a better energy consumer profile. Most recently, the ENTROPY

project (Ramallo-González et al., 2022) presented a series of

educational interventions that promote energy saving in a timed

and personalized manner. Going one step beyond, the EM3

project (Alsalemi et al., 2019) builds on the habitual behavioral

change and combines context-aware recommender systems and

IoT in order to maximize the probability of recommendation

acceptance and thus the impact of the behavioral change

policy. The results reported from a pilot study of EM3 on a

office building setup demonstrate the power of properly timed

recommendations in saving energy by promoting better habits

(Sardianos et al., 2020).

The proposed work builds on the same motivation

and concepts as the aforementioned systems. Our objective

is to encourage and improve environment-friendly energy

consumption actions by interacting with the user. The

proposed framework supports non-intrusive load monitoring

and analytics, and is powered by usage pattern extraction

algorithms to generate real-time recommendations via a user-

friendly application. As far as load monitoring and energy

disagreggation is concerned, we treat NILM as a classification

task, with the goal of detecting (predicting) on/off events for

each appliance in different time segments (where “off” is not

necessarily the same as 0 energy consumption, depending on

the appliance). While the majority of previous work uses data

analytics to create energy usage patterns, in this work we use data

mining, and in particular explore how association rules analysis

and sequential pattern mining can be used as the back-end

of a recommender system. Compared with the most relevant

work to ours (Alsalemi et al., 2019) that also employs similar

algorithms, the main difference is that we extract a usage profile

per household and we associate appliances that are frequently

used together at each time segment. This coarse grain grouping

of measurements in 30 min slots allows to extract more complex

associations (larger itemsets), which is not feasible when we
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examine each appliance separately. The resulting usage patterns

are directly connected with time, and thus can be used to

trigger on/off recommendations. Through the proof-of-concept

application, the user receives recommendations and is able to

control (i.e., turn on and off) the household appliances.

2.4. Datasets

Energy consumption datasets are required to perform

analysis, modeling and evaluation of energy usage patterns to

recommend energy-efficient actions. A wide variety of such

data sets are available, collected under different research studies

but probably with the same goal of understanding user energy

consumption needs and appliance level energy consumption

patterns.

The individual household electric power consumption

dataset (Hebrail and Berard, 2010), or UCI for short, can be

found in the machine learning dataset repository provided

online by the University of California, Irvine. The dataset

consists of time-series based energy consumption data. Columns

in the dataset include household global minute-averaged active

and reactive powers, minute-averaged voltage, household global

minute-averaged current intensity and minute based meter

readings for three categories of appliances—kitchen, laundry,

and central AC. The dataset consists of more than 2 million

records collected from a house in Sceaux, France over a period

spanning from December 2006 to November 2010. Sardianos

et al. (2019) have used this dataset to train and evaluate

their model for finding user energy consumption patterns and

recommend energy-efficient actions.

Gao et al. (2014) introduce a public dataset named Plug-

Level Appliance Application Dataset (PLAID) which consists

of current and voltage measurements for over 200 appliance

instances of 11 unique appliances. The dataset can be used to

identify the different household appliances based on their load

measurements. Due to its vast appliance data, the dataset proves

to be very useful in varied applications such as identifying any

appliance based on the calculated voltage-current values. But it

proves to be insufficient in our project which aims to generate

recommendations for optimum energy usage. The data values

do not take into consideration the time of the day which is

an important entity required for the analysis of energy usage.

Moreover, it fails to gather and sort the appliance data per

household for a particular user. This proves to be a major

drawback of PLAID to be of use in the current application.

Residential Energy Disaggregation Dataset (REDD) (Kolter

and Johnson, 2011) is another dataset used by researchers to

develop algorithms aimed at separating an aggregate energy

signal into its component level contributions and finding

other important analytics. The data was collected from around

40 homes in Boston and San Francisco metropolitan areas.

Monitoring devices were installed at the homes over a period

of 18 months to collect the data. The whole-home aggregate

electricity signals are recorded only at those times when the

voltage and current at high frequencies show a change in the

waveforms, i.e., when a device in the home is turned on or off.

However, per-circuit electrical power is monitored every 3 s. Per-

plug electrical power consumption is also monitored at a varied

frequency for different houses, ranging from once per second

to once per minute. The per-circuit and per-plug signal data

provide the ground truth to the energy consumption patterns

in the house.

REFIT (Personalized Retrofit Decision Support Tools For

UK Homes Using Smart Home Technology) (Murray et al.,

2017) is a dataset that contains electrical load measurements

from 20 houses that were monitored for 2 years, while

the occupants were performing their daily routines. The

data has been employed in research works that propose

and validate NILM methods, extraction of energy usage

patterns etc.

Researchers at the Department of Computing at Imperial

College London recorded electricity consumption of five

households over periods of 3 months to 3 years (Kelly and

Knottenbelt, 2015). The subjects were MSc or PhD students

at the Imperial College. They recorded both the mains

and individual appliance level power demand every 6 s. In

each house they recorded both whole house mains power

demand as well as individual appliance level power demand.

Active power drawn by each appliance and whole-house was

recorded every 6 s, resulting in 14 Gb of data. In order to

record appliance level power demand, researchers installed

individual appliance monitors (IAMs) between each appliance

and its wall socket. UK-DALE dataset stands out because of

simultaneously recording the power drawn by most of the

individual appliances as well as overall power consumed by

the house. This allows us to evaluate energy disaggregation

approaches in a much more meaningful way. Also, having

actual appliance-level data makes it easier to analyse appliance-

appliance and appliance-mains associations which we will

discuss in detail.

Our study employs the UK-DALE dataset, both for the

experimental evaluation and the POC implementation. The

main reason for this is that compared to other datasets used

in the related literature, such as PLAID, REDD, UCI and

more listed in Sun et al. (2019), this is the only dataset

which simultaneously records the power drawn by most of

the individual appliances as well as overall power consumed

by the house in a very fine level of detail. This allows to

evaluate different energy disaggregation approaches (available in

the NILMTK library; Batra et al., 2014), and extract appliance-

appliance and appliance-mains associations. The datasets and

their main features are summarized in Table 2. A detailed

overview of the UK-DALE dataset is included in Table 3. Since

data collection is not consistent across all houses, we will be

treating each house as a separate case.
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TABLE 2 Popular NILM and energy usage datasets.

Shortname Different appliances No. of households Duration References

UCI 9 1× 3 rooms 47 months Hebrail and Berard, 2010

PLAID 17 65 6 months Gao et al., 2014

REDD 16 40 18 months Kolter and Johnson, 2011

REFIT 9 20 24 months Murray et al., 2017

UK-DALE >10 5 3–36 months Kelly and Knottenbelt, 2015

TABLE 3 The main features of the UK-DALE dataset.

House 1 2 3 4 5

Building type End of terrace End of terrace Mid-terrace Flat

Year of construction 1905 1900 1935 2009

Energy improvements Solar thermal, loft insulation,

Solid wall insulation,

double glazing

cavity wall insulation,

double glazing

loft insulation,

double glazing

No. of occupants 4 2 2 2

Total no. of meters 54 20 5 6 26

Date if first measurement 2012-11-09 2013-02-17 2013-02-27 2013-03-09 2014-06-29

Date if first measurement 2015-01-05 2013-10-10 2013-04-08 2013-10-01 2014-11-13

Total duration (days) 786 234 39 205 137

Avg. mains energy consumption

per day (apparent kVAh)

8.90 8.00 12.35 10.24 17.56

3. Non-intrusive load monitoring
techniques

In the absence of smart meters, the first core module

of the process is the energy disaggregation, also known

as non-intrusive load monitoring (NILM). This module

encompasses extracting the available appliance’s individual

power consumption and state of operation from the main meter

reading. As we discussed previously, NILM is a more preferred

solution to load monitoring as it allows to obtain appliance

level data without intrusion from third party devices such as

smartplugs, sensors etc., which preserves user’s privacy. Also,

installing smart plugs for getting appliance data is an arduous

task and often impractical and not cost-effective.

The fundamental idea behind the NILM technique is to

recognize step changes in power consumption and, based on the

size of the step, to identify the appliance that caused the change.

It also helps in mapping the energy signature or footprint of an

appliance. The availability of ground truth (i.e., the individual

appliances’ consumption) in the UK-DALE dataset, allowed us

to explore various machine learning algorithms. In particular,

we consider a clustering technique proposed by one of our

team members (Sardianos et al., 2019), and three state-of-the-

art disaggregation techniques that are included in the NILMTK

library (Batra et al., 2014, 2019).

As discussed in previous sections, the UK-DALE dataset

that is chosen for this project ranges over five different houses

containing mains power as well as each appliance’s power

consumption data over varying time periods. The appliance data

is recorded in approximately a 6 s period. However, the raw data

had irregular time intervals. Therefore, the data had to be re-

sampled over a period of 120 s before the data was used for

training. A visual representation of a subset of the data (House 2

appliances) over a 3-month period is shown in Figure 2. As one

can see on the legend of the plot, the house comprises a wide

range of appliances from computers and peripherals to white

appliances. However, it contains no heating, ventilation and air

conditioning (HVAC) devices.

Hart’s 1985 algorithm was the first algorithm designed for

NILM (Hart, 1985). This unsupervised algorithm monitors

voltage and current changes in the mainmeter and does a cluster

analysis to identify various appliances switching operating states.

Clusters are formed using the step change in voltage. Each

cluster is then considered as one device and then using the

ground truth, the algorithm finds the best matched appliance

for each cluster. The voltage change plays a crucial part in

identifying different appliances’ states. Hence, devices with

significant effect on power changes such as refrigerators can

easily be identified, whereas all other appliances are hardly

distinguished.
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FIGURE 2

House 2 appliance’s and mains power consumption.

Combinatorial optimization (CO) during training forms

clusters from each device’s power consumption to have a set of

power states. Based on these clusters, the algorithm designs a

2Dmatrix, where each column represents an appliance and each

row represents a combination of appliances and their aggregated

power consumption. At disaggregation, the algorithm just finds

the aggregated sum nearest to the main meter reading, which

associates a combination of appliances turned on to a particular

reading. In the NILMTK implementation of this algorithm

that we used in our framework (Batra et al., 2019), only

the submeters’ data is used for training with this supervised

algorithm. Due to irregularities in intervals between consecutive

readings, the model is trained data resampled to 2 min intervals.

Once the model is trained, it can predict on the test data, which

are collected from the main meter’s readings. At the same time,

the model keeps building ground truth data collected from the

submeters of test data for comparison.

The Factorial Hidden Markov Model (FHMM), during

training, fits a HiddenMarkovModel (HMM) to every appliance

using disaggregated ground truth data and then integrates all

the HMMs. While predicting, the algorithm runs the Viterbi

algorithm to predict the best sequence of appliances that are

turned on. Similar to CO, in the NILMTK implementation

(Batra et al., 2019) this algorithm also uses submeters’ data

for training the model with data resampled to user’s preferred

interval. The difference while training the model with FHMM

compared to CO is that FHMM uses more memory than CO.

Due to this the algorithm complexity increases with the number

of appliances and the algorithm is more memory demanding

than CO. To tackle this problem, we trained the model by

dividing the appliances in batches and subsequently combining

the results to get all appliances’ data.

Finally, we explored the clustering technique used by

Sardianos et al. (2019) to disaggregate datasets and get the

appliance level switch on/off events. For a number N of devices

in a household, we form k = 2N clusters by applying the

K-Means clustering algorithm. We do this twice—for both

the positive and the negative energy consumption change

values—to get the individual appliance switch on and off

events respectively. The resulting clusters (which correspond

to composite on/off events) are sorted using their centroids, in

increasing order of energy demand, to get a mapping between

the cluster ids and the actions. Next, we find the status of

individual appliances at every timestamp in the dataset by

comparing their previous energy reading with the current

change. This lets us derive what devices were switched on or

off at what time of the day. Here we can clean up the dataset

by discarding certain rows that show no change in the status of

any appliances corresponding to their previous energy readings.

The resultant dataset is disaggregated with information about

device switch on and off actions along with date and time

of the day. This data set can be further used to extract user

habits by applying rule mining algorithms, as discussed in

the future sections. The drawback of this approach is that as

the number of appliances N increases, the number of clusters

and combinations increase exponentially (2 ∗ 2N ). Hence, the

disaggregation approach becomes more cumbersome as the

number of appliances in a house increases. For instance, in the

case of houses 1, 2, and 5 from the UK-DALE dataset that have

more than 18 appliances each, this approach would require the
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creation of more than 500 thousand clusters. We therefore did

not explore it any further.

4. Appliance usage
recommendations

The type of data that is fed to a recommender system is

one of the main issues to consider in the recommendation

generation process. Power consumption readings are the main

input of the system, and this must be somehow converted to

suggestions for which appliances to turn on or off at specific

times of the day. Data pre-processing is the first step in this

process and this has to be followed by the right pattern mining

method that will provide a number of comprehensive appliance

usage patterns. The last step is to use these patterns in order

to generate recommendations. In this section, we present our

methodology in detail and illustrate the results of our analysis.

For simplification, we assume that a NILM or IAM technique is

employed and consumption data are already disaggregated when

fed to the recommender system.

4.1. Data preprocessing

The extraction of appliance usage patterns, from the

disaggregated consumption measurements for multiple

appliances, assumes that we are able to identify when individual

appliances or appliance combos are turned on or off. This is

important since we decided to resample the initial readings in

30 min time intervals (which we call day segments), taking the

average consumption of all the readings (per appliance) during

that interval. This yields 48 values per device each day compared

to the initial 1,440 min readings per day, and has boosted the

system’s scalability. Assuming that users do turn on/off multiple

appliances at the same time, the derived patterns are richer and

increase the flexibility of recommendations.

This pattern extraction task is not simple because many

appliances consume power when they are plugged in, even when

they are in stand-by mode. Therefore, we must determine the

range of power consumption values for each appliance that

denotes its actual usage.

In our initial effort to address this, we employed the

following equation to derive a mean-based threshold value

that would classify a particular reading into an on or off

state: threshold =
maxReading−minReading

meanReading
, where maxReading,

minReading, and meanReading are the maximum, minimum,

and average readings respectively of the appliance under

consideration for the period of reference. For that period of

the day, the appliance is recorded as on if the current reading

exceeds the threshold value; otherwise, it is marked as off. For

appliances that are not used frequently, and for which we had

few data many false events can be detected. Since slight increases

in energy usage in these circumstances are ignored, they were

identified as always off.

A second method, which was based on K-Means clustering

(with K = 2), has been developed to increase classification

accuracy. More specifically, each appliance’s readings were split

into two clusters using K-Means. The off label was assigned

to the cluster with lower value readings, and the on label to

the cluster with higher value readings. As the less-frequently

used appliances were being accurately categorized, employing

K-Means as opposed to the threshold for determining appliance

on/off status proved to be a preferable technique.

4.2. Household profile

We can create an appliance consumption profile for each

user/household based on the appliance on/off events that we

collect every day. The profile is extracted for each household and

contains all the appliance power consumption periods.

We designed the household profile per day with day

segments as keys, and the respective list of appliances switched

on at each segment as values. Done for the entire time period,

this results in a nested list with as many records as the days in the

training set. The first element of each nested list representing a

day is again the day segment followed by the appliances switched

on at that time in each household. This is done to make sure

that day segment is considered as one of the frequent items

and will be included in the patterns identified by the mining

algorithm. These sequences of appliances switched on at a given

time segment are used as an input to a patternmining algorithm.

In essence, we can process the lists of appliances utilized in the

same day segment across all days in order to detect recurring

usage trends.

Our proof-of-concept implementation employs household

profiles from the complete dataset (i.e., over the entire time

period covered by it). Note that the framework can be easily

updated to include seasonality. In essence, instead of deriving a

single household profile, we can use the power demand readings

for each season to derive the household’s season profile, and

this can be used to produce suggestions for specific months or

seasons. Similarly, we can split the dataset using other types of

filters, such as weekdays vs. weekends, etc. To find recurring

patterns in the home power usage profile, we constructed and

assessed a number of association rule and sequential pattern

mining methods.

4.3. Appliance usage pattern mining

In order to extract patterns of appliance usage from

the household profiles, our system design enables a number

of association rules and sequential pattern mining methods.

Apriori, FPGrowth (both as implemented in Pedregosa et al.,

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2022.972206
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Eirinaki et al. 10.3389/fdata.2022.972206

FIGURE 3

Frequent itemsets and association rules for House 2.

2011), and TRuleGrowth (Fournier-Viger et al., 2012b) (as

implemented in Viger, 2008), are the three most effective

algorithms in terms of scalability and compactness of model

without sacrificing coverage. Appliance sets that are frequently

used together in the same day segment are discovered by Apriori

and FPGrowth, and are stored in a dictionary. Since there is no

dependency between appliances used at different day segments,

this step can be easily parallelized for the different segments.

The next step is to extract rules from the frequent appliance sets

of each day segment and use these rules as the user’s behavior

concerning the usage of appliances at the specific segment.

Figure 3 shows a snapshot of the generated rules for House

2. House 2 has 18 different appliances and we found that

minimum support of 0.02 generates frequent itemsets (candidate

set) which include 17 out of the 18 appliances in the house, the

remaining appliance being Playstation console. During the data

exploration phase we found that the Playstation console is the

least used appliance in House 2. Frequent itemsets generated

with minimum support of 0.01 also did not include Playstation

in the frequent itemsets and increasing support to 0.03 resulted

in losing more appliances from the frequent itemset pool. So

we decided to choose 0.02 as the minimum support value to

generate frequent itemsets.

Additionally, we assessed a number of sequential pattern

mining techniques from the SPMF library (Viger, 2008),

we found appliance-time dependencies and calculated the

likelihood that an appliance will be on at a specific time. The

execution time, the memory requirements of each algorithm,

and the number of generated rules have been evaluated for

all methods. CMRules (Fournier-Viger et al., 2012a) is an

algorithm that finds sequential patterns using the similarity of

sub-sequences among longer sequences. RuleGrowth (Fournier-

Viger et al., 2012b) employs a recursive technique for expanding

smaller sequential patterns. TRuleGrowth (Fournier-Viger et al.,

2012b) can generate rules from long sequences since it employs

a maximum sliding window. ERMiner (Fournier-Viger et al.,

2014) groups rules with the same prefix (or suffix) into

equivalence classes and a filters out sequences using a sparse

count matrix. Finally, CMDeo is based on an older algorithm

for pattern extraction from single sequences (Deogun and Jiang,

2005) and has been adapted to handle multiple sequences. From

all these algorithms we choose TRuleGrowth for extracting

time-related patterns from our dataset.

In particular, for the same input, CMRules and ERMiner

both faced memory scalability issues and crashed before

completion or took hours to complete. While faster than these

two, and due to its recursiveness, RuleGrowth proved costly

for datasets with long sequences like ours. In addition, the

processing generated about 26.3 GB of data, almost 9 times

the output size of TRuleGrowth. The left and right expansion

process of CMDeo result in support being the only metric to

use to search for patterns in the sequences, as confidence does

not remain stable. In addition, CMDEo finds only subsets of

all valid rules. As a matter of fact, the algorithm generated only

585 rules. In the contrary, TRuleGrowth generated 44,155 rules

in 12 s, and generated a file size of around 163 MB. This is

consistent with the results presented in Fournier-Viger et al.

(2012b), which show that TRuleGrowth is memory-efficient and

can quickly provide rules. Figure 4 depicts a snapshot of the

TRuleGrowth-produced sequences for House 2.

From the resulting rule set, we only keep the rules that

have a single time segment and an appliance. This allows to

create a collection of rules that have the following structure

< time_segment → appliance_channel >. The rules, along

with their support and confidence scores, are fed to the

recommendations module.

Using this subset of generated sequences, we can generate a

map of appliance names and their active time slots. From this

data, we get the knowledge about when a user uses a particular

appliance in the whole day. This can be directly related to the

user habits as we can successfully make the connection between

the appliance state and the user activity.

4.4. Recommendations

This is the real-time module of the proposed framework.

For a given time slot the system extracts the rules for this

time_segment and sorts them by confidence. The system then

selects the top-k rules (where k is also defined in the UI) that

match the appliances used at that moment by the user, and

generates the respective recommendations. In the end, we get

a list which consists of the appliances to be on at a particular

time of the day. The list consists of 48 instances corresponding

to the 30 min time intervals. The frequently utilized appliances

that are turned on in different time segments are displayed in
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FIGURE 4

Sequences for House 2.

FIGURE 5

Recommendations for House 2 (between 16:00 and 22:00).

Figure 5. These itemsets have been used to generate rules and

recommendations for House 2.

We empirically discovered that the recommendations were

consistent with the user’s regular activities at home and the

actual power consumption of the appliances, as seen in both the

raw data and the previously identified usage patterns. Figure 6

shows the actual appliance level power demand data from the

UK-DALE dataset for House 2 Dishwasher aggregated at the

hour level. We notice that the dishwasher uses more energy on

average between the hours of 6 and 10 p.m., which is when the

system suggests turning it on. Other appliances also follow a

similar trend.

The evaluation of the recommendations’ performance is

based on these findings. We assess the effectiveness of the

suggestions using precision, recall, and their harmonicmean, the

F1-score, in Section 6. We also employ t-SNE to form appliance

clusters based on their usage and plot them, as another indirect

evaluation of the identified patterns.

5. Proof-of-concept

As a proof-of-concept (POC), we developed an application

with a web dashboard that allows the user to monitor their

house and appliance energy consumption, and a customizable

panel where the recommendations appear (the application is

built using the ReactJS framework and can be deployed on

any server).
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The Dashboard page presents the user with a summary of

home aggregate power usage and appliance wise power usage

using graphs. The house aggregate power usage data is sampled

into month intervals and the section highlights minimum,

maximum, and average power usage over the available time

period. For our POC, we have used the historic data as found

in the UK-DALE dataset. A screenshot for House 2 is shown in

Figure 7.

Through the UI, the user can view all the appliances in

the house grouped by room, as shown in Figure 8 for the

Kitchen and Living room of House 2. To simulate a real-life

scenario, where the application monitors the power demand

of the household and identifies which appliances are currently

on, we can turn any device on/off and pick a time of day.

Based on this input, and the recommendation list generated

by our back-end system described in Section 4, the system

suggests which appliances need to be turned on or off with

respect to the current state of the house, as shown in Figure 9.

FIGURE 6

Avg. power/hour for Dishwasher in House 2.

Through the interactive UI the users can monitor the power

consumption of their households, can get recommendations

for better appliance usage and respond to them by using the

appliance on the right time or switching them off when they do

not need them.

We must keep in mind that the system also suggests to

turn appliances on. This may act as a notification system in a

variety of situations, such as unexpected power outages while a

user is gone (informing them to turn on the refrigerator again)

or energy-saving practices (user is reminded to turn on the

dishwasher during nighttime when the charge is lower).

Additionally, the user can filter out appliances and mute

recommendations for them (e.g., appliances that are always on,

like a router or a fridge) or set specific energy objectives for the

consumption of an appliance. The implemented prototype also

offers the option to use voice commands in order to increase

accessibility.

6. Experimental evaluation

We evaluate our framework both empirically and

quantitatively, using the UK-DALE dataset (Kelly and

Knottenbelt, 2015), as previously discussed. We first perform

a benchmark for the most popular NILM algorithms as

implemented in NILMTK over UK-DALE’s Houses 2–5

data. Here we present the results of the two best-performing

algorithms, namely Factorial Hidden Markov Model (FHMM)

and Combinatorial Optimization (CO), for each house and

for each appliance type across all houses. The results vary

between appliances and houses. However, in general FHMM

outperforms CO in terms of accurately predicting (as measured

by macro-averaged Accuracy, Precision, Recall, and F1-score)

the appliance’s usage. More specifically FHMM has better

precision than CO in detecting when a device is switched

on or off based on the aggregate measurement and a slightly

FIGURE 7

Energy metrics for House 2.
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FIGURE 8

Appliance control for Kitchen and Living room.

FIGURE 9

Energy saving recommendations.

TABLE 4 NILM method performance in predicting the appliances’ on/o� status per house and overall.

FHMM CO

House Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

2 0.31 0.92 0.23 0.33 0.67 0.40 0.30 0.31

3 0.21 0.83 0.07 0.13 0.61 0.64 0.10 0.17

4 0.34 0.85 0.24 0.34 0.53 0.68 0.24 0.32

5 0.39 0.97 0.37 0.50 0.57 0.48 0.41 0.43

Macro-average 0.31 0.89 0.23 0.32 0.60 0.55 0.26 0.31
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TABLE 5 NILM method performance in predicting the on/o� status per appliance.

FHMM CO

Appliance Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Laptop computer 0.36 0.81 0.27 0.39 0.48 0.57 0.23 0.31

Computer monitor 0.43 0.91 0.33 0.49 0.49 0.48 0.29 0.36

Active speaker 0.39 1.00 0.39 0.56 0.53 0.50 0.41 0.45

Computer 0.57 1.00 0.57 0.73 0.50 0.47 0.58 0.52

Broadband router 0.28 1.00 0.28 0.44 0.50 0.52 0.29 0.37

External hard disk 0.60 1.00 0.60 0.75 0.50 0.48 0.61 0.54

Kettle 0.11 1.00 0.11 0.17 0.76 0.55 0.22 0.27

Rice cooker 0.01 1.00 0.01 0.02 0.92 0.40 0.04 0.08

Running machine 0.08 1.00 0.08 0.15 0.77 0.20 0.09 0.12

Washing machine 0.24 0.78 0.01 0.02 0.91 0.45 0.07 0.09

Dish washer 0.03 1.00 0.03 0.06 0.98 0.38 0.65 0.48

Fridge 0.44 1.00 0.44 0.61 0.56 0.53 0.51 0.52

Microwave 0.29 0.71 0.02 0.03 0.95 0.23 0.11 0.15

Toaster 0.30 0.72 0.01 0.02 0.95 0.07 0.01 0.02

Games console 0.60 1.00 0.60 0.75 0.50 0.46 0.61 0.52

Modem 0.19 1.00 0.19 0.32 0.50 0.50 0.19 0.28

Cooker 0.46 0.59 0.02 0.05 0.47 0.49 0.02 0.04

Freezer 0.47 0.71 0.43 0.54 0.51 0.60 0.45 0.52

Boiler 0.38 1.00 0.38 0.55 0.41 0.77 0.37 0.50

Television 0.06 1.00 0.06 0.10 0.54 0.69 0.08 0.14

Electric space heater 0.47 0.56 0.01 0.03 0.89 0.61 0.20 0.31

Projector 0.12 1.00 0.12 0.22 0.13 0.64 0.06 0.10

Hair dryer 0.46 0.86 0.38 0.52 0.48 0.49 0.34 0.40

Network attached storage 0.43 0.91 0.33 0.49 0.49 0.48 0.29 0.36

Server computer 0.39 1.00 0.39 0.56 0.53 0.50 0.41 0.45

Electric oven 0.57 1.00 0.57 0.73 0.50 0.47 0.58 0.52

Electric stove 0.28 1.00 0.28 0.44 0.50 0.52 0.29 0.37

Vacuum cleaner 0.60 1.00 0.60 0.75 0.50 0.48 0.61 0.54

Audio amplifier 0.01 1.00 0.01 0.03 0.98 0.39 0.37 0.38

better F1 score. Note that, while in this work we focused on

NILMTK implementations, our framework is modular and can

accommodate newer NILM algorithms, as those discussed in

Section 2. We then employ the t-SNE algorithm to visualize the

discovered appliance/time associations and sequential patterns.

Upon visual inspection we verify that some appliances that are

expected to be used together are indeed assigned to the same

cluster. This validates our choice of algorithm for appliance

usage pattern mining.

Finally, we focus our quantitative evaluation to the core

module of the proposed framework that is the recommender

system. We use four houses that demonstrate different

characteristics in terms of days of recordings, number of

appliances, total and average daily consumption. We generate

recommendations and observe that overall the algorithm

accurately predicts appliance usage achieving high recall (i.e., the

system correctly predicts appliances that were actually on). In

addition, and most importantly, we estimate how much energy

could be saved if the users followed the recommendations and

turned appliances off as prompted. We show that these savings

range from 2 to 17%. While our framework differs from other

research projects with similar objective in terms of setup and

parameters (source of readings, input, type of analysis, and

form of recommendation, dataset) making direct comparisons

difficult, we should note that our findings are in accordance

with other recent studies, such as Ramallo-González et al.

(2022) that measured how much energy can be saved if users

follow prompts or recommendations for energy preservation, or

Sardianos et al. (2020) that reported savings from the application

of their recommender system on a office building setup.

6.1. Energy disaggregation benchmarking

One of the reasons why we selected the UK-DALE dataset

is that it includes both the total energy consumption, as
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FIGURE 10

t-SNE clusters for House 2 appliances.
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TABLE 6 UK-DALE dataset statistics.

House No. of appliances No. of days in training/test set Total consumption (Wh) Avg. daily consumption (Wh)

2 20 212/24 31,935.98 1,330.67

3 5 36/4 1,005.86 251.46

4 6 186/21 11,658.71 555.17

5 25 124/14 44,788.08 3,199.15

well as the disaggregated appliance-level energy consumption,

which can be used as ground truth. This ground truth can

be used to evaluate the various disaggregation algorithms. For

the evaluation we use Houses 2 and 5, which are big houses

with many appliances and Houses 3 and 4 that contain a

small number of appliances each (four and five appliances,

respectively). We omit House 1 because it has many appliance

channels that contain composite measurements even in the

disaggregated data (e.g., combos of living room lamp and

tv, kitchen phone, and stereo, etc.), which makes the task

of finding the device signature and compare across houses

much harder. The output of the disaggregation algorithms

assigns a specific energy consumption x̂i to each appliance

for each time period i. As previously discussed, we focus

on two algorithms of the NILMTK library (Batra et al.,

2019), namely Combinatorial Optimization (CO) and Factorial

Hidden Markov Model (FHMM). We did not further consider

the other two options as they each had shortcomings, as

previously discussed.

We then compare the two algorithms in terms of predicting

the on/off state of each appliance. Please remember that some

appliances record energy even in their off (idle) state, if

they are plugged in. Therefore, for the ground truth data,

we first calculated the mean and labeled as “on” all values

that were above that threshold. The disaggregation algorithms

generate output in a different way: for each time period, the

appliance is either labeled as having 0 energy consumption,

or a value. We therefore labeled 0 as the “off” state, and

any reading as the “on” state. We then measure the precision

(P =
|correctly_pred_on|

|pred_on|
), recall (R =

|correctly_pred_on|
|on| ), and

F1-score for all appliances and all houses. As depicted in

Tables 4, 5, the two algorithms perform differently depending

on the appliance. Overall, we observe that FHMM outperforms

CO for most of the appliances and overall in the houses

we studied.

This is a good indicator for what would be the optimal

solution for a dataset like UK-DALE. Given that this

dataset already has disaggregated data, we performed our

recommender system evaluation using the actual (ground

truth) dataset. However, in the absence of such a dataset,

we conclude that FHMM would be a good candidate to

perform NILM.

TABLE 7 Evaluation of recommendations.

House Precision Recall F1-score

2 0.3 0.97 0.46

3 0.39 0.73 0.51

4 0.48 0.97 0.64

5 0.34 0.98 0.5

6.2. Visualization of associations

An indirect way to evaluate and verify that the discovered

appliance/time associations and sequential patterns are valid is

via clustering and visualization. For this reason, we employ the

t-SNE algorithm (van der Maaten and Hinton, 2008) to visualize

these appliances on a 2-D plane. To achieve this, we represent

each appliance’s usage throughout a day as a vector of on/off

status. The vector consists of 48 elements, each representing

a 30 min time interval starting with 00:00:00. Each appliance

has one vector for each day of the date range in which the

dataset is recorded. We create a vector list for each appliance

in the house and input it to the t-SNE algorithm for plotting.

Figure 10 shows all appliances in House 2, as well as some

visualizations of subsets of the appliances. We observe several

overlapping clusters, but within each cluster we find mini-

clusters of appliances. One clear cluster is the fridge andmodem,

two appliances that are always on. For example, the router and

speakers are clustered together tightly, and the same holds for

the monitor and laptop that are clustered together as well, since

the monitor will be used only with a laptop.We observed similar

patterns for other appliance subsets.

6.3. Recommender system evaluation

The system evaluation has been performed using houses 2–

5 from the UK-DALE dataset. These data span a wide range of

appliances (from 5 to 25 per household) and monitoring periods

(from 1 to 8 months). The data has been split using a 90:10

training-test ratio, using stratified sampling per household. The

main properties of the dataset are shown in Table 6.
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TABLE 8 UK-DALE energy saving statistics.

House Total Avg. daily Total energy Avg. energy %

consumption (Wh) consumption (Wh) saved (Wh) saved per day (Wh) energy saved

2 31,935.98 1,330.67 1,612.52 67.18 5.04

3 1,005.86 251.46 173.32 43.33 17.23

4 11,658.71 555.17 236.51 11.26 2.03

5 44,788.08 3,199.15 1,345.47 69.10 3

The test set’s power consumption data was resampled and

aggregated to determine which appliances are used the most

frequently in each data segment. The precision P and recall R for

up to 10 appliance recommendations were evaluated as follows:

P =
|relevant_rec|

|all_rec|
, R =

|relevant_rec|
|ground_truth|

, where relevant_rec is the

number of “true positives,” i.e., the appliances recommended

“on” that were also on in the ground truth set. Table 7 shows

the precision, recall, and F1-score averaged over all the time

intervals on all days in the test set. Note that some readings in the

dataset, such as these for House 3 spanned multiple appliances,

resulting in a coarser prediction and recommendation. The

algorithm accurately forecasts a household’s energy habits in

terms of appliance usage and achieves high recall at the expense

of precision. It is important to note that varying confidence

levels affect how the rules are covered. We tested various

confidence thresholds. For higher thresholds, the number of

appliances drops and thus less appliances are included in the

recommendations. This is expected to yield worse results in

terms of energy savings, and thus we report our results with

the optimal threshold for the particular dataset. Please note

that in this problem, the objective is to save energy while not

compromising user satisfaction. This trade-off requires that

we try to match the household’s energy usage patterns and

avoid recommending turning appliances off that are predicted

to be on during that time. Thus, we opt for high recall, as

previously mentioned. However, the UI provides the user the

option to filter out appliances that they do not wish to get

recommendations for (i.e., some sort of personalized post-

pruning of the generated rules).

After that, we determined how much energy can be saved

in each household if users follow the recommendation to switch

off appliances. For each time period, we estimated the energy

used by all the appliances that were on in the test set but

were advised to be off by the system. This is energy that

can be saved if recommendation are followed. The findings,

which are described in Table 8, show that implementing such

a recommender system could result in energy savings ranging

from 2 to 17%. We found that the number of appliances has

a negative correlation with energy savings, since the more

vital (nearly always on) appliances a family has, the less is

the impact on energy saving from turning off the remaining

few appliances.

7. Conclusions

This paper introduced an end-to-end recommender system

that determines which appliances should be turned on or

off on specific time slots during the day and the associated

readings of a household’s power usage. In this work we

present an end-to-end recommender system that generates

recommendations on which appliances need to be turned

on/off depending on the time of day and the respective power

demand readings of a household.We first explore various energy

disaggregation algorithms that can be used to perform non-

intrusive load monitoring (NILM), in the absence of smart

meters. Our benchmarking of two of the most popular and

scalable algorithms with the UK-DALE dataset showed that

the FHMM algorithm yields better results in disaggregating

raw power meter data into appliance-level energy consumption.

Then, using association rules and sequential pattern mining,

we describe our clustering-based data engineering method for

generating energy consumption profiles in households from

fine-grained observations, which are then utilized to build

appliance usage patterns. We also present our proof-of-concept

prototype, used to demonstrate how such a system could be

deployed to help users via an intuitive and interactive dashboard

monitor their energy consumption, and also save energy.

The prototype generates recommendations, while taking into

consideration each household’s energy consumption profile and

customized preferences. Through experimental evaluation using

the UK-DALE dataset collected from 4 very diverse households,

in terms of suggestions and performance metrics, we found that

Apriori, FP-Growth, and TRuleGrowth were relatively similar.

TRuleGrowth has shown faster data processing and improved

memory scalability. Depending on the number of appliances

used in each household, our initial findings indicate that the

system has a high recall rate and can help a household save

between 2 and 17% of their energy. We intend to incorporate

inter-appliance associations and correlations as part of our

ongoing work to enhance the recommendations. We will

also continue to assess how seasonality or time/day-specific

profiles (such as weekdays vs. weekends) affect the quality

of the recommendations and enhance energy savings. An

interesting and relatively simple extension includes taking into

consideration the current weather conditions, as an additional
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input signal in recommended actions (e.g., turn A/C off if the

outside temperature drops below a threshold). Last but not least,

based on the results of environmental psychology user studies,

we plan to further improve the user interface by including

information in the recommendations (such as money savings)

that will also encourage users to make a change, or by letting

them set saving goals and providing analytics about their actual

gains as a reward for their action.
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