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Abstract: Cancer is one of the primary causes of worldwide human deaths. Most cancer patients
receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious
and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic
strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment.
The application of nanotechnology has facilitated the development of nano-drug delivery systems
(NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs.
In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been
considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving
biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods
of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery,
gene therapy, and early diagnostics for cancer therapy.

Keywords: polymer nanocarriers; cancer therapy; drug delivery

1. Introduction

Cancer is still the second leading cause of death globally, and its death toll exceeds
the combined deaths from human immunodeficiency virus/acquired immunodeficiency
syndrome, tuberculosis, and malaria [1–4]. In 2020, GLOBOCAN estimated that 19.3 mil-
lion new cancer cases and almost 10.0 million cancer deaths occurred worldwide [5,6].
Cancer includes a series of diseases caused by the uncontrolled growth of malignant
cells, which may invade or spread to other parts of the body [7,8]. Thus far, many strate-
gies have been developed for cancer treatment, including surgery [9,10], radiation ther-
apy [11–13], chemotherapy [14–17], targeted therapy [18–20], hormonal therapy [21,22],
and immunotherapy [23,24], or a combination of these options [25,26]. As a result of all
these treatments, the incidence of cancer has declined slightly over the past decade.

However, traditional therapies are only effective for some early malignant tumors [27–29],
and the main reasons for eventual failure of tumor treatment are metastasis [30], recur-
rence [31], heterogeneity [32], chemotherapy resistance [33], and avoidance of immune
surveillance [34]. Chemotherapy is mainly achieved by using chemotherapeutic drugs to
kill cancer cells [35,36]. As a means of systemic treatment, the drug often circulates through-
out most of the organs and tissues of the body with the blood, which can cause damage to
other healthy tissues and organs [37,38]. However, chemotherapy has a reliable effect on
some tumors that tend to spread throughout the body and on metastatic tumors [39–41].
The classic chemotherapeutic drugs (doxorubicin (Dox) [42], vemurafenib [43], and pacli-
taxel (PTX) [44]) are still the mainstay of current treatment, but they are limited by narrow
treatment indicators, significant toxicity, and frequent acquired drug resistance. Traditional
chemotherapy interferes with DNA synthesis and mitosis, leading to the death of fast-
growing and dividing cancer cells [16,45,46]; however, these drugs are non-selective and
can damage healthy normal tissues, causing serious complications and undesirable side
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effects, such as loss of appetite and nausea. In fact, the severe adverse effects of chemother-
apy drugs on healthy tissues and organs are the main reason for the high mortality of
cancer patients.

Further research into the pathogenesis of cancer has led to new treatment options,
including targeted therapy [47,48] and immunotherapy [49,50]. Targeted chemotherapy
mainly uses molecular targeted drugs to block specific molecules and metabolic pathways
in tumor cell growth and proliferation. Compared to other types of cancer treatments,
targeted therapy can achieve the greatest therapeutic effect and lowest toxicity. In particular,
the more targeted the drug, the lower the possibility of drug resistance. The clinical success
of immunotherapy has revolutionized the treatment of a variety of advanced malignant
tumors [51,52]. However, most patients do not benefit from existing immunotherapies, and
many patients experience immune-related adverse events [53]. It is generally believed that
the development of new anticancer drugs has greatly improved the survival and quality of
life of cancer patients. However, in many cases, these drugs show a good response during
initial treatment, but later on in the treatment, the efficacy of the drugs decreases and can
lead to cancer recurrence. This phenomenon is called acquired drug resistance and is a
major problem in the treatment of cancer [54–56]. The formation of drug resistance is mainly
due to a kind of internal resistance that develops within tumor cells [57–59]. A specific
cell membrane transporter changes the drug transport and pumps the drug out of tumor
cells [60]. In addition, the gradual acquisition of specific heredity and epigenetics in cancer
cells during the treatment process greatly contributes to acquired drug resistance [54].
Drug resistance is defined as a decline in the efficacy and potency of a drug in order to
limit treatment, ultimately leading to failure in the treatment of the disease [61]. Tumors
such as kidney cancer [62], hepatocellular carcinoma [63], and malignant melanoma [64]
often respond well to chemotherapy in the early stage, but become unresponsive in later
stages of treatment due to the development of acquired drug resistance.

In order to solve these problems, we urgently need to develop new treatment methods
to help improve clinical efficacy. The emergence of nanotechnology has had a profound
impact on the clinical treatment of tumors, which has promoted the rapid development of
targeted therapy [64–66], combined drug therapy [67,68], and early tumor diagnosis [69].
Among them, NDDSs have become a research hotspot at the interface between nanotechnol-
ogy and biomedicine, because of their efficient loading, targeted delivery, controlled release,
and other functions for drugs, and show promise in biomedical applications [70,71]. For
example, silicon-based nanomaterials [72], polymers [73], liposomes, and metal NPs [74]
are designed to deliver anticancer drugs to tumor tissues. In various NDDSs, polymer-
functionalized nanomaterials have attracted widespread attention as excellent candidate
materials for therapeutic drug delivery, especially based on their multivalent binding abil-
ity and ideal biocompatibility [75,76]. In this paper, we discuss various types of polymer
NPs and focus on their applications in traditional chemotherapy, immunotherapy, gene
therapy, and combination therapy.

2. Nanocarriers
2.1. Physical and Chemical Properties of Nanocarriers

In recent years, NP delivery systems as drug delivery carriers have aroused extensive
research interest in the field of cancer precision medicine. NPs are particle dispersions
or solid particles with a particle size in the range of 10–1000 nm [77]. Depending on the
material, the NPs include lipids (liposomes) [78], polymers (artificial synthetic polymer
NPs and natural polymer NPs) [79], inorganic NPs (silicon NPs) [80], organic compounds
(carbon nanotubes) [81], and metal NPs (gold NPs, silver NPs, magnetic NPs, etc.) [82].
Most studies have suggested that the NP delivery systems described above can be used
to alter and improve the pharmacokinetic and pharmacodynamic properties of various
types of drug molecules [83–85]. The main reason is that NP delivery systems prolong
the half-life of the drug in vivo, limit the entry of the drug into normal histiocytes, and
regulate the release of the drug in the target organ tissue at a controllable and continuous
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rate. As ideal nanodrug delivery systems, in addition to being able to specifically target
drug delivery to tumor tissue, NPs must also have a long circulatory function that is not
easily recognized by the phagocytic cells of the reticuloendothelial system. The physical
and chemical properties of NPs consist primarily of the following: Size, surface charge,
shape, composition, and modification of surface groups [86,87].

The particle size and particle size distribution of NPs are two of the most important
characteristics of drug delivery systems [88]. They determine the distribution, half-life,
toxicity, and targeting ability of NP systems in vivo [89]. In addition, they affect the drug
loading, release, and stability of NPs. The release of a drug is mainly affected by the size of
the particle. Smaller particles have a larger surface area, so most of the drug contained in
the carrier attaches to or near the surface of the particle, resulting in rapid drug release [90].
It is known that the clearance rate of very small NPs can be faster, and most of these NPs
end up in the liver and spleen; hence, the usage of these targeted NPs is impractical and
ineffective. On the other hand, micro-carriers are too large to be administered through small
capillaries. Therefore, choosing the right material and particle size is another important
aspect in the selection of proper targeting NPs to treat cancer. Nowadays, researchers can
rely on the preparation process to adjust the size of NPs according to actual needs [91].

2.2. Challenges and Strategies of NPs as Drug Delivery Carriers in Cancer Therapy

Nanocarriers have important advantages, including adjustable physical and chemical
properties, ease of production, scalability, and stability during storage [92]. Compared with
other delivery vehicles, these are the basic factors for expanding clinical applicability. The
fundamental challenge of using NPs for successful gene therapy lies in biological barriers,
targeted therapy, and safety [93]. Understanding these obstacles in cancer gene therapy in
detail and developing methods to bypass them are critical to realizing NPs’ ultimate potential.

2.2.1. Biodistribution and Barrier Properties

The biodistribution of NPs includes the two interrelated challenges of nano-drug
particles gathering in unwanted locations as well as targeting target locations, and their
guidance or misdirection by barrier properties [94]. The biodistribution and final parti-
cle activity largely depend on the protein corona that forms initially upon contact of the
nanomaterial with the body’s various biological components [95]. Change in the protein
corona relies heavily on the physicochemical properties of the polymer NPs and circu-
lation time. In addition, barrier properties to drug delivery can prevent the successful
accumulation of nano-therapeutic drugs at the disease site, limiting effective responses to
disease processes from cancer to inflammation. These obstacles include arrangement and
subsequent isolation of the mononuclear phagocytic system (MPS), nonspecific distribution,
blood/vascular flow restriction, pressure gradients, cellular internalization, escape from
endocrine and lysozyme chambers, and drug excretion pumps [96]. Although a large
number of research efforts are aimed at incorporating multiple functions and functions into
the overall nanoparticle design, many of these strategies have failed to adequately address
these obstacles [97]. Traditional NPs need to be reimagined to successfully resolve these
obstacles that hinder drug delivery. Unless nanodrugs are designed with consideration of
most (if not all) biological barriers encountered where NPs can escape after entering the
body, these obstacles will continue to limit their clinical application in tumor treatment.

In order to overcome the challenges of mass transport across barrier properties and
biodistribution, receptor targeting ligands and peptides have been used as mechanisms
for the direct transport of therapeutic NPs, as well as cell-mediated drug transport. In
recent years, the surface characteristics of NPs have been identified as important factors in
determining their lifetime and fate, and are related to their capture by macrophages during
the cycling process [98,99]. Ideally, NPs with a hydrophilic surface can more easily escape
capture by macrophages. At present, the surface of NPs is generally modified, for example
by coating the surface of NPs with hydrophilic polymers (such as poly(ethylene glycol)
(PEG)) to prevent the formation of a proteins corona in order to extend the circulation
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period of NPs in vivo [100–102]. Gao et al. found that the larger the PEG modification
on the surface of gold NPs, the smaller the particle size and the lower the plasma protein
adsorption capacity, which inhibited the formation of a “proteins corona” and enhanced
targeting ability mediated by the arginine–glycine–aspartate (RGD) peptide [103]. The
strategy of functionalizing NPs with PEG or PEGylation is mainly derived from the ob-
servation that the circulatory life of NPs is low after intravascular administration [104].
PEGylation involves grafting PEG onto the surface of NPs, where ethylene glycol units
are closely associated with water molecules to form a moisturizing layer [105]. This mois-
turizing layer in turn hinders protein adsorption and subsequent removal of MPS. In
addition, researchers have recently developed a biomimetic particle coating composed of
cell membranes separated from corresponding cells (red blood cells, white blood cells and
tumor cells, etc.) [65,106,107], which enhanced the immune escape of NPs and extended
the lifetime of drugs in the body. When the cell membrane surface was functionalized,
amount of protein (IgG and albumin) adsorbed on the particle surface was reduced by
over 10-fold [108]. Therefore, this biomimetic coating strategy significantly reduced the
uptake of particles by macrophages, especially when the coating originated from the same
donor species. Consistently, a low accumulated degree of functionalized particles in the
liver has been observed when testing such a platform in a mouse model by systemic
administration [109].

2.2.2. Tumor Targeting

Heterogeneity, high metastasis, and invasiveness within the tumor, as well as the
lack of clear tumor surface markers, further hinder the development of efficient targeted
drug/gene delivery [110]. At present, there are many options for achieving tumor-targeted
gene delivery. For example, our previous work mainly focused on passive targeting
through the enhanced permeability and retention (EPR) effect or through cancer cell-
specific ligands (such as antibodies, peptides, and surface mountants) [111,112]. Active
targeting enhances the targeting ability of NPs to maximize tumor distribution and deep
tissue penetration. In recent years, targeting the tumor microenvironment has become
a promising strategy to overcome tumor resistance, prevent metastasis, and improve
the efficacy of gene therapy [113]. NPs have been designed to be sensitive to low pH
and high metalloproteinase-2 levels in the tumor microenvironment and locally regulate
angiogenesis and hypoxia. Recently, Wang et al. have shown that pH-sensitive drug
delivery systems can deliver and release drugs within cancer cells and/or in a more acidic
microenvironment inside cancer cells [114]. Collectively, given the heterogeneity of tumors,
rational design and evaluation of NPs are necessary.

2.2.3. Safety of Nanocarriers

Safety is another important concern for translational medicine. The main goal of
designing NPs as drug delivery systems is to control the particle size, surface properties,
and release of pharmaceutically active substances, so that the drug can be accurately de-
livered to the pathological site under the best time and dosage regimen for treatment.
Liposomes have become one of the first nanocarriers used in clinical treatments due to
their unique advantages [115]. Liposomes can effectively protect the drug from degrada-
tion, target the site of action, and reduce the toxicity or side effects, but their application
is limited by inherent problems such as low encapsulation efficiency, rapid seepage of
water-soluble drug during in vivo circulation, and poor stability [116]. Researchers have
found that polymer NPs are more likely than liposomes to help stabilize drugs (proteins
and genes) and have useful controlled release properties [66,117,118]. In addition, the
potential toxicity and safety issues of most nanomaterials are the main factors limiting
their clinical applications [119]. In vivo, these materials may cause immune responses and
cytotoxicity, and may have the ability to clear in the internal organs [120]. At the same time,
nanomaterials are often endowed with the ability to cross various barriers and interact with
different cellular components such as proteins, lipids, and genetic materials. Therefore,
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a comprehensive assessment of the safety of nanomaterials will help their application
in the clinical treatment of tumors [121]. Polymer NPs exhibit properties such as easy
degradation, low immunogenicity, and non-toxicity, which have attracted much attention
from researchers [122]. For example, the biodegradable synthetic polymers commonly
used in drug delivery applications, namely PLA and PLGA, have been approved by the US
Food and Drug Administration (FDA) [123,124] because of their confirmed safety and bio-
compatibility and low levels of immunogenicity and toxicity, and their degraded oligomers
in the body are easily excreted through a common metabolic pathway [125].

2.3. Polymer NPs

Further research on polymer NPs is of great significance to researchers in the fields of
science and medicine. Polymer NPs play a central role in a variety of applications, such
as drug delivery, medical imaging, and the early detection of disease [126–128]. Poly-
mer NPs are particles obtained from natural (chitosan [129], sodium alginate [111] and
cyclodextrin [130], etc.), semi-synthetic or synthetic polymers (poly(lactic-co-glycolic acid)-
poly(ethylene glycol) (PLGA-PEG) [131], N-(2-hydroxypropyl)methacrylamide (HPMA) [132]
and poly(acrylamide) (PAM) [133]). Polymer nanosystems are produced by the polymer-
ization of many monomer units. Under certain conditions, they can be organized and
self-assembled to the size of 10–200 nm. Polymer nanocarriers are generally divided into
five types, namely micelles, nanogels, capsules, dendrimers, and mixed NPs with porous
cores [134]. Polymer NPs have a relatively large surface area, which facilitates the surface
modification of functional groups and increases the specific distribution of drugs in the
body [135]. Moreover, the controlled release properties of polymer NPs and their protective
effects on compounds make these NDDSs very advantageous, especially in the field of
drug delivery applications. Currently, various polymers have been used in NP drug deliv-
ery research to increase the therapeutic benefits while minimizing side effects (Figure 1).
Overall, the advantages of polymer NPs as carriers include controlled release, protection,
and specific targeting ability of drug molecules.

Figure 1. The different types of polymer nanocarriers-based drug delivery for cancer therapeutics [136,137].
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3. Application of Polymer Nanocarriers in Tumor Targeted Therapy
3.1. Chemotherapy Based on Polymer Nanocarriers

Chemotherapy is the most common treatment for cancer [14]. As is well-established,
chemotherapeutic drugs can be divided into alkylating agents (nimustine, cyclophos-
phamide, glycosyl mustard, etc.) [138], antimetabolites (deoxyfluoroguanosine, amcitabine,
5-fluorouracil, etc.) [139], antitumor antibiotics (actinomycin D, Dox, and pelomycin) [140],
antitumor plant and animal ingredients (hydroxycamptothecin, PTX, etc.) [141], antitumor
hormones (atamitan, anastrozole, and nolvadex, etc.) [142], etc. Unfortunately, the current
clinical application of antitumor chemotherapeutic drugs has led to unforeseen toxicity
and side effects, thus limiting the drug dosage and use. When they kill tumor cells, they
also damage normal tissue cells [143]. Among them, the destruction of the body’s immune
system caused by the killing of lymphoid tissue cells further aggravates the development
of cancer. In addition, due to its toxic and side effects, chemotherapy sometimes has
complications such as infection and bleeding. To solve these problems, polymer NPs, as
chemotherapeutic drug delivery systems, not only have high drug loading capacities but
also can target the delivery of drugs to cancer tissues and control the release of drugs [144].
Polymer NDDSs can improve drug hydrophilicity and encapsulation efficiency, thereby
protecting fragile molecules from early degradation/metabolism and prolonging the half-
life of the drug during the metabolic cycle. As shown in Table 1, these drug delivery
systems can specifically deliver chemotherapeutic drugs to tumor sites and reduce toxicity
and side effects.

Table 1. List of polymer NPs for Cancer Chemotherapy.

Drug Name Type of Nanocarriers Cancer Type Reference

Taxol (PTX) Self-assembled lipid NPs Breast, ovary, and lung [145]

Folex (Methotrexate) Lipid-polymer hybrid NPs Breast, lung, blood, bone, and lymph system [146]

Adriamycin (Dox) PLGA NPs and chitosan NPs Breast cancer, lymphoma, and multiple myeloma [147,148]

Platinol-AQ (Cisplatin) ScFvEGFR-heparin-cisplatin; Bladder, ovary, lung, and testicles [149–152]

Oncovin (Vincristine) Peptide R7-conjugated PLGA-PEG NPs; Leukemia and lymphoma [153]

5-FU (Fluorouracil) Chitosan NPs and solid lipid NPs; Colon, breast, stomach, and head and neck [154,155]

Gemzar (Gemcitabine) Polyketal NPs and lipid polymer hybrid; Pancreas, breast, ovary, and lung [156,157]

Fang et al. found that Dox-loaded dextran-based nanocarriers are an effective drug de-
livery system for the treatment of malignant lymphoma with reduced cardiotoxicity [158].
First, dextran reacts with the monomer methyl-acrylate under the catalysis of cerium
ammonium nitrate, and then the crosslinking agent diallyl-disulfide is added to form a
new type of nanocarrier [159]. Finally, Dox is covalently bonded to the nanocarrier through
a hydrazone bond. This novel drug delivery system not only has a high drug loading
capacity and pH sensitivity, but can also reduce cell resistance. The emergence of multidrug
resistance in cancer treatment is a huge challenge that limits drug efficacy, thus leading to
the failure of many chemotherapy drugs in clinical treatment. As far as polymer NPs are
concerned, Cuvier et al. [160], Nemati et al. [161], and Verdière et al. [162]. showed that Dox-
loaded polyalkylcyanoacrylate NPs (PACA NPs) can overcome multidrug resistance. In
1997, Verdière et al. used Dox-loaded PACA NPs to overcome multidrug resistance in vitro.
They found that the main reason for PACA NPs’ ability to reverse multidrug resistance
was that the NPs adsorbed onto the surface of tumor cells and then released their coated
drugs, thereby forming a local highly concentrated gradient drug concentration around the
tumor cells. At the same time, the degradation and release of polycyanoacrylic acid and
other compounds by NPs may have interacted with Dox, which may have promoted the
accumulation of Dox in tumor cells by overcoming the transmembrane potential. Moreover,
Vlerken et al. found that polymer NPs can be used to modulate intracellular ceramide to
overcome multidrug resistance in cancer [163]. In 2015, Yuan et al. proposed self-assembled
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nanodrugs in cells as a new strategy for overcoming multidrug resistance [164]. They de-
signed a taxol derivative (Ac-Arg-Val-Arg-Arg-Cys(StBu)-Lys(taxol)-2-cyanobenzothiazole
(CBT-Taxol)) through a biocompatible condensation reaction. The results showed that
the lethality of CBT-Taxol to taxol-resistant HCT 116 cancer cells was significantly higher
than that of free taxol. Furthermore, CBT-Taxol had a more lasting effect on tubulin con-
densation, possibly due to its ability to slowly release taxol in tumor cells. Therefore, the
construction of intracellular self-assembled nanodrugs may be a new and optimal strategy
to overcome drug resistance. At present, many NP-based drug delivery systems have
been developed to overcome drug resistance by increasing cell uptake and rapid drug
release to increase the intracellular drug concentration. Wang et al. designed a polypeptide
dendritic copolymer NP to encapsulate and target Dox and to overcome multidrug resis-
tance by regulating the lysosomal pathway of breast cancer cell apoptosis [165]. Mu et al.
developed self-assembled NPs based on chitosan grafted with cholesterol hemisuccinate
to enhance the absorption of docetaxel by multidrug-resistant cancer cells [166]. In 2021,
a novel type of folic acid-modified chitosan-silica NPs were used to co-deliver PTX and
P-shRNA [167]. These NPs could effectively protect P-shRNA from degradation and
exhibited pH-responsive drug release behavior. As a targeting ligand, folic acid could
improve the uptake efficiency of NPs by multidrug-resistant breast cancer cells. In addition,
these NPs showed excellent P-shRNA release ability in cells, and effectively silenced the
expression of the target gene P-gp, thereby reducing the multidrug resistance to the PTX.
Therefore, polymer nanocarriers can help to reduce the emergence of multidrug resistance
for chemotherapeutic drugs in clinical treatment, can greatly improve the clinical efficacy
of chemotherapeutics, and can bring about a new dawn for patients.

3.2. Gene Therapy Based on Polymer Nanocarriers

Gene therapy is a technology that treats or cures diseases by modifying a person’s
genes. Gene therapy can work through the following mechanisms: (i) replacing disease-
causing genes with healthy genes; (ii) inactivating disease-causing genes; (iii) introducing
new or modified genes into the body to help treat diseases [168,169]. There are many
types of gene therapy products, including plasmid DNA, viral vectors, bacterial vectors,
gene editing technology, and patient-derived cell gene therapy products [170]. Among
them, gene editing refers to the process of making tiny, controllable changes to the DNA of
organisms, mainly using the CRISPR/Cas9 method [171]. Although advances have been
made in various nucleotide-based therapies, the low efficiency of targeted tissue or cell
delivery has limited the clinical application of gene therapy [172]. In the blood circulation,
small nucleic acid molecules are easily degraded by enzymes in plasma. In vivo fluids, the
phosphate bonds of nucleic acids, are gradually broken by exonuclease and then cleared
by glomerular filtration, and are excreted from the body with urine. Gao et al. have
also found that, in the extracellular environment, the half-life of naked small nucleic acid
molecules ranges from a few minutes to a few hours, so they cannot be enriched in large
amounts to target cells, thereby reducing the bioavailability of the drug and leading to
poor efficacy [173]. Based on these problems, we urgently need a new delivery vehicle to
enhance the therapeutic response of gene agents (siRNA [174], miRNA [175], mRNA [176],
and CRISPR/Cas9 [177]) in the system environment. Given the high instability of naked
nucleic acid in systemic circulation, the poor permeability of biofilm, and the ease of
missing the target, along with other shortcomings, the design of an appropriate carrier
must have the following characteristics: (i) a high encapsulation rate for nucleic acid drugs;
(ii) the ability to protect the stable structure of nucleic acid molecules; (iii) accurate delivery
of nucleic acid drugs to target tissues and cells.

In recent decades, nanotechnology has made major breakthroughs in the development
of safe and efficient gene vectors (Table 2). Compared to viral vectors, nanocarriers not only
have good biosafety but can also deliver gene agents to target cells with high efficiency [178].
In addition, NDDSs can maintain their functions while improving the bioavailability of
drugs and reducing off-target effects. Among existing nanocarriers, polymer nanocarriers
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are attracting a great deal of attention due to their non-toxicity, low immunogenicity, and
high biocompatibility. RNA interference (RNAi) is a promising technique for regulating
tumor genes in cancer therapy [179]. Effective cancer treatment using RNAi requires
efficient delivery of siRNA and silencing of target genes in cancer cells. NDDSs are a
relatively convenient way to deliver therapeutic siRNA to solid tumors, including tumor
metastasis. However, there are multiple obstacles to delivering therapeutic siRNA to
the cytoplasm of cancer cells. To overcome the challenges of current siRNA delivery
vehicles, researchers have designed many interesting and increasingly complete drug
delivery systems. Johan et al. prepared poly(β-amino ester)s (PBAE) through a two-step
method and designed a bioreducible PBAE–siRNA NP for the systematic delivery of siRNA
in vivo to brain tumors [180]. NPs based on PBAE have high in vitro permeability, and the
positively charged surface improves siRNA loading efficiency and can remain stable in
the presence of serum proteins. In addition, the diameter of PBAE NPs is approximately
57 nm, small enough to cross the blood–brain barrier (BBB) to reach the glioma site and
specifically inhibit the expression of target genes. Li et al. reported a dual supramolecular
nanocomposite composed of α-cyclodextrin-modified hyaluronic acid and an azobenzene-
modified diphenylalanine derivative with a positively charged imidazole group [181].
Such nanocarriers can bind to siRNA through electrostatic interactions, and effectively
deliver them to cancer cells in order to inhibit their growth. In addition, the azobenzene
double bonds of NDDs are isomerized under ultraviolet radiation (365 nm), resulting in the
disintegration of the NPs to release siRNA, while showing good cytotoxicity toward cancer
cells. Li et al. believed that a new drug delivery system was expected to overcome the
shortcomings of the high-density positive charges of gene transfection reagents, damaging
the membranes and cells of normal cells, thereby providing a promising method for gene
delivery. Ashley et al. have shown that most NPs are recognized and eliminated by
the immune system, limiting the bioavailability of gene agents [182]. Biomimetic NPs
modified with active cell membranes are now one of the most attractive nanostructures.
The invisibility of cell membranes allows biomimetic NPs to be altered and functionalized
with self-awareness and targeting capabilities to dilate blood circulation and avoid immune
capture. Chen et al. designed a cancer cell membrane cloaking NP for the targeted
co-delivery of Dox and programmed death-ligand 1 (PD-L1) siRNA [183]. Cancer cell
membrane-covered polymer NPs show good internalization of self-recognition, which can
effectively camouflage the nanocarrier while also having multiple membrane antigens and
surface functionalization.

Table 2. List of polymer NPs in gene therapy for cancer treatment.

Gene NPs (Class) Tumor Type Reference

mRNA (P53) Paclitaxel amino lipid NPs Breast cancer [184]

siRNA (CDK1)
Aptamer-protamine-siRNA NPs and

Carboxylated graphene oxide-trimethyl
chitosan-hyaluronate NPs

Breast cancer, melanoma, and colorectal cancer [185,186]

CRISPR/Cas9 genome editing Phenylboronic acid-derived lipid NPs Cervical cancer [187]

miRNA (c-Myc) polymeric CXCR4 antagonists NPs Human malignant cholangiocarcinoma [188]

Therefore, the combination of gene therapy and a nanocarrier-mediated drug delivery
system holds important prospects for future cancer treatment. Furthermore, gene therapy
offers a promising strategy for cancer treatment by specifically targeting oncogenes. More
interestingly, the above strategies can also be combined with NP-mediated imaging meth-
ods to safely track and identify the biodistribution of nanomedicines. At the same time,
the emergence of polymer nanocarriers has improved the serious challenges of toxicity
and immunogenicity posed by other types of nanocarriers, and has broadened the clinical
application of nanocarriers in cancer therapy.
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3.3. Immunotherapy Based on Polymer Nanocarriers

In the past decade, cancer immunotherapy has received great attention. Cancer im-
munotherapy mainly uses immune checkpoint inhibitors, agonists, antigens, and chimeric
antigen receptor T cells to activate the patient’s innate and adaptive immune system to
combat tumor cells [189,190]. Unlike other oncologic therapies (such as chemotherapy,
radiotherapy, and surgery), immunotherapy aims to restore the antitumor activity of the
immune system and use the patient’s own immune system to attack abnormal cells, thereby
improving efficacy and reducing missed targets in the treatment of advanced malignant
tumors [191]. In recent years, cancer immunotherapy has achieved some significant clinical
successes, including cancer vaccines obtaining FDA approval, and immune checkpoint
blockade (ICB) [192], adoptive cell transfer (ACT) [193], monoclonal antibody (mAbs)
therapy [194], and chimeric antigen receptor (CAR) T cell therapy with programmed cell
death 1 (PD-1) [195] or its ligand (PD-L1) [196] as immune checkpoint inhibitors have
shown promise. However, the inherent limitations of conventional immunotherapy are the
difficulty of precise dose control, insufficient tumor tissue enrichment, and partial immune
response silence. This has resulted in the overall response rate of patients still being less
than 30%, accompanied by immune-related adverse events (enteritis, pneumonia, hepatitis,
myocarditis, and neurotoxic effects) [197].

Therefore, there is an urgent need to improve current cancer immunotherapies, and
Ahmed et al. found that NP-based methods can improve their ability to enhance T cell
activation on tumor cells and improve their antitumor efficacy with minimal toxicity [198].
Effective control of the release of immune agonists or adjuvants is an important way to
avoid the attacks on normal tissues and organs caused by excessive immune activation. In-
terestingly, studies have found that immunomodulators are encapsulated in biodegradable
polymers, such as PLGA, where they are slowly released as the polymer is degraded [199].
Moreover, polymer nanomaterials have been confirmed in numerous studies to have good
biocompatibility, easy degradation, and non-toxicity (Table 3).

Table 3. NPs-based immunotherapy for cancer treatment.

Drug Name Class of Treatment Tumor Type Reference

Keytruda (Pembrolizumab) Checkpoint Inhibitor
(PD-1 inhibitor) Melanoma and non–small cell lung cancer [200,201]

Yervoy (Ipilimumab) Checkpoint Inhibitor
(CTLA-4 inhibitor) Melanoma [202,203]

Imfinzi (Durvalumab) Checkpoint Inhibitor
(PD-L1 inhibitor) Non-small cell lung cancer [204]

Kymriah (Tisagenlecleucel) CAR T-cell therapy Large B-cell lymphoma [205]

Provenge (Sipuleucel-T) Cancer Vaccines Prostate cancer [206]

Nahal et al. developed an approach to protein NP (pNP) engineering based on reactive
electrospraying and controlled the particle size, elasticity, and mesh size at the molecular
level of the pNP by controlling the PEG/ovalbumin (OVA) ratio [207]. The results showed
that the OVA pNPs led to a significant increase in median survival relative to solute
OVA antigens in a B16F10-OVA melanoma mouse model. In addition, Nishit and Si et al.
showed that by wrapping cell membranes from different cell sources onto NPs, the active
proteins on the cell membranes could endow the NPs with various required functions or
adjuvant therapeutic effects, providing a way to enhance cancer immunotherapy [208,209].
Ochyl et al. reported a novel type of PEGylated tumor cell membrane vesicles as a new
vaccine platform for tumor immunotherapy, confirmed in a mouse tumor model [210]. The
endogenous cell membrane obtained from cancer cells forms PEGylated NPs (PEG-NPs).
PEG-NPs show good serum stability in vitro and efficient drainage through local lymph
nodes upon subcutaneous administration in vivo. In tumor-bearing mice, treatment with
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PEG-NPs synthesized by mouse melanoma cells can cause high-efficiency antigen-specific
cytotoxic CD8+ T lymphocyte responses. Furthermore, Wu et al. reported a surface-layer
(S-layer) protein-enhanced immunotherapy strategy based on cell membrane-coated S-
CM-HPAD NPs for effective malignant tumor therapy and metastasis inhibition [211].
They proposed that biomimetic S-CM-HPAD NPs have the same targeting, multi-antigen
immune activation and drug delivery capabilities, while encapsulated Dox can enhance
the immunotherapeutic response and inhibit the growth and metastasis of melanoma
tumors by inhibiting myeloid-suppressive cells. It has also been reported that NPs (Natural
killer cell NPs, NK-NPs) containing the photosensitizer 4,4′,4′′,4′ ′ ′-(porphine-5,10,15,20-
tetrayl) tetrakis (benzoic acid) (TCPP) can eliminate primary tumors and inhibit distant
tumors through the NK cell membrane. Deng et al. found that NK-NPs enhanced NK cell
membrane immunity through immunogenic photodynamic therapy (PDT) and produced a
stronger immune response for tumor-targeted cell membrane immunotherapy [212]. Through
proteomic analysis of the NK cell membrane, they proved that the NK cell membrane can
target NK-NPs to tumors and initiate the polarization of M1 macrophages to produce cell
membrane immunotherapy. Thus, polymer NPs camouflaged by cell membranes have been
studied in recent years as powerful drug carriers for improved immunotherapy.

3.4. Combination Therapy Based on Polymer Nanocarriers

Cancer is a complex disease driven by multiple gene mutations, and its progression
involves interaction between cancer cells and their microenvironment [213]. Compared
to single-agent therapy, combination chemotherapy has shown better clinical treatment
effects, especially in delaying the development of cancer chemotherapy resistance [214,215].
Studies have found that cancer cells acquire defense mechanisms by over-expressing drug
efflux pumps, increasing drug metabolism, enhancing self-repair capabilities, or expressing
altered drug targets, resulting in reduced efficacy and, ultimately, failure of treatment [61].
In order to solve this problem, the use of two or more drugs with different pharmacological
mechanisms for combined therapy is a promising treatment strategy (Table 4). For example,
in vivo efficacy of dual-drug-loaded NPs was better than that of a single formulation
of combretastatin and Dox in mice with B16/F10 melanoma or Lewis lung carcinoma-
bearing mice [216]. Currently, various nanodrug delivery systems, such as liposomes
and polymer NPs, are used to provide multiple treatments at the same time, including
chemotherapeutics, siRNA/mRNA, immunoagonists, photosensitizers, and antiangiogenic
agents [217]. In this regard, many polymer NPs have been widely used in the treatment of
various cancers. Their advantages are mainly reflected in the prolonged drug half-life, high
drug loading rate, low toxicity, controlled release, and specific enrichment. In addition,
an important advantage of polymer nanocarriers is that drugs with different physical and
chemical properties can be co-encapsulated in the same nanocarrier and delivered to tumor
cells simultaneously to achieve combined therapy [218]. In our previous research, we
reported the self-assembled polymer nanocarrier-mediated co-delivery of metformin and
Dox for the treatment of melanoma [111]. We mainly used folic acid–sodium alginate–
cholesteric amphoteric polymer NPs to co-deliver metformin and Dox to melanoma tissues,
and to inhibit tumor progression by inducing PANoptosis (pyroptosis, apoptosis, and
necroptosis) of melanoma cells (Figure 2). To ensure effective drug release in the target
tissue in an ideal manner, several strategies have been developed involving introducing
stimulus responsiveness into polymer NPs, giving them a specific ability to change their
structure or chemical composition in response to slight changes in the environment, which
then triggers drug release. Guo et al. designed a dual-pH responsive biopolymer–Dox
conjugate NP to encapsulate lapatinib [219]. In an acidic tumor environment, the surface
charge conversion of NPs can be triggered, and the uptake of drug-loaded NPs and the
release of drugs can be promoted by tumor cells. This is expected to have an improved
therapeutic effect on breast cancer. In addition to pH-sensitive nanocarriers, Liu and his
collaborators successfully prepared and modified glutathione (GSH)-responsive Fe-DSCP
NPs constructed from Fe3+ and the cisplatin prodrug (DSCP) [220]. This cRGD-conjugated
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Fe-DSCP-PEG NP (Fe-DSCP-PEG–cRGD) can be used as a tumor-specific therapeutic
drug for the combined therapy of targeted chemotherapy and chemotherapy kinetics. In
addition, researchers have found that biomimetic NPs have great potential in combination
therapy. Wang et al. proposed that the use of erythrocyte cell membranes to disguise
NPs could efficiently deliver photosensitizers and pro-hypoxic drugs in combined tumor
therapy [221]. Similarly, Cong Xu et al. developed a biomimetic dual-drug delivery
system (Si/PNPs@HeLa) that simultaneously targeted the delivery of PTX and siRNA
by camouflaging HeLa cell membranes onto siRNA/PTX co-loaded PLGA NPs [222]. In
summary, we have reason to believe that combined therapy mediated by nanodrug delivery
systems will bring about a new dawn for the personalized treatment of tumors.

Table 4. List of polymer NPs for combination therapy.

Therapeutic Agents NPs Tumor Type Reference

Paclitaxel/lonidamine Polymeric PLGA-PEG NPs, PCL NPs Breast cancer [223]

DOX/combretastatin Lipid-polymer hybrid NPs, PLGA NPs Lung [216,224]

DOX/metformin Folic acid-cholesterolsodium alginate NPs Melanoma [111]

PTX/siRNA layer-by-layer NPs Lung [225]

SiRNA/OVA PLGA NPs Melanoma [226]

Figure 2. The self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxoru-
bicin for melanoma therapy Reproduced from Song et al. [111].

4. Conclusions

Recent studies on NDDSs have shown that, compared to traditional chemotherapy or
immunotherapy, these systems have great advantages in targeted drug delivery. Moreover,
the unique physical and chemical properties of NP drug carriers make them very suitable
for tumor therapy [86,227]. However, despite many efforts in the development of new
targeted nanocarriers (including organic polymers and mixed systems with inorganic
materials such as gold, silver, and silicon oxide), only a few nanocarriers have been
approved for clinical use [228]. This phenomenon may be due to the lack of non-specific
distribution and the accumulation of targeted NPs after administration, and concerns
about their safety. In order to fully evaluate the advantages and disadvantages of NP
therapy, more clinical data are needed, which also helps to optimize the development
of nanomedicines. In this paper, we summarized the application of polymer nanodrug
delivery systems in tumor treatment. Compared to other systems, this type of drug delivery
system contains highlights such as its unique high drug loading efficiency and targeting
ability. Safety issues are key to designing an optimal NDDS. We found that different
polymer NPs have been proven to be safe in many studies, indicating that polymer NP
carriers may be a potential ideal drug delivery carrier for the clinical treatment of tumors.

With the development of NDDSs, advances in nanophototherapy/early diagnosis
technology have indicated that there is development potential for multi-functional “smart”
NPs, which may help to achieve individualized cancer treatment [229]. Especially in cancer
treatment, early detection of growing tumor cells is crucial, and determines the success or
failure of the treatment [230]. Nano imaging agent-based fluorescence imaging is an easy
diagnostic technique which provides high spatial and temporal resolution, excellent sensi-
tivity and good selectivity [231,232]. Therefore, without the need for anatomic intervention,
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such as the use of an endoscope or a microfiber catheter, fluorescence imaging provides the
ability to diagnose the cancer organism with high sensitivity. For the practical application
of fluorescence nanotechnology (FNP) in the practice of in vivo surgery, the following
requirements must be followed: (i) FNP should be demonstrated with high purity and
non-toxicity to ensure safe management, (ii) the biological system should have excellent
colloidal stability to avoid degradation or aggregation and to increase blood circulation
time, (iii) complete removal from the biological system should be guaranteed after the
imaging process is completed, and (iv) dyes containing NPs should have high stable fluo-
rescence to ensure long-term imaging and a good signal-to-noise ratio [233]. Previously, we
emphasized that polymer NPs have excellent biocompatibility, low toxicity or non-toxicity,
and can form long-term stable particles in the biological environment. Meanwhile, polymer
NPs can be loaded with fluorescein multiple times to cause fluorescence enhancement,
protect the dye in the nanoparticle core from the biological environment, and avoid unnec-
essary side effects, such as decreased fluorescence caused by protein interactions [234,235].
Continuous research on NPs in preclinical and clinical research will improve the prevention,
diagnosis, and treatment of cancer.
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