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ARTICLE

Development of a Dynamic Physiologically Based 
Mechanistic Kidney Model to Predict Renal Clearance

Weize Huang and Nina Isoherranen*

Renal clearance is usually predicted via empirical approaches including quantitative structure activity relationship and al-
lometric scaling. Recently, mechanistic prediction approaches using in silico kidney models have been proposed. However, 
empirical scaling factors are typically used to adjust for either passive diffusion or active secretion, to acceptably predict 
renal clearances. The goal of this study was to establish a renal clearance simulation tool that allows prediction of renal 
clearance (filtration and pH-dependent passive reabsorption) from in vitro permeability data. A 35-compartment physiologi-
cally based mechanistic kidney model was developed based on human physiology. The model was verified using 46 test 
compounds, including neutrals, acids, bases, and zwitterions. The feasibility of incorporating active secretion and pH-
dependent bidirectional passive diffusion into the model was demonstrated using para-aminohippuric acid (PAH), cimeti-
dine, memantine, and salicylic acid. The developed model enables simulation of renal clearance from in vitro permeability 
data, with predicted renal clearance within twofold of observed for 87% of the test drugs.
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WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
✔   In silico approaches have been used to simulate renal 
clearance, but effects of tubular water reabsorption, dy-
namic tubular flow, tubular pH, and microvilli were not 
considered when calculating the passive reabsorption. In 
addition, systematic model verification using multisource 
permeability is lacking.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   This study addresses the impact of tubular water 
reabsorption, dynamic tubular flow, tubular pH, micro-
villi, and multisource permeability on effective drug 
passive diffusion and subsequent renal clearance  
simulation.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   Dynamic physiologically based mechanistic kidney 
model was developed to capture the effect of physicochem-
ical and physiological complexity on effective drug passive 
diffusion. The developed model allows prediction of renal 
clearance via active and passive processes from in vitro data.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔   The study enables prediction of renal clearance to-
gether with glomerular filtration, passive diffusion, and ac-
tive secretion with higher confidence. The model can also 
simulate drug disposition and accumulation inside renal 
cell upon altered transporter expression or activity and 
changes in kidney physiology.

Study Highlights

Renal clearance has been estimated as the major clear-
ance pathway for 25–31% of medications,1,2 and contrib-
utes as a minor elimination pathway to the clearance of 
majority of drugs. Therefore, prediction of renal clearance 
during drug development is important. In addition, detailed 
understanding of renal clearance processes is critical to 
delineate the quantitative contributions of passive diffusion 
and active secretion in renal drug elimination. Finally, in-
creased interest in renal toxicity and accumulation of drugs 
in renal tubular cells necessitates improved physiological 
and mechanistic modeling of drug distribution and clear-
ance in the kidneys.

To predict renal clearance, quantitative structure activ-
ity relationship (QSAR) methods have been proposed.3–5 
Although QSAR methods are useful in large scale screen-
ing and provide a qualitative prediction of high or low renal 
clearance, they do not allow mechanistic understanding or 
dynamic simulations of renal disposition. Allometric scaling 
from animals has also been used extensively6,7 to predict 
human renal clearance. However, interspecies differences 
in kidney structure and physiology (e.g., glomerular filtration 
rate (GFR), tubular surface area, and urine pH), transporter 
expression and activity, and plasma protein binding remain 
as challenges for allometric scaling.8 Allometric scaling does 
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not allow differentiation of clearance mechanisms or dy-
namic simulations of renal handling of drugs. To address the 
weaknesses of QSAR and allometric scaling, two static renal 
clearance prediction approaches have been published,9,10 
and a dynamic mechanistic kidney model has been reported 
and incorporated into Simcyp software.11 However, static 
approaches do not incorporate how water reabsorption and 
subsequently increased drug concentrations affect passive 
diffusion processes as no concentration gradient is estab-
lished among blood, tubular cells, and tubular lumen. For the 
reported dynamic kidney model,11 comprehensive validation 
of the model structure, physiological parameters (e.g., tubu-
lar pH, flow, and surface area), and performance of predicting 
passive diffusion of drugs with known renal clearances and 
in vitro permeability data has not been reported. Still, sev-
eral studies have used the Simcyp kidney model to simulate 
drug renal clearances.12–17 Most of these studies used top-
down or middle-out approaches and applied various scaling 
factors to simulate plasma concentrations or renal clearance 
with either fitted active secretion12–16 or passive diffusion 
clearance17 to accurately capture observed data. Although 
the passive diffusion clearance in these studies was based 
on permeability values from PAMPA, Caco-2, and HEK cells, 
these values were further scaled using presumed total tu-
bular surface area without systematic verification, or using 
sensitivity analyses to fit observed data. This introduces po-
tential bias to the modeling approach. Most studies did not 
consider different ionization of the test compounds in blood, 
cells, and tubular fluid, and assumed that passive diffusion 

is equal for apical and basolateral sides and across different 
tubular segments despite known physiological differences 
between these sites. It is important to note that fitting active 
secretion values requires high confidence in the passive dif-
fusion clearance in the kidneys as the observed renal clear-
ance is highly dependent on both parameters. In the absence 
of validation of passive diffusion clearance in the kidneys, 
the confidence in scaled secretion clearance is low and inter-
dependent on the error in predicted diffusion clearance. As 
limited in vitro-to-in vivo scaling data exist for renal transport 
clearances for the specific segments of the kidneys, the un-
certainty of active transport predictions is high. Hence, there 
is a critical need to validate the physiological and permeabil-
ity components of a kidney model using drugs that are not 
subject to significant active transport, to allow better mech-
anistic predictions of renal clearance, and to estimate the 
contribution of active transport to renal clearance. The aim of 
this study was to develop and validate a dynamic physiolog-
ically based mechanistic kidney model that allows prediction 
of drug renal clearance using in vitro permeability data and 
incorporates unbound filtration, active tubular secretion, and 
pH dependent bidirectional passive diffusion.

METHODS
Structure of the mechanistic kidney model
The 35-compartment mechanistic kidney model (Figure 1) 
was developed using Matlab and Simulink platforms.18 
Detailed description of model development and the govern-
ing equations are shown in Supplementary Methods. The 

Figure 1  Schematic diagram of the mechanistic kidney model. Qc, blood flow in the central compartment; Qkidney, blood flow to the 
kidney; Qother, blood flow to all other organs in the body; Qurine, urine formation flow; GFR, glomerular filtration rate; i, the number of 
subsegment each segment is divided into; single solid arrow, the fluid flow; single dash arrow, active secretion or active reabsorption; 
double arrow, bidirectional passive diffusion.
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diameters, lengths, and tubular flow rates of different seg-
ments of the kidney were collected from literature10 and are 
listed in Table S1. The physiological volume of each tubu-
lar segment was calculated as a cylinder and physiological 
volume of the cellular compartment of each segment was 
assumed to be the same as the tubular volume. The phys-
iological surface area of each tubular segment was calcu-
lated as a cylinder except for the collecting duct, which was 
calculated using a published exponential method10 due to 
the merging of the tubules. The surface area of apical side 
of proximal tubule was set 30-fold higher than the basolat-
eral side19 to account for the effect of brush border on the 
apical side surface area. No other scaling factors or ad-
justments were made for the surface area at the other seg-
ments due to the sparsity of microvilli.20 The final volumes, 
surface areas, flow rates,  and pH values of each kidney 
subsegment are listed in Table 1. The physiological fluid 
flow in the renal tubule was adapted from previous publi-
cation10 with further expansion (Table 1). The pH at each 
tubule decreased from 7.2 in the proximal segment to 6.5 
in the bladder in a stepwise manner across the length of 
the tubule (Table 1). Glomerular filtration rate (QGFR), kidney 
blood flow (Qkidney), and cardiac output (Qc) were set as 7.2, 
60, and 330 l/h, respectively. Central compartment volume 
(Vc) in the simple circulation model was set to 42 L to mimic 
total body water. The blood-to-plasma ratio was one and 
unbound fraction in the renal epithelial cells (fu,cell) was the 
same as plasma unbound fraction (fu,p) for each drug for all 
simulations. Renal intracellular pH and blood pH were set 
as 7.2 and 7.4, respectively.

Sensitivity analysis
To examine the impact of general structural and physio-
logical assumptions on model performance, a sensitivity 
analysis of renal clearance of a hypothetical neutral drug 
with permeability of 10 × 10−6 cm/s and plasma unbound 
fraction of 0.1 was done. The sensitivity analysis was con-
ducted according to the general guidance of physiologically 
based pharmacokinetic model development. The covariates 
tested and expected not to impact renal clearance based on 

pharmacokinetic principles included blood-to-plasma ratio 
(0.5–5), intracellular unbound fraction (0.1–1), volume of renal 
tubule (0.1–10 fold), and volume of renal cell (0.1–10 fold). 
The covariates tested and expected to impact renal clear-
ance included permeability (0.01–200 × 10−6 cm/s), plasma 
unbound fraction (0.1–1), tubular surface area (0.1–10 fold), 
and GFR (15–120 mL/min).

Model verification and prediction of renal clearance 
for a set of test compounds
To validate the model, 46 drugs (Table S2) that had renal 
clearance (CLr) < 2 × fu,p × GFR and for which adequate 
data of in vitro permeability, plasma unbound fraction, 
and in vivo renal clearance from healthy adult subjects or 
patients with normal creatinine renal clearance were avail-
able, were selected to test whether the developed model 
could accurately predict renal clearance, and to validate 
the passive diffusion component of the model. Of the se-
lected drugs, six had an fu,p × GFR value > 1.5 (Table S2), 
and are considered to be subject to active secretion based 
on the International Transporter Consortium recommenda-
tion.21 Nevertheless, consistent with the model acceptance 
criterion (twofold), these compounds were included as net 
secreted compounds. This inclusion likely decreases the 
overall model performance, but allows sufficient number 
of ionized compounds to be included in the analysis. For 
each drug, the observed renal clearance and plasma un-
bound fraction values were collected from literature (Table 
S2).2,10,22–24 Predicted pKa values for the test drugs were 
collected from https://www.drugbank.ca. Caco-2 and 
MDCK permeability values for the drugs of interest were 
collected (Table S2).10,25–33 Drugs were categorized into 
four groups based on ionization at pH 7: (1) drugs with >1% 
ionized as negatively charged at pH 7 were classified as 
acids; (2) drugs with >1% ionized as positively charged 
at pH 7 as bases; (3) drugs with <1% ionization at pH 7 
as neutrals; (4) and drugs with >1% ionized at pH 7 with 
both positively and negatively charged groups were clas-
sified as zwitterions. The drugs were also categorized to 
net secreted and net reabsorbed based on comparison of 

Table 1  Physiological parameters of the mechanistic kidney model. The tubular flow rate exiting each tubular subsegment is equal to the tubular flow rate 
entering the next tubular subsegment. The flow rate at the beginning of the first proximal tubule subsegment is equal to glomerular filtration rate (120 mL/
min) and the exiting flow rate at the end of the last collecting duct subsegment (Collecting duct5) is equal to normal urine formation rate (1 mL/min). The 
volumes, tubular surface areas, and flow rates are scaled to two kidneys with 0.9 million nephrons per kidney based on the physiological values with 
detailed calculation described in Table S1 and Methods section

Segment Volume (l)
Tubular surface  
area (dm2)

Tubular flow rate entering each  
tubular subsegment (ml/min) pH value

Proximal tubule1 0.0305 6107 120 7.2

Proximal tubule2 0.0305 6107 94 7.1

Proximal tubule3 0.0305 6107 68 7

Loop of henleD 0.0027 61 43 7

Loop of henleA 0.0027 61 24 7

Distal tubule 0.0194 156 24 6.9

Collecting duct1 0.237 6.7 11 6.8

Collecting duct2 0.237 6.7 9 6.7

Collecting duct3 0.237 6.7 7 6.6

Collecting duct4 0.237 6.7 5 6.5

Collecting duct5 0.237 6.7 3 6.5

https://www.drugbank.ca
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observed renal clearance with fu,p × GFR (Table S2). The 
compound dataset included 11 neutrals, 12 weak bases, 
9 weak acids, and 14 zwitterions. The compounds had a 
wide range of pKas (−2.2–11.62), in vitro permeabilities 
(0.01–160 × 10−6 cm/s), fu,ps (0.01–0.99), and observed renal 
clearances (0.5–145 mL/min) providing a robust dataset for 
model validation.

The methods to account for the effect of pH-dependent 
drug ionization and microvilli expression in vitro and in vivo 
are described in Supplementary Materials. Renal clear-
ances were simulated at distribution equilibrium. For com-
pounds with more than one published in vitro permeability 
value, the renal clearance was predicted separately using 
each of the reported values and the mean predicted renal 
clearance was calculated from individual predictions.

To evaluate the quality and accuracy of the renal clearance 
predictions, average fold error (AFE), also called geometric 
mean fold error (Eq. 1) was used to measure the extent of 
underprediction and overprediction. Absolute average fold 
error (AAFE) and root mean square error (RMSE) were calcu-
lated according to Eqs. 2 and 3 for all compound categories. 
In addition, a twofold acceptance criterion was applied to 
determine whether renal clearances were successfully simu-
lated. A threefold criterion was reported to allow comparison 
with previous publications.

Incorporation of active secretion to simulate renal 
clearance
The mechanistic kidney model also allows incorporation 
of active secretion and active reabsorption in the relevant 
subsegments of the kidney. To test the feasibility of incor-
porating transporter data along with in vitro permeability 
data to simulate renal clearance, the renal clearances of 
para-aminohippuric acid (PAH), and cimetidine were simu-
lated. PAH (fu,p = 1, pKa 2.7 and 4.24 (drugbank.ca), in vitro 
permeability 0.72 × 10−6 cm/s)34 and cimetidine (fu,p = 0.8,13 
pKa 6.91 (drugbank.ca), in vitro permeability 1.37 × 10−6 cm/
s28) are well-known renal secretion substrates. Literature in 
vitro data of OAT1 mediated basolateral secretion,35 and 
NPT1, MRP2, and MRP4-mediated apical secretion36,37 of 
PAH were used (Table S3) and scaled to in vivo assuming 
the transporter expression/mg of protein in vitro is equal 
to the transporter expression/mg of the human kidney 
and 300 g of kidney per person. This scaling is shown as 
a proof-of-concept incorporation of active secretion into 
the model but is not expected to be quantitatively accurate 
due to the lack of transporter quantification. Total in vivo 
secretion clearances of 884 and 22.3 l/h were calculated 
for the basolateral and apical side, respectively (Table S3). 
Literature in vitro experimental data of OAT3 and OCT2 
mediated basolateral secretion and MATE1/2-K mediated 

apical secretion of cimetidine13 were used with scaling to 
60 million proximal tubule cells/g of kidney11 and 300 g kid-
ney/person. Total in vivo secretion clearances of 31.8 and 
40.5 l/h were calculated for the basolateral and apical side, 
respectively (Table S4).

To explore the possible effect of distribution of transporter 
expression along the proximal tubule, the overall secretion 
clearance was incorporated as either uniform distribution 
across all three proximal tubule subsegments, or all the se-
cretion clearance occurring only at a single tubular subseg-
ment (first, second, or third).

Simulation of urine pH-dependent renal clearance
Urine pH-dependent renal clearance has been observed for 
many drugs due to different ionization and subsequently 
different effective permeabilities at different urine pHs.38 
The pH-dependent effective passive diffusion was incor-
porated into the model by calculating test drugs’ ionization 
status in the specific tubule subsegment based on the hy-
pothesized pH gradient across the tubule from glomerulus 
to bladder (Table 1, Supplementary Methods and Tables 
S5 and S6). To simulate changes in renal clearance upon 
altered urine pH, memantine (a weak base) and salicylic 
acid (a weak acid) renal clearances were predicted at dif-
ferent urine pHs.

The intrinsic permeability of memantine (fu,p = 0.55,39 
pKa 10.7 (drugbank.ca), in vitro permeability 25–43.4 × 
10−6 cm/s)40,41 was calculated as 0.087–0.06 cm/s (average 
0.073 cm/s). At acidic urine, when >99.99% of memantine 
is charged, observed renal clearance of memantine con-
siderably exceeds unbound filtration clearance suggesting 
that memantine is a substrate for active tubular secretion. 
This secretion clearance was estimated via parameter op-
timization based on the observed renal clearance at urine 
pH 5 (>99.99% ionized) and average intrinsic permeability. 
The secretion clearance (CLapi,scr and CLbsl,scr) was set as 
10 l/h in the apical and basolateral side of each subseg-
ment of proximal tubule. The renal clearance was then 
predicted for urine pH of 5.0, 7.9, and 8.1 as previously de-
scribed,42 using predicted pH gradient in the kidney seg-
ments (Table S5). In addition, the effect of the described 
changes of urine flow42 on renal clearance were simulated 
by changing tubular flow (rate exiting the last subsegment 
of collecting duct) from 1 mL/min to 0.99, 1.15, 2.6, and 
2.73 mL/min. The 99% confidence interval of observed 
renal clearances was calculated from reported median and 
25% and 75% quantiles, and predictions within the 99% 
confidence interval were considered successful.

The intrinsic permeabilities of salicylic acid (pKa = 2.98 
(drugbank.ca)) were calculated as 0.088, 0.26, 0.32, 0.34, 
and 0.58 (average 0.32) cm/s based on in vitro permeabilities 
of 3.35, 10, 12, 13, and 22 × 10−6 cm/s.25,28,29,33 The salicylic 
acid fu,p used was 0.1 based on the reported relationship of 
salicylic acid fu,p and plasma concentration,43 and salicylic 
acid plasma concentration of 150–180 mg/L in the study re-
porting urine pH-dependent renal clearance.44 The observed 
salicylic acid renal clearance under basic urine exceeded 
the unbound GFR, suggesting active secretion of salicylic 
acid. Secretion clearance was calculated via parameter opti-
mization based on observed renal clearance under urine pH 
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8 (>99.99% ionized) and the average intrinsic permeability 
value. An apical and basolateral secretion clearance value 
(CLapi,scr and CLbsl,scr) of 36 L/h was incorporated in each 
proximal tubule subsegment. The renal clearance was then 
simulated at urine pH values 5.0, 6.0, 7.0, and 8.0 to mimic 
the published range of urine pH44 using the hypothesized pH 
gradient in the kidney (Table S6).

RESULTS
Model construction and sensitivity analysis
A 35-compartment model consisting of a simple circu-
lation component and a mechanistic kidney model was 
developed based on the physiological segmentation of 
the human kidneys (Figure 1). Simple circulation model 

was used to connect renal blood flow out of the kidneys 
with the blood flow into the kidneys. The Bowman’s cap-
sule was the entrance site of the flow into the mechanistic 
kidney model, which only allowed unbound drugs to be 
filtered into proximal tubule. Longitudinally, the kidney 
was divided into four major segments: (1) the proximal 
tubule; (2) the loop of Henle; (3) the distal tubule; and (4) 
the collecting duct (Figure 1). The proximal tubule was 
further divided into three subsegments (S1, S2, and S3), 
the loop of Henle into two subsegments (descending 
and ascending), and collecting duct into five subseg-
ments (connecting tubule, initial collecting duct, cortical 
collecting duct, medullary collecting duct, and papillary 
duct) based on kidney physiology. Each subsegment was 

Figure 2  Sensitivity analysis of the developed kidney model. The sensitivity analysis was conducted using a hypothetical neutral 
drug with permeability of 10 × 10−6 cm/s and plasma unbound fraction of 0.1 (unless stated otherwise). Panel (a) shows the effects of 
unbound fraction (0.1–1) inside the renal cell and blood-to-plasma ratio (0.5–5) on simulated renal clearance (CLr). Panel (b) shows the 
effects of tubular volume (0.1–10-fold) and renal cell volume (0.1–10-fold) on simulated renal clearance. Panel (c) shows the effects of in 
vitro permeability (0.1–200 × 10−6 cm/s) and plasma unbound fraction (0.1–1) on simulated renal clearance. Panel (d) shows the effects 
of glomerular filtration rate (GFR; 15–120 mL/min) and tubular surface area (0.1–10-fold) on simulated renal clearance.

(a) (b)

(c) (d)
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divided into three sections: the tubular lumen, the cellular 
compartment, and the vascular section. A compartment 
for the bladder was created to serve as a compartment 
for collecting the eliminated drug. The surface areas, vol-
umes, and flow rates in the various model compartments 
were assigned based on known physiology (Table 1 and 
Table S1). Glomerular filtration was incorporated into the 
Bowman’s capsule, bidirectional passive diffusion was in-
corporated throughout the entire nephron, and renal me-
tabolism and active transporter-mediated secretion and 
reabsorption were included only at the proximal tubule.

To confirm the structural integrity of the model, sensitivity 
analysis was conducted. As expected from pharmacokinetic 
principles, blood-to-plasma ratio, intracellular unbound frac-
tion, volume of tubular lumen, and volume of cellular com-
partment did not affect simulated renal clearance (Figure 2). 
Similarly, as expected, the plasma unbound fraction and 
glomerular plasma flow positively and linearly correlated 
with simulated renal clearance, whereas the permeability 
and surface area negatively and nonlinearly correlated with 
simulated renal clearance (Figure 2). Notably, the sensitiv-
ity analysis showed that with different tubular dimensions 

Figure 3  Simulation of renal clearances (CLr) of 11 neutrals, 12 bases, 9 acids, and 14 zwitterions as verification of mechanistic kidney 
model. Red symbols represent the observed renal clearances of the test compounds with twofold error range. Black symbols represent 
the simulated renal clearances using different in vitro permeability values. The comparisons between simulated and observed renal 
clearances and the average fold error (AFE), absolute average fold error (AAFE) and root mean squared error (RMSE) values for neutral 
(a), base (b), acid (c), and zwitterion (d) are shown.

(a) (b)

(c) (d)
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(length and radius) tubular surface area but not volume im-
pacts renal clearance.

Model verification and prediction of renal clearance of 
test drugs
The predictive performance of the model was evaluated 
using 46 test drugs (Table S2). First, the validity of the sur-
face area scaling from in vitro experimental systems was 
tested using neutral compounds (Figure S1). Calculation of 
permeability values assuming no microvilli expression in in 
vitro cell systems resulted in a systematic underprediction 
of renal clearances (Figure S1a), likely due to an underesti-
mation of in vitro surface area and consequently overpredic-
tion of passive reabsorption. To account for the expression 
of microvilli in vitro, a surface area scaling factor was op-
timized using neutral compounds. Scaling factors of 1.25, 
1.5, and 2 resulted in AFEs of 0.77, 0.93, and 1.25, respec-
tively, and, therefore, a scaling factor of 1.5 was selected. 
Using this scaling factor, renal clearance was simulated for 
all 46 test drugs using all available in vitro permeability val-
ues (Figure 3, Table S2) resulting in acceptable renal clear-
ance predictions with overall AFE of 0.76, overall AAFE of 
1.59, and overall RMSE of 26.9 (Table 2). At least one mea-
sured permeability value predicted renal clearance within 
twofold of the observed renal clearance for 40 drugs (87%) 
and the mean simulated renal clearance was within twofold 
of the observed for 37 drugs (80%; Table 2), demonstrating 
high predictive quality of the model. The AFEs for neutrals, 
bases, acids, and zwitterions ranged from 0.59 to 0.93, and 
the AAFEs ranged from 1.37 to 1.83 (Table 2). The RMSEs 
ranged from 8.27 to 38.3 (Table 2). For the majority of the 
drugs, the mean simulated renal clearance and at least one 
of the renal clearances predicted with individual in vitro 
permeability values were within twofold of the observed 
(Table 2), and only one drug had predicted renal clearance 
outside threefold range (Table 2). In addition, the model 
performance was also evaluated based on net reabsorp-
tion (CLr < fu,p × GFR) and net secretion (CLr > fu,p × GFR) 
and the calculated AFEs, AAFEs, and RMSEs for these two 
groups (Table 2) generally showed a more accurate pre-
diction for net reabsorbed drugs than net secreted drugs.

Incorporation of active secretion to simulate renal 
clearance
To explore whether active secretion could be incorpo-
rated into the developed model, PAH and cimetidine were 

selected based on published literature to predict renal 
clearance that incorporates active secretion and passive 
diffusion. Using literature in vitro transporter data, protein 
binding data, and in vitro permeability data, the model suc-
cessfully predicted the renal clearance of PAH and cimeti-
dine (Table 3), demonstrating the feasibility of the model 
to predict complex renal clearance scenarios with both 
passive diffusion and secretion clearance incorporated 
at both apical and basolateral sides of proximal tubule in 
the model. Notably, when the secretion clearance was in-
corporated only in one subsegment, the simulated renal 
clearance was consistently lower than when the secretion 
clearance was uniformly distributed across the tubular seg-
ments. As transporter localization and quantification data 
are not available, these simulations are only shown to illus-
trate the relevance of knowledge of transporter localization 
within the kidney tubules.

Simulation of urine pH-dependent renal clearance
Renal clearance can be affected by changes in urine flow 
and urine pH. Therefore, any broadly useful kidney model 
must incorporate changes in ionization status and reab-
sorption clearance due to tubular pH and flow changes. 
To test the developed model, the renal clearance of me-
mantine and salicylic acid were simulated under different 
urine pH conditions and with different urine flows (meman-
tine). The effects of both urine pH and urine flow were ac-
curately predicted by the model for memantine (Figure 4, 
Table S7) demonstrating robust validation of ionization pro-
cesses, passive diffusion, and tubular flow. Similarly, the 
effect of urine pH on salicylic acid renal clearance was well 
predicted using five different in vitro permeability values 
(Figure 4). The overall simulation results for both substrates 
were acceptable based on the calculated 99% confidence 
interval and visual inspection of the urine pH-dependent 
renal clearance.

DISCUSSION

Since the development of the well-stirred model of hepatic 
clearance, predictions of hepatic clearance from in vitro 
data have become commonplace and can typically predict 
human hepatic clearances within twofold of observed. In 
contrast, due to the sequential nature of renal clearance 
processes, and the challenges in predicting the fraction 
reabsorbed from the tubular lumen during the sojourn of 

Table 2  Summary of model performance criteria for the different drug categories. The performance parameters average fold error (AFE), absolute average 
fold error (AAFE), and root mean square error (RMSE) were calculated as described in Methods, and the values were obtained by comparing the predicted 
individual and mean values to the observed listed in Table S2

n AFE AAFE RMSE
At least one simulated 
CLr within twofold

Mean simulated CLr 
within twofold

Mean simulated CLr 
within threefold

Neutral 11 0.93 1.37 8.27 10 (91%) 9 (82%) 11 (100%)

Base 12 0.59 1.83 27.3 9 (75%) 8 (67%) 11 (92%)

Acid 9 0.87 1.82 18.4 8 (89%) 7 (78%) 9 (100%)

Zwitterion 14 0.74 1.46 38.3 13 (93%) 13 (93%) 14 (100%)

Net reabsorbed 32 0.87 1.51 9.67 28 (88%) 26 (81%) 32 (100%)

Net secreted 14 0.56 1.78 46.5 12 (86%) 11 (79%) 13 (93%)

Total 46 0.76 1.59 26.9 40 (87%) 37 (80%) 45 (98%)
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drugs within the kidneys, at present, renal clearance cannot 
be effectively predicted from in vitro data prior to human 
dosing. In addition, considerable uncertainty exists regard-
ing the quantitative contribution of active transport pro-
cesses in drug renal clearance. The goal of this work was to 
develop a mechanistic and dynamic physiologically based 
kidney model that would consider spatiotemporal changes 
in drug concentrations, flows, pH, and effective perme-
ability for renal clearance predictions, and allow true in 

vitro-to-in vivo predictions of renal clearance using plasma 
unbound fraction, permeability, and active transport data.

The developed method has clear advantages over QSAR, 
allometry, and static model approaches, although these 
approaches have been successfully used to predict renal 
clearances. For example, static models assume that passive 
diffusion always reaches equilibrium and urine concentration 
is equal to unbound plasma concentration,9,10 an assumption 
readily violated with hydrophilic or low permeability drugs or 

Table 3  Simulation of renal clearance of para-aminohippuric acid (PAH) and cimetidine in the presence and absence of active secretion clearances. The 
renal clearances were simulated as described in Methods section and Supplementary Materials using collected permeability data in Caco-2 cells, 
plasma unbound fraction (fu,p), active secretion clearance at apical side of each of the three subsegments of proximal tubule CLapi,scr and active secretion 
clearance at basolateral side of each of the three subsegments of proximal tubule CLbsl,scr. The tubular subsegment for secretion clearance indicates the 
specific subsegment in which the secretion clearance was incorporated. Secretion clearances were set as 0 in all other subsegments

fu,p

Caco-2 perme-
ability (10-6 cm/s) CLapi,scr (l/h) CLbsl,scr (l/h)

Tubular subsegment for 
secretion clearance

Observed 
CLr (ml/min)

Simulated 
CLr (ml/min)

Fold difference 
(simulated/observed)

Para-aminohippuric acid

1 0.72 0 0 550 93.9 0.17

7.43 295 Each subsegment 812 1.48

22.3 884 1st subsegment 734 1.33

22.3 884 2nd subsegment 746 1.36

22.3 884 3rd subsegment 770 1.40

Cimetidine

0.8 1.37 0 0 543 90.6 0.17

10.6 13.5 Each subsegment 427 0.79

31.8 40.5 1st subsegment 383 0.71

31.8 40.5 2nd subsegment 387 0.71

31.8 40.5 3rd subsegment 393  0.72

Figure 4  Simulation of urine pH-dependent renal clearance (CLr) of memantine and salicylic acid. Panel (a) shows the simulation 
of memantine renal clearance with varying urine pH and urine flow values (open black circles) compared to the observed data of 
memantine renal clearance (red box and whiskers plots). The different simulated conditions were: uncontrolled urine pH and flow; urine 
pH of 5.1, urine flow of 0.99 mL/min; urine pH of 5.1, urine flow of 2.72 mL/min; urine pH of 8.1, urine flow of 1.15 mL/min; urine pH of 7.9, 
urine flow of 2.6 mL/min as described in the original report. The detailed data are listed in Table S7. The simulations were conducted 
as described in the Methods section using in vitro permeability data reported in MDCK and Caco-2 cells, and the average permeability 
value from the two cell lines. Panel (b) shows salicylic acid renal clearance simulated at pH 5, 6, 7, and 8 using individual permeability 
values from separate in vitro studies (black squares) and mean permeability values from five studies (blue squares) to explore the effect 
of altered ionization status of salicylic acid on renal clearance. The simulated values were compared to observed renal clearances 
(open red circles) of salicylic acid at different measured urine pH values. The observed data is from Macpherson 1955.44

(a) (b)
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when urine flow increases. Still, two static kidney models 
achieved 95%9 and 87%10 success rates in predicting renal 
clearance within threefold error using 20 and 45 test com-
pounds, respectively. The dynamic model developed here 
performed equally well or better, with 45 drugs (98%) having 
mean simulated renal clearance within threefold of the ob-
served and 37 drugs (80%) with mean simulated renal clear-
ance within twofold of the observed. The developed model 
also provides additional power to simulate urine flow and pH-
dependent changes in renal clearance, and to incorporate 
active apical and basolateral transport of drugs of interest.

This is the first study that examined the effect of different 
in vitro permeability values from multiple data sources on 
the accuracy of renal clearance predictions and systemat-
ically accounted for ionization status, tubular flow, and tu-
bular pH gradients in renal clearance mechanisms. As few 
experimental data in humans exist for pH gradients in the 
kidney tubule at various urine pH values, further refinement 
of the pH gradients used in this study may be necessary 
as data becomes available. Previous studies have relied on 
single source permeability values from LLC-PK9 or Caco-
210 cells although high variability in cell culture systems is 
well documented,45 potentially biasing overall predictions. 
As the in vitro determined permeability values can vary 
more than an order of magnitude between studies (Table 
S2), it is expected that some predicted renal clearances 
will fall outside of the twofold acceptance criteria. It is also 
likely that active secretion processes exist for some of the 
test drugs with fu,p × GFR >1.5 resulting in an underpredic-
tion of renal clearance values. This hypothesis is supported 
by the overall underprediction of the renal clearance val-
ues in this study and the distinct greater underprediction 
of renal clearances for drugs that were classified as net 
secreted when compared to net reabsorbed compounds 
(Table 2). Finally, inaccurate measurements of in vivo renal 
clearances and fu,ps may introduce error into comparisons 
of predicted and observed data. As such, the model perfor-
mance in predicting renal clearances from in vitro data and 
the accurate simulation of urine pH and flow dependent 
changes in renal clearances can be considered excellent.

The developed model can feasibly incorporate a 
bottom-up prediction of renal clearance for transported 
drugs, as shown with the renal clearance predictions with 
PAH, cimetidine, memantine, and salicylic acid. Although 
several prior studies12–17 have used the Simcyp kidney 
model to simulate drug renal clearances, to our knowledge 
this is the first study to predict the renal clearance of a drug 
with active renal transport using solely in vitro-to-in vivo 
extrapolation methods. The prior studies relied on incor-
porating scaling factors based on observed in vivo data to 
either fit active secretion clearance12–16 or passive diffusion 
clearance.17 The current study provides a model for the bot-
tom-up approach using plasma unbound fraction, in vitro 
permeability, and in vitro transporter uptake clearance to 
successfully simulate renal clearance. In addition, due to the 
incorporation of the verified passive diffusion process, an 
adjustment factor to account for the discrepancy of trans-
porter expression between in vitro and in vivo can be applied 
with higher confidence than before. The developed model 

also provides a feasible approach to predict the impact of 
changes in urine pH and flow on renal clearance.
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