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ABSTRACT Stereophotogrammetry is finding increased use in clinical breast surgery, both for breast
reconstruction after oncological procedures and cosmetic augmentation and reduction. The ability to visualize
and quantify morphological features of the breast facilitates pre-operative planning and post-operative
outcome assessment. The contour outlining the lower half of the breast is important for the quantitative
assessment of breast aesthetics. Based on this inferior breast contour, relevant morphological measures,
such as breast symmetry, volume, and ptosis, can be determined. In this paper, we present an approach
for automatically detecting the inferior contour of the breast in 3D images. Our approach employs surface
curvature analysis and is able to detect the breast contour with high accuracy, achieving an average error of
1.64mm and a dice coefficient in the range of 0.72–0.87 when compared with the manually annotated contour
(ground truth). In addition, the detected contour is used to facilitate the detection of the lowest visible point
on the breast, which is an important landmark for breast morphometric analysis.

INDEX TERMS Breast morphology, 3D breast image, breast contour detection, lowest visible point,
curvature analysis.

I. INTRODUCTION
Stereophotography in conjunction with breast morphometry
is now finding its niche in clinical breast surgery [1]–[9].
Three-dimensional (3D) surface images from stereophotog-
raphy enable quantitative assessments of breast morphology,
such as measurements of distances [1], breast volume [3], [4],
breast ptosis [6], [7], and symmetry [8], [9]. Evaluating these
different characteristics is essential for creating surgical plans
that achieve aesthetically pleasing results and for assessing
outcomes post-operatively.

Quantitative assessments of breast morphometrics typi-
cally involve the identification of key fiducial points, such
as the sternal notch, nipples, and inframammary fold (IMF),
that provide anatomical landmarks to delineate features of
interest. The IMF, in particular, is an important landmark for
assessing several objective measures of breast morphology.
It is defined as the fold or crease that forms the lower border
of the base of the breast and the chest wall. However, the

visibility–and thereby detection–of the IMF is influenced by
the shape of the breast, specifically sagging, or ptosis, of the
breast [10], [11]. Ptosis occurs due to gravity acting on the
breast, and increased ptosis is associated with pregnancy and
breast feeding, not wearing a bra, and loss of elastic tissue
due to aging.

In order to overcome the limited visibility of the IMF in
breasts of varying shapes, the terms lowest visible contour
and lowest visible point (LVP) are used clinically to describe
the lower border of the breasts. In women with breast ptosis,
the lowest visible contour is the inferior-most contour of the
breast that is visible with the woman in a standing position
(and is typically much lower than the IMF), and the LVP
is the inferior-most point along the lowest visible contour
of the breast. In women without breast ptosis, the lowest
visible contour and LVP are the same as the IMF. In this
study we use the term inferior breast-chest (IBC) contour to
represent the lowest breast contour in the 3D images, that is,
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FIGURE 1. A point (blue) on the inferior breast-chest (IBC) contour and
the lowest visible point (LVP) (red) are shown in 3 different views–front,
tilted, and left lateral–for ptosis grades 0-3. In grade 0 ptosis (No Ptosis),
the nipple and breast parenchyma (glandular tissue and fat which
compose the breast) are located above the inframammary fold (IMF).
In grade 1 ptosis, the nipple is at the level of the IMF and above the LVP.
In grade 2 ptosis, the breast exhibits sagging in which the nipple lies
below the level of the IMF but remains above the LVP of the breast, and
in grade 3 ptosis, the breast exhibits severe sagging in which the nipple
lies well below the IMF and lies at or below the LVP. Note that the total
extent of IMF is only visible for a ptosis grade of 0 (i.e., IBC corresponds
to the IMF) and is partially or completely obscured in other ptosis grades,
and there is a difference in height between the LVP and IBC.

the visible boundary along which the breast lies on the chest
wall (see Fig. 1). Similar to the lowest visible contour, the
IBC contour is the same as the IMF in women with no ptosis,
and is much lower than the IMF in women with ptosis.

Manually annotating the lowest visible contour and the
LVP, both in person and on images, is not only tedious and
time consuming but also suffers from high inter- and intra-
operator variability. In this novel study, we undertook the
innovative use of shape and curvature for the detection of
the inferior breast-chest contour directly from 3D images.

To date, no algorithms that directly compute the lowest breast
contour on 3D surface mesh images have been reported.
Previous studies of breast contour detection have been limited
to the detection of the contour outlining the lower half of the
breast as it lays on the chest/abdominal wall and have used
2D photographs and/or 2D images encoding depth (depth-
map images). Cardoso et al. [12], [13] described an automatic
method for the detection of the lower half of the breast
contour between an internal and an external end-point in 2D
images. In subsequent studies, they detected the 2D outline
of the lower half of the breast in photographs and range
images [14], [15].

Lee et al. [16], [17] introduced a measure of the lower
half of the breast contour in 2D images, which enforced a
mathematical shape constraint based on the catenary curve, a
perfectly flexible and inextensible string of uniform density
supported by 2 distinct points. The catenary-based shape
measure was used by Lee et al. to evaluate the contours of
the upper and lower breast in 3D images of patients [18]
and breast ptosis in 2D images [19]. Although this method
used 3D images as input, the obtained breast contours were
curves in 2D planes and did not directly mirror the 3D breast
contours.

We describe a curvature-based IBC contour detection algo-
rithm in 3D images of the female torso that employs the
shape index and minimum principal curvature [20]. As evi-
denced by the published work of Cardoso et al. [12], [13],
Oliveira et al.[14], [15], and Lee et al. [16]–[19], the detec-
tion of the breast contour has several practical applications
such as for the aesthetic evaluation of breast cancer treat-
ment [14] and the detection of prominent points on the
torso [15], breast curvature [16], [18], and ptosis.

The IBC contour is important for determining symmetry
between the left and right breasts, especially as it relates to
how symmetrical the breasts are as suspended from the chest
wall. Therefore, in this study, we present a robust algorithm to
automatically detect the IBC contour in breasts of all shapes
and sizes. The IBC contour can be used to (1) create a contour
analysis to profile the shape of the lower pole of the breast,
(2) identify the IMF in breasts without ptosis, (3) assess sym-
metry, and (4) perform automated segmentation of the breast
mound from images. We also demonstrate the utility of our
IBC contour detection algorithm for enabling the detection of
the LVP, which is used as a landmark by clinicians to assess
ptosis and breast symmetry but difficult to annotate manually.

II. METHODS
Female patients undergoing breast reconstruction surgery
at The University of Texas MD Anderson Cancer Center
and commissioned volunteers were recruited under protocols
approved by the institutional review board. All participants
enrolled in the study received $20 per study visit. Three-
dimensional images were obtained using the 3dMDTorso
system (3dMD LLC, Atlanta, GA). For contour detection,
the region of interest (ROI) was defined as the region starting
below the neck and extending to just above the umbilicus. The
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FIGURE 2. Flowchart of the algorithm for the detection of the inferior
breast-chest (IBC) contour in 3D images of the female torso.

ROI was manually cropped using customized software [1].
A flowchart of the algorithm for the detection of the IBC
contour in 3D images is illustrated in Fig. 2.

First, we calculate the 2 principal curvatures for all points
in the surface mesh of the 3D image. Then the shape index
is determined from the 2 principal curvatures [20]. A set of
possible contour points (sPP) is determined next, consisting
of points with negative shape indices (i.e., exhibiting concave
shape) and a minimum principal curvature value less than
the mean curvature of all points on the torso. The possible
contour points include not only the points lying along the
breast contour but also randomly scattered points in other
regions on the torso that represent isolated incidences of low
shape index and curvature values due to mesh undulation.
A reference point RP, located on the breast mound roughly
above the nipple position (the presence of a nipple is not
required for determination of the RP), is determined for each
breast to facilitate separation of the breast contour points from
the other points on the torso that also display low curvature
values. Finally, cubic spline curve fitting is applied to the
detected points, and the curve is identified as the breast
contour.

A. CURVATURE ANALYSIS
Curvature is defined as the amount that a surface deviates
from being flat. At each vertex point p of a 3D triangular
surface mesh, one may find a normal plane, which contains
the normal vector of the point p. The intersection of the
normal plane and the 3D surface is a plane curve. The plane
curves from different normal planes at point p will generate
different curvatures. The principal curvatures, kmax and kmin,
are the maximum and minimum values of the curvatures at
p. To calculate the principal curvatures on the 3D surface
mesh, we used a toolbox developed by Peyre [21] based on the
algorithms proposed by Cohen-Steiner and Jean-Marie [22]
and Alliez et al. [23].

B. SHAPE INDEX
The shape index S for each point on the surface
mesh was computed using the formula proposed by

FIGURE 3. (A) Representative ROI from a 3D image of the female torso
(X , Y , and Z axes are displayed in the figure). (B) Color-mapped shape
index of 3D surface mesh. The black arrow illustrates the region
eliminated from sPP by kmin < kmean. (C) Color-mapped minimum
principal curvature kmin of 3D surface mesh. The curvature values are
centered so that the kmean is 0 (green), i.e., the values above kmean are
shown to be positive (yellow to red, convex) and the values below kmean
are shown to be negative (light blue to dark blue, concave). (D) Regions
of possible contour points sPP (blue) in the surface scan. Red arrows
illustrate points on the torso that exhibit low curvature and thus are in
the sPP set but do not lie along the breast contour.

Cantzler and Fisher [20]:

S =
2
π
tan−1

(
kmax + kmin
kmax − kmin

)
(1)

We employ a pseudo-color visualization method for viewing
the shape index of the 3D mesh. Fig. 3(a) presents a repre-
sentative 3D image of the torso, and the color-mapped shape
index for the torso is presented in Fig. 3(b). The region of
the lower breast mound is red (S > 0, convex shape) and the
region of the breast contour is blue (S < 0, concave shape).

C. SET OF CANDIDATE CONTOUR POINTS
Following curvature and shape index computation, we first
obtain a set of possible contour points, sPP, to contain all
points in the ROI that have a negative S value and a minimum
principal curvature (kmin) less than the mean of the minimum
principal curvatures (kmean) for all points in the ROI. For a
point p in the ROI:

p ∈ sPP if S < 0 & kmin < kmean (2)

Points in regions that are relatively flat exhibit kmax and kmin
values close to zero. However, in these regions kmax + kmin <
0 may be met and, thereby, S < 0. We use the condition
kmin < kmean to eliminate these points from the sPP. In Fig.
3(b), the region indicated by the black arrow contains points
that meet the condition S < 0 but fail the condition kmin <
kmean. Thus, the combination of S < 0 and kmin < kmean
filters the set sPP such that it has few points that have low
curvatures and are not along the breast contour.

Fig. 3(c) shows the color-mapped minimum principal cur-
vature kmin of the 3D surface mesh. In the figure, we center
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FIGURE 4. (A) Color-mapped average of the weighted shape index (aveS )
in 5mm × 5mm blocks. The black dot indicates the position of block A,
and the arrow indicates the search range (7 × 10 blocks) above block A,
within which block B is detected as the block with the largest aveS in the
vertical direction. (B) Estimates of reference points (RPs, magenta) for
the left and right breasts.

the minimum principal curvatures so that kmean is 0, i.e., the
values above kmean are shown to be positive (yellow to red)
and the values below kmean are shown to be negative (light
blue to dark blue). The set of possible contour points (sPP) is
displayed in blue in Fig. 3(d).

D. DETERMINATION OF REFERENCE POINT FOR EACH
BREAST MOUND
Following the determination of the possible contour points
set sPP, we automatically locate an estimate for the reference
point RP (see Fig. 4) for each breast using the shape index.
RP is used as a reference point to calculate angles with

respect to the Y-axis for points in set sPP. The algorithm
for the determination of the RP leverages the anatomical
shape of the breast [10], wherein the inferior pole exhibits
largely convex contouring. The RP is thus determined to be
the point that lies above the area where the contouring of
the lower pole just begins to slope downward toward the
chest wall (indicated in Fig. 4(a) by the black dot at the
start of the black arrow). The RP determination method is
applicable to both breasts, but for simplicity, it is discussed
here in terms of the right breast only. To determine the RP,
we use the weighted shape index for each point, where the
weight is the z coordinate value of the point. Initially, the
points on the right half of the ROI are divided into blocks
based on their x and y coordinates (x, y, and z directions are
displayed in Fig. 3(a)), and the average of the weighted shape
index, aveS , is computed for each block of an empirically
determined size of 5mm× 5mm. The 3D point cloud is dense
in the breast mound region, with typical distances between
adjacent points in this region at≤ 2mm. A 5mm×5mm block
includes approximately 9 points and allows computation of a
smoothed weighted shape index for the points. For each block
i, the average of the weighted shape index, aveS i, is computed
as follows:

aveS i =

∑ni
j=1 Sijzij

ni
, (3)

where ni is the number of points in block i, and Sij and zij
are the shape index and z coordinate of point j in block i,

respectively. zij is normalized so that all points on the right
half of the torso have non-negative z coordinate values:

zij = zoij − zmin, (4)

where zoij is the original z coordinate value of point j in block
i, and zmin is the minimum original z coordinate value for
all points on the right half of the torso. Fig. 4(a) shows the
color mapped aveS for each 5mm × 5mm block of the torso.
In the right half of the torso, the block with the largest aveS ,
block A, is shown as a black dot (see Fig. 4(a)). Based on
anthropometric measurements of breast morphology [24], a
range of 7 × 10 blocks (35mm × 50mm, i.e., 15mm from
block Ain the left and right directions) above this block is
examined, and the highest block (in the y direction) with an
aveS > 0 is designated as block B. The coordinates of the RP
were estimated as follows (only x and ycoordinates of RP are
required for angle calculation for possible contour points in
set sPP): {

xRP = xAC
yRP = yBC,

(5)

where xRP and yRP are x and y coordinates ofRP, respectively,
xAC is the x coordinate of the center of block A, and yBC is
the y coordinate of the center of block B. The 15mm from
block A in the left and right directions is used to ensure that
the RP is not far from block A in the x direction. A distance of
50mm above A is used to avoid an RP location lower than the
breast contour in images of ptotic breasts. The automatically
estimated RP locations for 2 breasts are shown in magenta
in Fig. 4(b).

E. DETERMINATION OF THE INFERIOR BREAST-CHEST
CONTOUR
1) ANGLE CALCULATION
For each point pi in the possible contour points set sPP from
the right half of the torso, we calculate the angle θi, which is
relative to RP and defined by:

θi = sign(xpi − xRP)cos
−1
(
Ev1 · Ev2
| Ev1| · | Ev2|

)
, (6)

where Ev1 is a vector along the −y direction, Ev2 = (xpi −
xRP, ypi − yRP) in which xpi and ypi are x and y coordinates of
point pi in sPP, and xRP and yRP are coordinates of RP. All
points in set sPP are sorted based on their angles to facilitate
subsequent computations.

2) INTERMEDIATE POINT DETERMINATION
We divide points in the sPP into different sectors based on
their angles and detect 1 breast contour point in each sector.
The normal breast base width is no more than 20cm [2], [24].
We divide points in the sPP into different sectors at an angle
interval of 5◦; then, the average distance between 2 adjacent
detected breast contour points is no more than 13mm. This
point density is high enough to fit a contour curve using cubic
spline [25]. A smaller angle interval can be selected, however,
with a trade-off of longer computation time.
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FIGURE 5. (A) sPP points (blue) are divided into different 5◦ sector
regions based on their angles θ relative to the reference point (RP,
magenta). The yellow point is point M, the possible contour point
displaying the largest shape change. (B) Set of possible contour points
sPP (blue) and detected points along the breast contours (green)
displayed on the surface. Yellow points are the determined intermediate
points.

From the sector below the RP, i.e., −2.5◦ ∼ 2.5◦ in the
sPP (Fig. 5 (a)), we estimate an intermediate point of the
breast contour, which is used to locate the contour position
correctly. Points in this sector have x coordinates close to
that of the RP. The intermediate point is determined using
the following 3 steps: (1) calculate normals for all points in
sector−2.5◦ ∼ 2.5◦ in the sPP; (2) find the possible contour
pointM displaying the largest shape change; and (3) estimate
the intermediate point from M .
For each point in the sector −2.5◦ ∼ 2.5◦ in the sPP, the

normal is calculated as the sum of the normalized normals of
its one-ring triangles. One-ring triangles of a point p in the
triangular surface mesh are defined as all the triangles that
share point p.

The possible contour points in set sPP include not only
the points in the region containing the breast contour but
also randomly scattered points in other regions in the ROI
that represent isolated incidences of low shape index and
curvature values due tomesh undulation (Fig. 3(d)). However,
below the RP, only the breast contour area exhibits a sharp
change in shape (Fig. 5(b)). In the sector −2.5◦ ∼ 2.5◦, we
find a possible contour point M displaying the largest shape
change in a range with radius 10mm around the point to locate
the region containing the breast contour. Before arriving at
a radius size of 10 mm, we evaluated a range of different
radii: 5mm, 10mm, 15mm, and 20mm. Since the point cloud
is sparse in the breast contour region for some 3D images,
the distance between some adjacent points may be larger
than 5mm. That is, a radius of 5mm was empirically deter-
mined to be inadequate. Similarly, with a radius of 20mm,
the detected intermediate point may be located outside of
the breast contour region, making this radius too large. Radii
of 10mm and 15mm both obtain accurate intermediate point
estimation, and we selected 10mm as the radius size.

The point M (yellow in Fig. 5(a)) is estimated by angles
between the normals of points, i.e., the larger the angle
between the normal vectors of 2 points, the larger the shape
changes between them. For each point p in the sector−2.5◦ ∼
2.5◦ in the sPP, we calculate the angles of normals between

point p and each of the other possible contour points within
a range of 10mm in Euclidean distance to p and let the
maximum angle be the normal angle (NOA) of p. The point
M , with the maximum NOA in the sector −2.5◦ ∼ 2.5◦, is
selected as the possible contour point.

The intermediate point (Fig. 5(b)) is selected based on
the observation that the breast contour is an inward curv-
ing crease below the breast and the points on the contour
exhibit low minimum principal curvatures. We determine
the intermediate point as the point in the sPP that is in a
range of 10mm in Euclidean distance to point M and has the
minimum kmin value.

3) CURVATURE EXTENSION
From the estimated intermediate point of the IBC contour, we
extend the contour points along 2 directions. sPP points are
divided into different 5◦ sector regions centered at RP (Fig.
5(a)). In each sector, we detect the contour point, such that it
has a minimum kmin value in all sPP points in this sector and
the Euclidean distance to the detected contour point in the
previous interval is < 2L. L is the arc length of the current
interval and can be calculated as shown below:

L =
5oπ
180o

R, (7)

where R is the radius from RP to the contour arc of the current
interval, which is approximated as the Euclidean distance
from RP to the detected contour point in the previous interval
(since the current interval has not yet undergone processing
to separate the breast contour point from noise). The dis-
tance 2L is the largest possible distance between the breast
contours in the adjacent sectors. It is used to avoid selecting
contour points outside the breast contour region. If there is
no sPP point in an interval at distance < 2L, the detection
is terminated in that direction. The detected contour points
are displayed in Fig. 5(b) in green. The resulting fitted cubic
spline curve [25] generated from the detected contour points
is identified as the IBC. It should be noted that this is the curve
where the breast lies on the chest wall in the 3D images and
not the curve of the breast mound on which the lowest visible
point is located.

F. DETERMINATION OF THE LOWEST VISIBLE POINT
Next, to find the lowest visible point for participants with
ptosis grades of 1 or higher, we computed the surface
normal for each triangle of the surface mesh as follows.
For each triangular face of the mesh, if a and b are the
2 vectors denoting the 2 sides, then the normal vector is
defined as normal = a × b. Triangles for which the
surface normal is directed downward within 10 degrees of
the z-axis are selected as potential points (Fig. 6(a)). This
point set is then filtered to select only those points that lie
between the first and last contour points of the selected breast
(Fig. 6(b-c)). The lowest visible point is then determined to
be the point with the lowest y-value within the set of points
(Fig. 6(d)).

VOLUME 4, 2016 4300410



Zhao et al.: Inferior Breast-Chest Contour Detection in 3-D Images of the Female Torso

FIGURE 6. Detection of the lowest visible point (LVP). (A) Points (blue) on
the 3D mesh for which the surface normal is directed downward within
10 degrees of the z-axis. (B-C) Front and tilted view showing the filtered
set of points that lie between the first and last contour points (shown in
green) of the breast. (D) LVP (red) determined as the point with the
lowest y-value.

III. EVALUATION METRICS
We demonstrate our proposed breast contour detection algo-
rithm for 3D images by comparing the automatically detected
contours with manually selected contours. Using customized
software [1], 1 member of our group (LZ) manually selected
points along the breast contour on the 3D surface images.
The manually selected contours were used as ground truth.
The average distance between the automatically detected and
manually selected contours from the same breast and the dice
coefficient were computed for comparison.

1) AVERAGE DISTANCE
The average distance between 2 IBC contours is the average
of the distances between all points in 1 of the contours and the
corresponding points in the other contour, as discussed below.
The automatically detected contour and manually selected
contour from the same breast are unequal in length. To eval-
uate the accuracy of our proposed algorithm, we normalized
the lengths for comparison as follows.

The cubic spline approach [25] was used to obtain 2 inter-
polated point sets, A and B, for the automatically detected
and manually selected contour points, respectively, such that
each set has an equal number of points with similar length.
A total of 200 points were interpolated in each contour for
evaluation. The distance d (Ai) from a point Ai in set A to the
other contour, i.e., set B, can be represented as:

d (Ai) = min
Bj∈B

∥∥Ai − Bj∥∥ , (8)

where ‖·‖ is the Euclidean distance. Similarly, the distance
d (Bi) from a point Bi in set B to set A can be represented as:

d
(
Bj
)
= min

Bj∈B

∥∥Bj − Ai∥∥ (9)

Then the average distance aved between the automatically
detected contour and the manually annotated contour is cal-
culated as follows:

aved =

∑|A|
i=1 d (Ai)+

∑|B|
j=1 d

(
Bj
)

|A| + |B|
, (10)

where |A| and |B| are sizes of the set A and B, respectively.

2) DICE COEFFICIENT
We computed the dice coefficient [26], which is a similarity
measure, to compare the automatically detected breast con-
tour and the manually annotated contour as follows. For each

point inA (orB), we compute the distance to the other contour
point set B (or A). Let num be the total number of the points
in A and B with distances less than a given threshold for
comparison. The dice coefficient Dc is computed asnum over
the sum of the total number of points in A and B:

Dc =
num
|A| + |B|

(11)

The dice coefficient is always in the [0, 1] range. A dice
coefficient of 1 indicates high similarity (all points in A and
B fall within a given distance threshold), whereas 0 indicates
little to no similarity (all points in A and B fall outside the
given distance threshold).

IV. DATASET
A total of 77 3D surface images from 39 breast cancer patients
and 5 volunteers were used in this study. Both breasts were
included in all 77 images. From the 77 surface images, a
total of 151 breast contours were automatically detected,
while 3 breasts contours could not be detected due to the
presence of holes in the surface mesh or missing data in the
images. The 3D images were acquired at a single time point
from volunteers, whereas for patients, images were longi-
tudinally acquired during multiple visits as they underwent
breast reconstructive surgery. The 3D images from 4 different
visits were included for 1 participant, from 3 different visits
for 9 participants, from 2 different visits for 12 participants,
and from a single visit for 22 participants. The study pop-
ulation was 93.2% white, 2.3% African American, and 2%
other. In terms of ethnicity, 90.9% were not Hispanic/Latino
and 9.1% were Hispanic/Latino. Based on body mass index
(BMI), 36% were normal (BMI = 18.5 ∼ 24.9), 35%
were overweight (BMI = 25 ∼ 29.9), and 29% were obese
(BMI ≥ 30). The age range was from 21 to 66 years.
To assess whether the proposed algorithm is able to detect

the breast contour irrespective of the presence or absence of
a nipple or the shape and size of the breast, we categorized
our dataset based on ptosis grade (as defined in Fig. 1) and
the presence of nipples.

The dataset was partitioned based on images of breasts
with nipples (Np = 90) and without nipples (Na = 61).
The 90 breasts with nipples were assigned a ptosis grade by
1 member of our group (GPR) and then categorized into 4
groups according to the degree of ptosis as follows: 46 breasts
with grade 0 ptosis, 15 breasts with grade 1 ptosis, 16 breasts
with grade 2 ptosis, and 13 breasts with grade 3 ptosis. The
group of 61 breasts without nipples was not rated (NR) for
ptosis.

V. RESULTS
We evaluated our proposed IBC contour detection algorithm
using the 77 3D surface images for a total of 151 breasts.
A subset of 5 surface images, i.e. a total of 10 breasts, was
used for algorithm development, and testing was performed
on the entire dataset. Data for 3 representative participants are
presented in Fig. 7.
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FIGURE 7. IBC detection results for 3 participants (A, C, E). The detected
inferior breast-chest (IBC) contour points are shown in green with the
estimated cubic spline curve in orange, and manually annotated points
are in blue (B, D, F). (A) 3D image wherein both breasts have a ptosis
grade 0. Left breast was reconstructed using a TRAM flap. (C) 3D image
wherein the native right breast has a ptosis grade 2 and the left breast
has a ptosis grade 3 after a segmental mastectomy. (E) 3D image wherein
the right breast is undergoing breast reconstruction with an implant. This
breast cannot be rated for ptosis since the nipple has not yet been
reconstructed. The left breast has ptosis grade 1 after a mastopexy and
breast augmentation.

The IBC contour detection results are displayed
in Fig. 7(b), (d), and (f). Blue points are the manually
selected contour points, which were used as ground truth
for comparison. Green points are the breast contour points
detected using our proposed algorithm. The orange curve was
obtained via cubic spline fitting of the detected contour points
in green. As seen in Fig. 7(b), (d), and (f), high correspon-
dence was achieved between themanually selected points and
the automatically detected breast contours. Table I presents
the mean of the average distances (i.e. detection error) and
dice coefficients for automatically detected versus manually
annotated breast contours for the 151 breasts analyzed.

The mean detection error between automatically detected
and manually annotated IBC contours for all distance thresh-
olds was 1.64 ± 0.76mm. The mean detection error is less
than 2 mm and falls within the acceptable range for clinical
application.

We tested dice coefficients using 6 separation dis-
tance thresholds: 0.5mm, 1.0mm, 2.0mm, 3.0mm, 4.0mm,
and 5.0mm. The distance threshold for dice coefficients rep-
resents the separation between the points on the 2 contours.
The mean of the dice coefficients is the average value for
the 151 breasts at a given separation distance threshold.
From Table 1 we can see that as the distance threshold

TABLE 1. Mean contour detection errors for total 151 breasts.

TABLE 2. Mean of average distances (mm) by ptosis grade.

TABLE 3. Mean dice coefficients for five ptosis groups by distance
threshold

for similarity between 2 contours increased, the dice coef-
ficient also increased. At a separation distance in the range
of 4mm − 5mm between the automatically detected and
manually annotated IBC contours, we had very high dice
coefficient values (0.94−0.97). At a resolution of 2mm−3mm
the similarity was 0.72 − 0.87, and it was reduced only for
very low threshold values of 1mm (0.41) and 0.5mm (0.21).

Table 2 shows the mean of average distances between
detected IBC contours and ground truth contour points
for the 4 ptosis grades and the breasts with no ptosis
rating (NR) for the 151 breasts analyzed. The means of
average distances for breasts in these 5 groups ranged from
1.29± 0.28mm to 1.73± 0.98mm. The minimum average
distance error occurred for breasts with major ptosis (grade
3; 1.29± 0.28mm).
Table 3 shows the mean of the dice coefficients for the

different distance thresholds for the 5 groups. For the 2mm−
3mm distance threshold, the dice coefficient values for the 5
groups were 0.67 − 0.93; for the threshold range of 4mm −
5mm, the dice coefficients were 0.93 − 0.99. At a low sepa-
ration distance of 0.5mm − 1mm, the dice coefficient values
were 0.18− 0.47.

The best and worst agreement between the automatically
detected and manually annotated IBC contours was noted for
breasts exhibiting major and no ptosis, respectively, while for
breasts not rated (NR) for ptosis, the agreement was moder-
ate. This finding is reasonable in that our algorithm is founded
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FIGURE 8. The detected lowest visible point (LVP; red), inferior
breast-chest (IBC) contour points (green), and estimated cubic spline
(orange) for participants with ptosis grades 1, 2, and 3, visualized on the
right breast in the front, tilted, and right lateral views.

on curvature and shapemeasurements and, thus, can precisely
identify the prominent sagging along the lower breast pole
that is observed in grade 3 ptosis but is less adept at iden-
tifying the breast contour in breasts with no ptosis wherein
sagging is absent. Likewise, non-rated breasts include ptosis
grades ranging from 0 to 3, and thus performance for this
group was moderate.

Following the detection of the IBC contour, the LVP was
detected and superimposed on the 3D surface images for visu-
alization. The rationale was to facilitate the visualization of
the LVP on the breast, since plastic surgeons typically use the
nipple in relationship to the IMF and this point as a secondary
landmark for grading ptosis. Figure 8 presents representative
images showing the detected LVP in participants with ptosis
grades 1-3.

VI. CONCLUSION
We have developed a curvature-based IBC contour detection
algorithm for 3D images of the female torso. The algorithm
uses established measures of curvature in conjunction with
anthropometric knowledge of breast anatomy to automati-
cally detect the inferior contour of the breast. The algorithm
uses empirically determined values for the bounding box in
reference point determination and the sector angle range for
the intermediate point detection. These empirical values are
based on established anthropometric measures of the female
breast [10], [24].

Collectively, the results in this study validate the robustness
of the proposed algorithm for the automated detection of the
IBC. Most importantly, the algorithm proposed can be gen-
eralized to 3D images from any patient irrespective of their
race and ethnicity. This is because the proposed algorithm is

founded on identification of surface curvature and shape, both
of which are independent of race and ethnicity, in contrast
to skin color and texture. Although, variations in skin color
and texture can be large across the different racial groups,
the ranges of breast sizes and shapes are similar, allowing
the proposed algorithm to be applicable to images from any
population. In addition, the use of 3D surface features, such as
curvature, eliminates the use of other texture based fiducials,
such as nipples, for breast contour detection.

Accurate detection of the IBC contour is important for
enabling unbiased and objective measurement of breast aes-
thetic parameters. The ability to detect the lowest breast con-
tour is very important when determining symmetry between
breasts, especially as it relates to how symmetrically the
breasts are suspended from the chest wall and how the volume
of breast tissue is distributed along the breast curvature (thus
helping to make up the overall appearance of the breast
contour). The detected IBC contours and the LVP facilitate
computation of morphological measures, such as volume,
ptosis, and symmetry, which are important for pre-operative
planning and post-operative assessment of outcomes in breast
reconstruction.
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