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Abstract: In this study, we propose a novel model-free feature screening method for ultrahigh
dimensional binary features of binary classification, called weighted mean squared deviation (WMSD).
Compared to Chi-square statistic and mutual information, WMSD provides more opportunities to
the binary features with probabilities near 0.5. In addition, the asymptotic properties of the proposed
method are theoretically investigated under the assumption log p = o(n). The number of features
is practically selected by a Pearson correlation coefficient method according to the property of
power-law distribution. Lastly, an empirical study of Chinese text classification illustrates that the
proposed method performs well when the dimension of selected features is relatively small.

Keywords: Chi-square statistic; feature screening; mutual information; Pearson correlation coefficient;
power-law distribution; weighted mean squared deviation

1. Introduction

Feature screening is a practical and powerful tool in data analysis and statistical modeling of
ultrahigh dimensional data, such as genomes, biomedical images and text data. In supervised learning,
features of data often satisfy the sparsity assumption, i.e., only a small number of features are relevant
to the response in a large amount of features. Therefore, Fan and Lv [1] proposed a sure independence
screening method based on correlation learning for linear model and theoretically proved the screening
consistency. Subsequently, a series of model-free feature screening methods were proposed, which did
not require model specification [2–7]. These methods learned the marginal relationships between the
response and features, and filtered out the features with weak relationships to response.

In this study, we focus on feature screening of binary classification with ultrahigh dimensional
binary features. The purpose of feature screening in classification is to filter out a large amount of
irrelevant features that are unhelpful for the discrimination of class labels. Both computational speed
and classification accuracy are also expected to be taken into account. For categorical features, statistical
test (e.g., Chi-square test) [8,9], information theory (e.g., information gain, mutual information, cross
entropy) [10–13], and Bayesian methods [14,15] are usually used for feature screening, especially
in the field of text classification. In this study, we propose a novel model-free feature screening
method called weighted mean squared deviation (WMSD), which can be considered as a simplified
version of Chi-square statistic and mutual information. Next, according to the property of power-law
distribution [16,17], a Pearson correlation coefficient method is developed to select the number of the
relevant features. Lastly, the proposed method is applied to Chinese text classification. It outperforms
Chi-square statistic and mutual information when a small number of words are selected.
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The rest of this article is organized as follows. In Section 2.1, we introduce the weighted mean
squared deviation feature screening method and investigate its asymptotic properties. In Section 2.2,
a Pearson correlation coefficient method is developed based on the property of power-law distribution
for model selection. In Section 2.3, the relationships between Chi-square statistic, mutual information
and WMSD are discussed. In Section 3, the outstanding performance of the proposed method
is numerically confirmed on both simulated and empirical datasets. Lastly, some conclusions of
this study are given in Section 4. Some derivations and theoretical proofs are shown in the in the
Appendixs A and B.

2. Methodology

2.1. Weighted Mean Squared Deviation

As an general classification task, let (Xi, Yi)1≤i≤n be n independent identically distributed
observations. For i-th observation, Xi = (Xi1, · · · , Xip)

> ∈ {0, 1}p is the associated p-dimensional
binary feature, and Yi ∈ {0, 1} is the corresponding binary class label. Denote all necessary parameters
as follows, P(Yi = 1) = π, P(Xij = 1|Yi = 1) = θ1j, P(Xij = 1|Yi = 0) = θ0j, P(XijYi = 1) = µ1j =

πθ1j, P(Xij(1− Yi) = 1) = µ0j = (1− π)θ0j and P(Xij = 1) = θj = πθ1j + (1− π)θ0j, for 1 ≤ i ≤ n
and 1 ≤ j ≤ p. Under the model-free feature screening framework, we need to filter out the features
that irrelevant (or independent) of class label, i.e., θ1j = θ0j = θj. Intuitively, feature Xij is independent
of Yi, if and only if ωj = π(θ1j − θj)

2 + (1− π)(θ0j − θj)
2 = π(1− π)(θ1j − θ0j)

2 = 0. Note that,
the probabilities of two classes are considered as weights in ωj. In contrast, j-th feature is relevant,
if and only if ωj 6= 0. Then we define the true model as T = {j : ωj 6= 0, 1 ≤ j ≤ p} with model size
|T | = d0 and the full model as F = {1, · · · , p}.

Next, the Laplace smoothing method [18] is adopted for parameter estimation, to make all
estimators bounded away from 0 and 1. The parameter estimators are denoted as π̂ = (2 +

∑n
i=1 Yi)/(n + 4), µ̂1j = (1 + ∑n

i=1 YiXij)/(n + 4) and µ̂0j = (1 + ∑n
i=1(1 − Yi)Xij)/(n + 4), for

1 ≤ j ≤ p. It is easy to represent that θ̂1j = µ̂1j/π̂, θ̂0j = µ̂0j/(1 − π̂) and θ̂j = µ̂1j + µ̂0j, for
1 ≤ j ≤ p. Then, a model-free feature screening statistic is constructed, called weighted mean squared
deviation (WMSD), i.e.,

ω̂j = π̂(1− π̂)(θ̂1j − θ̂0j)
2, (1)

which is an estimator of ωj. It is expected that, the features far away from independency should be
selected. Intuitively, those features with larger ω̂j values are more likely to be relevant. In contrast,
those with smaller ω̂j values are less likely. Consequently, an estimated model is defined as M̂ = {j :
ω̂j > c, j ∈ F}, where c is a positive critical value. The following theorem provides the asymptotic
properties of the WMSD method under the assumption of ultrahigh dimension.

Theorem 1. Assume log p = o(n) and there exists a positive constant ε < 1/3, such that ε ≤ π ≤ 1− ε,
ε ≤ θkj ≤ 1− ε for any k ∈ {0, 1} and j ∈ F , and |θ1j − θ0j| ≥ ε for j ∈ T . We have the following
two results:
(1) maxj∈F |ω̂j −ωj| = OP(

√
log p/n);

(2) there exists 0 < c < (1− ε)ε3, such that limn→∞P(M̂ = T ) = 1.

Note that, the conditions ε ≤ π ≤ 1− ε, ε ≤ θkj ≤ 1− ε imply all parameters are bounded away
from 0 and 1, and the condition |θ1j − θ0j| ≥ ε implies P(Xij = 1|Yi = 1) 6= P(Xij = 1|Yi = 0) for
j ∈ T . Theorem 1 states that (1) ω̂j is a consistent estimator of ωj and (2) M̂ is a consistent estimator of
T as long as the critical value c lies between 0 and (1− ε)ε3, which is the strong screening consistency
of WMSD. However, the lower bound ε is unknown in real applications. To this end, a practicable
method is proposed in the next section. The proof of this theorem is left into Appendix A.
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2.2. Feature Selection Via Pearson Correlation Coefficient

While the true model T can be theoretically selected by Theorem 1, it strongly depends on the
critical value c. However, c is not given beforehand in empirical studies, and it always varies with the
data. In order to solve this problem, the following strategy is developed for feature selection. Firstly,
without loss of generality, it could be assumed that the features have been appropriately reordered
such that ω̂1 > ω̂2 > · · · > ω̂p, then all candidate models can be given by M = {M(d) : 1 ≤ d ≤ p}
withM(d) = {1, · · · , d} for 1 ≤ d ≤ p, which is a finite set with a total of p nested candidate models.
Thus, the original problem of determination for critical value c from (0,+∞) is converted into a
model selection problem with respect to the model set M. Next, according to our best knowledge of
text classification, the relatively large ωjs of irrelevant features approximatively follow a power-law
distribution. Meanwhile, both ωjs of relevant features and relatively small ωjs of irrelevant features
can not fit the power-law distribution well. The density function of power-law distribution can be
represented as,

p(x) =
α− 1

x0

( x
x0

)−α
, (2)

where the power parameter α > 1 and the lower bound parameter x0 > 0. A typical property of
power-law distribution is that it obeys log p(x) = α log x + C, i.e., it follows a straight line on a doubly
logarithmic plot, where C is a constant dependent on parameters α and x0. Therefore, a common way
to probe for the power-law behavior is to construct the frequency distribution histogram of data, and
plot the histogram on doubly logarithmic axes. If the doubly logarithmic histogram approximately
falls on a straight line, the data can be considered to follow a power-law distribution [16]. This inspires
us to use Pearson correlation coefficient of doubly logarithmic histogram of ω̂js to find an optimal
model from M. The Pearson correlation coefficient of sequences {log j}1≤j≤m and {log ω̂j}d≤j≤d+m−1
can be represented as,

rd =
m ∑m

j=1 log j log ω̂j+d−1 − (∑m
j=1 log j)(∑m

j=1 log ω̂j+d−1)√
m ∑m

j=1(log j)2 − (∑m
j=1 log j)2

√
m ∑m

j=1(log ω̂j+d−1)2 − (∑m
j=1 log ω̂j+d−1)2

, (3)

for 1 ≤ d ≤ p−m+ 1, where m is the number of points when calculating Pearson correlation coefficient.
Obviously, the absolute value of rd can be used to measure the approximate level of sequence
{ω̂j}d≤j≤d+m−1 to power-law distribution. Thus, the best model is selected as M̂ =M(d̂), with

d̂ = argmaxdmin≤d≤dmax
|rd| − 1, (4)

where dmin and dmax are the smallest and largest true model sizes to be considered. In other words,
if the sequence {ω̂j}d̂+1≤j≤d̂+m fits the power-law distribution best over all candidate continuous

subsequences of {ω̂j}1≤j≤p, then the features in model {d̂ + 1 ≤ j ≤ d̂ + m} are more likely to
be irrelevant and the features in model {1 ≤ j ≤ d̂} are more likely to be relevant. As a result,
the Pearson correlation coefficient method is adopted to determine the model size estimated by WMSD.
In numerical studies, parameters m, dmin and dmax must be artificially given beforehand by empirical
experience. The performance of numerical studies suggests that the feature selection method works
quite well both on simulated and empirical data.

2.3. The Relationships between Chi-Square Statistic, Mutual Information and WMSD

As we know, Chi-square statistic and mutual information are two popularly used feature screening
methods for discrete features. Next, the relationships between these two feature screening methods



Entropy 2020, 22, 335 4 of 11

and WMSD will be investigated. According to the definitions of parameter estimators above, the
Chi-square statistic can be represented as,

χ2
j =

n{n1j(n− n1· − n·j + n1j)− (n·j − n1j)(n1· − n1j)}2

n·jn1·(n− n·j)(n− n1·)
≈ nθ̂−1

j (1− θ̂j)
−1ω̂j, (5)

where n1· =
n
∑

i=1
Yi, n·j =

n
∑

i=1
Xij, and n1j =

n
∑

i=1
XijYi for 1 ≤ j ≤ p. Formula (5) shows the relationship

between Chi-square statistic and WMSD (see Appendix B.1 for detailed derivation). Thus, WMSD can
be considered as a simplified version of Chi-square statistic.

In a similar way, the mutual information can be represented as,

MIj =
n1j

n
log

nn1j

n1·n·j
+

n1· − n1j

n
log

n(n1· − n1j)

n1·(n− n·j)
+

n·j − n1j

n
log

n(n·j − n1j)

n·j(n− n1·)

+
n− n1· − n·j + n1j

n
log

n(n− n1· − n·j + n1j)

(n− n1·)(n− n·j)

≈ n−1χ2
j ≈ θ̂−1

j (1− θ̂j)
−1ω̂j, (6)

for 1 ≤ j ≤ p, Formula (6) shows the relationship among mutual information, Chi-square statistic and
WMSD (see Appendix B.2 for detailed derivation). Chi-square statistic and mutual information are
asymptotic equivalent for feature screening of binary classification with binary features, if the sample
size n is ignored.

Remark 1. From Formulas (5) and (6), compared to Chi-square statistic and mutual information, WMSD
provides more opportunities to the features with probabilities (i.e., θj) near 0.5. For an example, if n = 100,
θ̂1 = 0.2, θ̂2 = 0.1, MI1 = 0.2 and MI2 = 0.3, then χ2

1 ≈ 20, χ2
2 ≈ 30, ω̂1 ≈ 0.032 and ω̂2 ≈ 0.027. It is

obviously that, MI1 < MI2 and χ2
1 < χ2

2, but ω̂1 > ω̂2. This property is also confirmed in the following
empirical study of Chinese text classification.

3. Numerical Studies

3.1. Simulation Study

To evaluate the finite sample performance of WMSD feature screening method for binary
classification with binary features, two standard feature selection methods are considered as
competitors, i.e., Chi-square statistic (Chi2) and mutual information (MI). In addition, to investigate the
robustness of the proposed method under different classifiers, two popular used classification methods
are considered, i.e., naive Bayes (NB) and logistic regression (LR). To generate the simulated data,
a multi-variate Bernoulli model [19] with both relevant and irrelevant binary features is considered.
Moreover, different sample sizes of training set (i.e., n =1000, 2000, 5000), different feature dimensions
(i.e., p =500, 1000), and different true model sizes (i.e., d0 =20, 50) are considered in parameter
setup. For each fixed parameter setting, a total of 1000 simulation replications are conducted.
For each simulated dataset, three feature screening methods are adopted, i.e., Chi2, MI and WMSD.
Subsequently, the false positive rate (FPR), that is FPR = |T \M̂|/|T |, of WMSD is calculated. In the
same way, the false negative rate (FNR), that is FNR = |(F \ T ) ∩ M̂|/|F \ T |, of WMSD is also
calculated. Average FPR and FNR values over 1000 replications are reported. Lastly, in order to
evaluate the performance of classification, another 1000 independent observations as testing sample
are generated for each replication. Then, the area under the receiver operating characteristic curve
(AUC) is adopted to evaluate the out-of-sample prediction accuracy. The AUC values of NB and LR
on three estimated models (separately selected by Chi2, MI and WMSD) are calculated on the testing
sample and averaged over 1000 replications.
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For the given simulation model and parameter setup, the simulated data is generated as follows.
Firstly, generate the class label Yi ∈ {0, 1} with probability P(Yi = 1) = π = 0.5 for balanced case and
π = 0.8 for unbalanced case. Next, given Yi, the j-th binary feature Xij is generated from a multi-variate
Bernoulli model with probability P(Xij = 1|Yi = 1) = θ1j = 0.05{j−0.2 p0.2 + I(1 ≤ j ≤ 0.5d0)j−0.5d0.5

0 }
and P(Xij = 1|Yi = 0) = θ0j = 0.05{j−0.2 p0.2 + I(0.5d0 + 1 ≤ j ≤ d0)j−0.5d0.5

0 } for j ∈ {1, · · · , p},
where I(·) is the indicator function. Note that, without loss of generality, we set T = {1, · · · , d0}, that
is, the first d0 features are relevant. Moreover, in this simulation, the parameters in Formulas (3) and (4)
are set to be m = 100, dmin = 10 and dmax = 100.

The detailed simulation results are given in Table 1. In balanced case (i.e., π = 0.5), the following
results could be obtained. First, if both p and n are fixed, a larger true model size d0 leads to a larger
AUC. Because the more relevant features are involved, the better we can predict. Second, if both d0

and n are fixed, a larger feature dimension p leads to worse performance in terms of AUC. This is
reasonable because the larger feature dimension leads to more challenge for feature selection and then
a worse prediction. Third, if both p and d0 are fixed, a larger sample size n leads to a larger AUC and a
smaller FPR. This is expected because the larger sample size leads to a more accurate estimator and
then a better prediction. Forth, in almost all parameter settings, the AUC values of WMSD are larger
than that of Chi2 and MI, which states that WMSD performs better than the other two methods on the
simulated data. Last, for all parameter settings, the FNR values are relatively small, which indicates
that WMSD can filter out most irrelevant features. The results of unbalanced case (i.e., π = 0.8) are
similar to that of balanced case. For any parameter setting, FPR values are larger than that of balanced
case, which implies that feature selection is harder in unbalanced case.
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Table 1. Results of simulation study. The averaged area under the receiver operating characteristic
curve (AUC) values of naive Bayes (NB) and logistic regression (LR) based on three estimated models
(Chi-square statistic (Chi2), mutual information (MI) and weighted mean squared deviation (WMSD))
are reported, and the averaged false positive rate (FPR) and false negative rate (FNR) values of WMSD
are also reported, over 1000 replications.

AUC of NB AUC of LR
d0 p n Chi2 MI WMSD Chi2 MI WMSD FPR FNR

π = 0.5
20 500 1000 0.7238 0.7233 0.7318 0.6966 0.6960 0.7033 0.4188 0.0001

2000 0.7610 0.7609 0.7625 0.7411 0.7411 0.7428 0.1930 0.0000
5000 0.7778 0.7778 0.7779 0.7673 0.7673 0.7676 0.0108 0.0013

1000 1000 0.7145 0.7135 0.7303 0.6849 0.6839 0.7007 0.4014 0.0001
2000 0.7545 0.7543 0.7591 0.7335 0.7332 0.7399 0.1599 0.0001
5000 0.7693 0.7693 0.7697 0.7584 0.7584 0.7592 0.0024 0.0010

50 500 1000 0.8936 0.8935 0.8973 0.8463 0.8460 0.8499 0.2976 0.0008
2000 0.9102 0.9102 0.9110 0.8837 0.8837 0.8850 0.1058 0.0001
5000 0.9165 0.9165 0.9165 0.8998 0.8998 0.8998 0.0096 0.0005

1000 1000 0.8789 0.8787 0.8851 0.8239 0.8233 0.8313 0.3408 0.0004
2000 0.9014 0.9013 0.9031 0.8717 0.8716 0.8748 0.1106 0.0001
5000 0.9097 0.9097 0.9098 0.8921 0.8921 0.8923 0.0017 0.0007

π = 0.8
20 500 1000 0.6372 0.6502 0.6883 0.6422 0.6545 0.6905 0.4796 0.0007

2000 0.7206 0.7237 0.7303 0.7203 0.7239 0.7307 0.3413 0.0001
5000 0.7692 0.7692 0.7696 0.7658 0.7659 0.7664 0.0706 0.0001

1000 1000 0.6171 0.6329 0.6908 0.6268 0.6405 0.6936 0.4833 0.0007
2000 0.7183 0.7210 0.7328 0.7190 0.7216 0.7330 0.3214 0.0001
5000 0.7642 0.7640 0.7658 0.7614 0.7613 0.7627 0.0406 0.0002

50 500 1000 0.8636 0.8665 0.8746 0.8537 0.8542 0.8594 0.4739 0.0017
2000 0.9018 0.9022 0.9043 0.8930 0.8923 0.8935 0.2115 0.0005
5000 0.9149 0.9149 0.9150 0.9107 0.9107 0.9107 0.0442 0.0000

1000 1000 0.8428 0.8468 0.8583 0.8326 0.8337 0.8425 0.5433 0.0008
2000 0.8894 0.8899 0.8943 0.8790 0.8783 0.8821 0.2291 0.0004
5000 0.9075 0.9074 0.9079 0.9028 0.9027 0.9034 0.0295 0.0001

3.2. An Application in Chinese Text Classification

The dataset is downloaded from CNKI (www.cnki.net), which is one of the largest academic
literature platform in China. It contains n = 14, 473 abstracts of articles published in CSSCI (Chinese
Social Sciences Citation Index) journals of economics and management fields in 2018. The abstracts
are composed of p = 2385 Chinese words (ignored the words with frequencies less than 10). Our
purpose is to classify the articles into different fields (economics or management) according to their
abstracts, and select a small number of feature words which are helpful for classification. Economics
or management is considered as class 1 (i.e., Yi = 1) and the other is considered as class 0 (i.e., Yi = 0),
respectively. In summary, there are 8570 abstracts from economics and 5903 from management. To this
end, naive Bayes and logistic regression are both considered as standard classification methods. Then,
Chi-square statistic, mutual information and WMSD are considered as feature screening methods
and the performances of them are compared based on the two classification methods. It is noted that,
the results of these feature selection methods are invariable when class 1 and class 0 are exchanged.

Next, we sample 10, 000 abstracts as the training set and the others as the testing set randomly.
For comparison of feature screening methods, different numbers of selected words d (from 10 to
100 by 10) are considered. The AUC values of two classification methods with different numbers of
selected words are calculated for evaluating feature screening methods. For each setting, a total of
200 random replications are conducted. The averaged AUC values of two classifiers (i.e., NB and LR)
over 200 replications for three feature screening methods (i.e., Chi2, MI and WMSD) with different

www.cnki.net
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number of selected words, when economics and management are considered as class 1 respectively,
are reported in Figure 1. Panel (1) of Figure 1 shows that when naive Bayes classifier is applied and
economics is considered as class 1, AUC values based on three estimated models (separately selected
by Chi2, MI and WMSD) increase as d becomes larger. Obviously, WMSD far outperforms other
methods when d < 50, and they perform similarly when d ≥ 50. Panel (2) shows a similar result as
panel (1) when logistic regression is applied. Panels (3) and (4) of Figure 1 show that, WMSD also far
outperforms Chi2 and MI when d < 50, if the classes are exchanged.

Figure 1. Averaged AUC values of NB and LR on three models ranked by Chi2, MI and WMSD with
different model sizes (from 10 to 100 by 10), when economics and management are considered as class
1, over 200 replications.

Furthermore, the Pearson correlation coefficient method is used to determine the estimated model
size of WMSD. To calculate d̂, the parameters in Formulas (3) and (4) are set to be m = 100, dmin = 20
and dmax = 100. The averaged d̂ is 25.86 over 200 replications. In each replication, for the same d̂, AUC
values of NB and LR based on three estimated models by Chi2, MI, WMSD are calculated separately.
Figure 2 shows the boxplots of AUC for six situations (i.e., NB+Chi2, NB+MI, NB+WMSD, LR+Chi2,
LR+MI and LR+WMSD) over 200 replications. It could be observed that, when the estimated model
size is relatively small (actually, averaged d̂ is 25.86), WMSD performs more accurate and robust than
Chi2 and MI in terms of AUC, whether economics or management is considered as class 1.
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Figure 2. The boxplots of AUC values of NB and LR based on three estimated models by Chi2, MI and
WMSD, when economics and management are considered as class 1, over 200 replications.

Lastly, the probabilities of top 10 words ranked by three feature screening methods are also
calculated separately, based on all n = 14,473 abstracts. It can be seen from Table 2 that the probabilities
of top 10 words ranked by WMSD are larger than that of other two methods. It states that WMSD
provides more opportunities to high frequency words (with probabilities near 0.5). Because the word
frequencies of almost all words are less than 0.5, the word frequencies of high frequency words are
closer to 0.5. It validates the property of WMSD mentioned in Section 2.3.

Table 2. The probabilities of top 10 words ranked by three feature screening methods, Chi2, MI
and WMSD.

Methods Probabilities of Top 10 Words

Chi2 0.285 0.034 0.133 0.029 0.043 0.047 0.012 0.014 0.022 0.017
MI 0.285 0.133 0.034 0.029 0.022 0.043 0.026 0.019 0.012 0.047

WMSD 0.285 0.133 0.541 0.211 0.223 0.203 0.034 0.235 0.047 0.043

4. Conclusions

In this study, a novel model-free feature screening method called weighted mean squared
deviation is proposed especially for ultrahigh dimensional binary features of binary classification,
which is a measure of dependence between each feature and the class label. WMSD can be
considered as a simplified version of Chi-square statistic and mutual information, which can provide
more opportunities to the features with probabilities near 0.5. Furthermore, the strong screening
consistency of WMSD is investigated theoretically, the number of features is determined by a Pearson
correlation coefficient method practically, and the performance of WMSD is numerically confirmed
both on simulated data and an real example of Chinese text classification. Three potential directions
are also proposed for future studies. First, for multi-class classification with categorical features,
the corresponding WMSD statistics need to be theoretically and numerically investigated. Second,
the feature selection method via the Pearson correlation coefficient has not been theoretically verified,
which is an important problem to be solved. Last, in order to further confirm the outstanding
performance of WMSD in empirical research, it may make sense to investigate specifically the
observations for which other methods give a probability near 0.5 (i.e., it is hard to predict their
class labels) in future studies.
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Appendix A. Proof of Theorem 1

According to the definitions of π̂, µ̂1j and µ̂0j, we know that they all lie between (n + 4)−1 and
1− (n + 4)−1. In addition, by the conditions of Theorem 1, it is also known that π, θ1j and θ0j are
all bounded away from 0 and 1 for j ∈ F . Then µ1j and µ0j are also bounded away from 0 and 1
for j ∈ F . By the conclusions of Lemma 1 in [12], for any ε > 0 and sufficiently large n, we have
P(|π̂ − π| > ε) ≤ 2 exp(−2nε2), and P(|µ̂kj − µkj| > ε) ≤ 2 exp(−2nε2), for k = 0, 1 and 1 ≤ j ≤ p. In
addition, ωj and ω̂j can also be rewritten as

ωj = π(1− π){π−1µ1j − (1− π)−1µ0j}2,

ω̂j = π̂(1− π̂){π̂−1µ̂1j − (1− π̂)−1µ̂0j}2.

Then, by the conclusion of Lemma 2 in [12], for any ε > 0, we have P(|ω̂j−ωj| > ε) ≤ C1 exp(−C2nε2),
where C1 and C2 are some positive constants. Next, by Bonferroni’s inequality [20],

P
(

max
j∈F
|ω̂j −ωj| >

√
2/C2

√
log p/n

)
≤

p

∑
j=1

P
(
|ω̂j −ωj| >

√
2/C2

√
log p/n

)
≤ pC1 exp

{
− C2(2/C2) log p

}
= C1 exp(− log p)→ 0.

Consequently, we know that maxj∈F |ω̂j −ωj| = OP
(√

log p/n
)
.

By the condition of Theorem 1, ε ≤ π ≤ 1− ε and |θ1j − θ0j| ≥ ε for j ∈ T , we have ωj =

π(1 − π)(θ1j − θ0j)
2 ≥ (1 − ε)ε3 for j ∈ T and ωj = 0 for j /∈ T . For 0 < c < (1 − ε)ε3 and

log p = o(n), we have

P(M̂ = T ) = P
(

min
j∈T

ω̂j > c, max
j/∈T

ω̂j < c
)

≥ P
(

min
j∈T

ω̂j > c
)
+ P

(
max
j/∈T

ω̂j < c
)
− 1

≥ P
(

max
j∈T
|ω̂j −ωj| < (1− ε)ε3 − c

)
+ P

(
max
j/∈T
|ω̂j −ωj| < c

)
− 1.

Hence P(M̂ = T )→ 1 as n→ ∞. The proof is completed.

Appendix B. Some Necessary Derivations

Appendix B.1. Derivation of the Relationship between Chi-Square Statistic and WMSD

Denote n1· =
n
∑

i=1
Yi, n·j =

n
∑

i=1
Xij, and n1j =

n
∑

i=1
XijYi. According to the definitions of estimators,

we have π̂ ≈ n1·/n, θ̂j ≈ n·j/n, θ̂1j ≈ n1j/n1· and θ̂0j ≈ (n·j − n1j)/(n− n1·). Then we have

χ2
j =

n{n1j(n− n1· − n·j + n1j)− (n·j − n1j)(n1· − n1j)}2

n·jn1·(n− n·j)(n− n1·)

≈ nθ̂−1
j (1− θ̂j)

−1π̂(1− π̂)(θ̂1j − θ̂0j)
2

= nθ̂−1
j (1− θ̂j)

−1ω̂j.



Entropy 2020, 22, 335 10 of 11

It is the relationship between Chi-square statistic and WMSD.

Appendix B.2. Derivation of the Relationship between Mutual Information and WMSD

Based on the notations used in Appendix B.1 and according to the Taylor’s theorem, we have

MIj =
n1j

n
log

nn1j

n1·n·j
+

n1· − n1j

n
log

n(n1· − n1j)

n1·(n− n·j)
+

n·j − n1j

n
log

n(n·j − n1j)

n·j(n− n1·)

+
n− n1· − n·j + n1j

n
log

n(n− n1· − n·j + n1j)

(n− n1·)(n− n·j)

= π̂
[
θ̂1j log(θ̂1j/θ̂j) + (1− θ̂1j) log{(1− θ̂1j)/(1− θ̂j)}

]
+(1− π̂)

[
θ̂0j log(θ̂0j/θ̂j) + (1− θ̂0j) log{(1− θ̂0j)/(1− θ̂j)}

]
≈ π̂

[
θ̂1j(θ̂1j/θ̂j − 1) + (1− θ̂1j){(1− θ̂1j)/(1− θ̂j)− 1}

]
+(1− π̂)

[
θ̂0j(θ̂0j/θ̂j − 1) + (1− θ̂0j){(1− θ̂0j)/(1− θ̂j)− 1}

]
= π̂(1− π̂)(µ̂1j + µ̂0j)

−1(1− µ̂1j − µ̂0j)
−1{π̂−1µ̂1j − (1− π̂)−1µ̂0j}2

= n−1χ2
j .

As a result, we know that MIj ≈ θ̂−1
j (1− θ̂j)

−1ω̂j. It is the relationship between mutual information
and WMSD.
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