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Abstract: Homocysteine (Hcy) is well known to be increased in the metabolic syndrome (MetS)
incidence. However, it remains unclear whether the relationship is causal or not. Recently, Mendelian
Randomization (MR) has been popularly used to assess the causal influence. In this study, we adopted
MR to investigate the causal influence of Hcy on MetS in adults using three independent cohorts. We
considered one-sample MR and two-sample MR. We analyzed one-sample MR in 5902 individuals
(2090 MetS cases and 3812 controls) from the KARE and two-sample MR from the HEXA (676 cases
and 3017 controls) and CAVAS (1052 cases and 764 controls) datasets to evaluate whether genetically
increased Hcy level influences the risk of MetS. In observation studies, the odds of MetS increased
with higher Hcy concentrations (odds ratio (OR) 1.17, 95%CI 1.12–1.22, p < 0.01). One-sample MR
was performed using two-stage least-squares regression, with an MTHFR C677T and weighted Hcy
generic risk score as an instrument. Two-sample MR was performed with five genetic variants
(rs12567136, rs1801133, rs2336377, rs1624230, and rs1836883) by GWAS data as the instrumental
variables. For sensitivity analysis, weighted median and MR–Egger regression were used. Using
one-sample MR, we found an increased risk of MetS (OR 2.07 per 1-SD Hcy increase). Two-sample
MR supported that increased Hcy was significantly associated with increased MetS risk by using the
inverse variance weighted (IVW) method (beta 0.723, SE 0.119, and p < 0.001), the weighted median
regression method (beta 0.734, SE 0.097, and p < 0.001), and the MR–Egger method (beta 2.073, SE
0.843, and p = 0.014) in meta-analysis. The MR–Egger slope showed no evidence of pleiotropic effects
(intercept −0.097, p = 0.107). In conclusion, this study represented the MR approach and elucidates
the significant relationship between Hcy and the risk of MetS in the Korean population.

Keywords: homocysteine; mendelian randomization; metabolic syndrome

1. Introduction

During recent decades, metabolic disease has become a major health concern world-
wide with the spread of the Western diet and lifestyle, and the increase in the elderly
population. Metabolic syndrome (MetS) is defined by WHO as a pathologic condition char-
acterized by hypertension, glucose abnormalities, central obesity, and hyperlipidemia [1].
The global prevalence of overweight and obesity has continuously been growing and
has now reached epidemic proportions [2]. With this phenomenon, cardio-metabolic
abnormalities and MetS are expected to become more prevalent in youth, as well.

Nutrient intake is known as an important lifestyle factor for non-communicable disor-
ders [3]. Homocysteine (Hcy) is an amino acid intermediate formed during the metabolism
of the essential amino acid methionine. Hcy can be recycled into methionine with the
aid of vitamin B12 and folic acid, or converted into cysteine with vitamin B6 as a cofactor.
Hyperhomocysteinemia exerts a wide range of biological effects on multiple organs and is
known to be associated with a number of aging-related diseases, including cardiovascular
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disease, dementia, neural tube defects, and cancer, through different mechanisms such as
vascular dysfunction [4–7]. In addition, it has been suggested that an elevated Hcy level is
patho-physiologically involved in the increased risk of MetS [8]. However, the mechanisms
involved in Hcy-associated diseases have not been fully elucidated.

Mendelian randomization (MR), an established useful tool, provides an opportunity
for elucidating the causal effect of an exposure on an outcome using genetics within the
framework of an observational setting [9]. Three key assumptions of an instrumental
variable (IV) behind MR studies must be considered for it to be applied appropriately:
(1) the genetic variants must influence the exposure of interest; (2) the genetic variants
must not affect the outcome directly, but only potentially indirectly via the exposure;
(3) the genetic variants that influence the exposure must not associate with any potential
confounding factors. Therefore, MR utilizes IVs such as genetic variants that act as proxies
for environmental factors to assess the causal relationship between an exposure and an
outcome of interest. These genetic variants are randomly assigned during meiosis, yielding
a random distribution of genotypes in study populations. Genetic variants may cause the
outcome or exposure. Thus, MR is often robust to the issue of confounding and reverse
causation inherent in observational epidemiologic studies. Recent genome-wide association
studies (GWAS) identified single nucleotide polymorphisms (SNPs) influencing MetS in
the Korean population [10], which may be able to investigate a potential causal role of Hcy
in MetS using the MR approach.

The aim of our study is to assess the causal influence of Hcy on MetS in adults with
the use of MR. We analyzed data of the Korean Genome and Epidemiology study (KoGES)
Consortium, which includes multiple independent prospective cohorts differing based on
residential areas of the participants: the Health Examinees (HEXA) study, the Cardiovas-
cular Disease Association Study (CAVAS), the Korea Association Resource (KARE) study.
We analyzed one-sample MR in 5902 individuals (2090 MetS cases and 3812 controls) from
the KARE and two-sample MR from the HEXA (676 cases and 3017 controls) and CAVAS
(1052 cases and 764 controls) datasets to evaluate whether genetically increased Hcy level
influences the risk of MetS. One-sample MR was performed using two-stage least-squares
regression and weighted Hcy generic risk score as an instrument. Two-sample MR was
performed with five genetic variants selected by the GWAS as the instrumental variables.
Using one-sample MR, we found an increased risk of MetS. Two-sample MR supported that
increased Hcy was significantly associated with increased MetS risk by using the inverse
variance weighted method the weighted median regression method and the MR–Egger
method in meta-analysis.

2. Materials and Methods
2.1. Study Population of Exposure and Outcome Data

We used one-sample MR and two-sample MR approaches by using GWAS data
with participants from the KoGES Consortium. Exposure data were obtained from the
KARE cohort, which was the fifth 2-year follow-up phase, in 2011–2012 (Ansan-Ansung
community-based cohort study). Its study design, sampling, concept, and consent are
described in a previous study [11]. Among the whole cohort population (n = 8840), Hcy data
were available in 6267 individuals. After excluding missing Hcy data, we tested the causal
effect of blood Hcy in 5902 individuals from 2090 cases and 3812 controls for exposure data.
Outcome data of two independent prospective cohorts on MetS were retrieved from the
HEXA (676 cases and 3017 controls) and CAVAS (1052 cases and 764 controls). Detailed
information on the studies is summarized in Table S1. We obtained anonymous health
records and information on social history, lifestyle, diet, and daily activities provided by the
National Biobank of Korea, the Korea Disease Control and Prevention Agency, Republic of
Korea. The present study was approved by the institutional review board of Seoul National
University (E1908/001-004).
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2.2. Diagnosis of Metabolic Diseases

MetS is defined by the presence of three or more of the following five components,
according to the NCEP-ATP III criteria, except for the determination of central obesity [10].
Waist circumference cut-off value was based on the report by the Korean Society for the
Study of Obesity that central obesity is given as waist-high circumference (≥90 cm for men
and ≥85 cm for women). The details of other MetS criteria have been described in [12].
MetS score was calculated for each subject, as the summation of the number above the
cut-off, for each MetS component, ranging from 0 to 5. The hypertension is defined as
systolic/diastolic pressure ≥130/85 mmHg or antihypertensive drug treatment.

2.3. Instrumental Variables

The genotypes were derived from the Affymetric Genome-Wide Human SNP Array
5.0 Chip, which contains approximately 420,000 variants. Details on the quality control
process have been published previously [10]. We filtered out variants whose missing
rates were larger than 0.01, being monomorphic, and whose p-values of Hardy Weinberg
Equilibrium test results were below p < 1 × 10−6 [10]. The individual variant was recoded
as 0, 1, or 2 according to the number of trait-increasing alleles. The selection of the SNPs
modifying Hcy levels to be used as instruments in our study was based on loci achieved
with a Bonferroni-corrected significance of p < 4 × 10−8. The corresponding effect estimate
and standard errors of the SNPs were obtained. Genotyping and quality control procedures
are described in Table S2.

2.4. Statistical Analyses

For the characteristics of participants, data were presented as mean (standard de-
viation) or median (interquartile range) depending on the distributed normality, or as
percentages (%) for categorical variables for the characterization of subjects (Table 1). The
participants were classified into quartiles according to their log-transformed blood Hcy
level, then we analyzed distinction by one-way analysis of variance or Kruskal–Wallis test
for continuous variables or chi-square test for categorical variables.

Table 1. Characteristics of study subjects in the KARE cohort.

Variables All
Quartile of Blood Homocysteine Concentration (umol/L) 1

p-Value
Q1 (<2.39) Q2 (2.39–2.56) Q3 (2.56–2.74) Q4 (>2.74)

Sample size, n 5902 1479 1475 1470 1478
Age, year 58 (52,67) 54 (51,62) 57 (52,65) 59 (53,71) 64 (55,71) <0.01
Female, % 53 81.7 58.5 41.8 29.8 <0.01

Area (Urban), % 51.3 54.5 54.7 51.7 44.2 <0.01
BMI, kg/m2 24.44 (3.11) 24.07 (22.29,26.05) 24.31 (22.51,26.44) 24.43 (22.53,26.4) 24.37 (22.37,26.2) 0.54
Smokers 2, % 15.2 7.3 11.7 18.1 23.8 <0.01
Drinkers 3, % 43.7 33.5 43.6 45.7 52.1 <0.01

PA, METs (h/week) 92.94 (13.3) 93.08 (12.19) 93.05 (13.17) 93.06 (13.58) 92.52 (14.41) 0.47
RFS, score 19 (13,25) 21 (15,27) 20 (14,25) 19 (12,25) 18 (11,24) <0.01
WC, cm 84.45 (9.2) 82 (75.18,87.85) 83.9 (77.80,89.52) 85.24 (9.05) 86.5 (8.95) <0.01

FAG, mmol/L 95 (89,105) 93 (88,102) 94 (89,104) 96 (90,106) 97 (91,107) <0.01
TG, mmol/L 120 (87,172) 111.5 (82,157) 117 (87,167) 124 (90,175) 129 (91,190.75) <0.01

HDL-C, mmol/L 42 (36,49) 44 (37,51) 43 (37,50) 42 (36,49) 40 (34,47) <0.01
BP, mmHg

Systolic 118 (108,128) 119 (109,129) 117 (107,127) 119 (109,129) 120 (110,131) <0.01
Diastolic 75 (69,81) 72 (68,79) 75 (70,81) 76 (70,82) 76 (70,82) <0.01
MetS, % 35.4 24.7 30.9 37.8 48.4 <0.01
T2D, % 21.4 16.8 19.2 21.6 28.1 <0.01

1 logarithmic values; 2 current smokers; 3 current drinkers. p-values were calculated by ANOVA or Kruskal–Wallis test for continuous
variables and chi-square test for categorical variables. Continuous variables were described as mean (standard deviation) or median
(interquartile range) or depending on the distributed normality, and categorical variables were described as %. BMI, body mass index; PA,
physical activity; METs, metabolic equivalent of tasks; RFS, recommended food score; FAG, fasting glucose; WC, waist circumference; TG,
triglyceride; HDL-C, high-density lipoprotein cholesterol; MetS, metabolic syndrome; T2D, type 2 diabetes.
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To identify independently associated loci, we used LD-clumping with an r2 threshold
of 0.01 to select a set of independent instruments for Hcy by TwoSampleMR package. We
assessed F-statistics for checking weak instrument bias. All analyses were adjusted for age,
sex, and regional area. A logistic regression model was applied to calculate the odds ratio
(OR) of MetS for individual SNP and selected SNPs as IVs. Heterogeneity was measured
between variant-specific causal estimates by Cochran Q-derived IVW estimate, and the
MR–Egger slope was detected for the directional pleiotropic effects. To test for association
between confounding factors and each SNP, we performed linear or logistic regression of
confounders against genotype (coded as 0, 1, or 2; additive genetic model).

With one-sample MR analyses, the causal effect of the Hcy on MetS can be estimated
by using 2-stage least-squares (2SLS) regression [13]. In the first stage, Hcy was regressed
on the genetic instrument, which is the MTHFR C677T variant from the imputed dataset
or other SNPs with genetic risk scores (GRS) based on 5 selective SNPs. We constructed a
weighted Hcy-increasing GRS by summing the number of Hcy-increasing alleles under an
additive model weighted by the effect sizes of the variants estimated. In the second stage,
the MetS is regressed over the predicted values of the Hcy by using logistic regression. The
β-coefficient from the second stage can be interpreted as the change in the MetS risk per
SD increase in the Hcy level due to the IV.

For the two-sample MR analysis, the estimation of the causal effect of risk factors on
MetS was analyzed by the inverse variance weighted (IVW) analysis and the weighted
median regression and MR–Egger methods. p-values < 0.05 were considered statistically
significant. All statistical analyses were performed using R Software (Version 2.14.0; R
Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Characteristics of Study Participants

The characteristics of the observation study participants are presented in Table 1. The
participants consisted of 5902 individuals (log Hcy < 2.39 umol/L, n = 1479;
2.39 ≤ log Hcy < 2.56 umol/L, n = 1475; 2.56 ≤ log Hcy < 2.74 umol/L, n = 1470; log
Hcy > 2.74 umol/L, n = 1478). Participants with higher Hcy levels were of older age and
there was a higher frequency of smoking with men than women. There were no significant
differences in the BMI between quantiles of Hcy. The physical activity (PA) was obtained
from the metabolic equivalent of task (MET) score. The METs (hrs/week) were calculated
by summing each type of activity (1.0 for sedentary, 1.5 for very light, 2.4 for light, 5.0 for
moderate, and 7.5 for intense) [14]. Dietary habits were assessed using a recommended
food score (RFS), which is based on reported consumption of foods bearing high amounts
of antioxidant nutrients, consistent with the current American dietary guidelines [15]. We
used the modified RFS that follows the current Korean food guidelines adapted to the
Korean diet [16]. We identified that the blood homocysteine levels were associated with
a decrease in the RFS score. There were no significant differences in the PA between the
Hcy quartiles. In addition, those in the upper quartiles of Hcy were likely to have a higher
MetS count and more history of type 2 diabetes than those in the lower quartiles of Hcy.

3.2. Observational Analysis for Association between MetS and Hcy and Other Variables

Univariate logistic regression analysis demonstrated that higher levels of Hcy were
associated with MetS with the odds ratio (OR) 1.06 (95% confidence interval (CI) 1.05–1.08,
p < 2 × 10−16) (Table 2). In multivariate analyses, higher levels of Hcy were an independent
predictor of MetS after adjustment for (1) age, sex, and area (OR 1.03, 95% CI 1.02–1.05,
p = 1.53 × 10−7); (2) age, sex, area, smoking, and drinking (OR 1.03, 95% CI 1.02–1.04,
p = 2.97 × 10−7); and (3) age, sex, area, smoking, drinking, RFS, and BMI (OR 1.13, 95% CI
1.09–1.18, p = 7.03 × 10−9). The odds ratio remained unchanged. Therefore, we selected
age, sex, and area as covariates. We also assessed the association between MetS and other
environmental factors. We found that there were no associations between MetS and other
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potential confounders (smoking, drinking, RFS, and PA) except for BMI (Supplementary
Table S3). PA was not associated with both Hcy and MetS.

Table 2. The association between metabolic syndrome and homocysteine in the KARE cohort.

Univariate Multivariate 1 Multivariate 2 Multivariate 3

OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

Hcy 1.06
(1.05–1.08) <0.01 1.03

(1.02–1.05) <0.01 1.03
(1.02–1.04) <0.01 1.03

(1.02–1.05) <0.01

Multivariate 1: adjusted for age, sex, area; Multivariate 2: adjusted for age, sex, area, smoking, drinking; Multivariate 3: adjusted for age,
sex, area, smoking, drinking, RFS, BMI.

3.3. Instrumental Variable Selection

Twenty-seven SNPs associated with Hcy concentration in the GWAS were used as
instrumental variables (Table S4) based on a Bonferroni-corrected significance, regardless
of evidence of a functional impact of the SNP on Hcy concentration. We then added SNPs
rs1801131 and rs1801133, which were polymorphisms in the MTHFR gene and known to
have the strongest effect on the serum Hcy in the general population. The information of
SNPs was from the imputed dataset with IMPUTE2 using the JPT/CHB component of
HapMap. For further MR analysis, we selected five SNPs (rs12567136, rs1801133, rs2336377,
rs1624230, and rs1836883) based on linkage disequilibrium (LD) (as assessed by r2 < 0.1)
among the 27 associated SNPs. An F statistic was very high for all genetic variants which
were strong instruments (F = 241.2 for all combined instruments). Characteristics of these
SNPs and their association with phenotypes are summarized in Table 3 and Table S4.

Table 3. Effect estimates for associations of genetic instruments with Hcy and MetS.

SNP(f) Chr Gene EA
Association with Log-Transformed

Hcy a Association with MetS b

Beta SE p-Value OR 95% CI p-Value

rs12567136 1 CLCN6 A −0.058 0.008 3.23 × 10−10 0.998 0.976,1.020 0.867
rs1801133 1 MTHFR G −0.039 0.005 2.74 × 10−17 0.949 0.850,1.059 0.354
rs2336377 1 LOC390997 G −0.045 0.008 1.74 × 10−8 1.005 0.988,1.022 0.577
rs1624230 3 KNG1 C −0.027 0.005 3.81 × 10−8 0.998 0.981,1.014 0.774
rs1836883 11 NOX4 T 0.029 0.005 9.55 × 10−10 0.983 0.967,0.998 0.031

EA, effect allele; Chr, chromosome; Hcy, homocysteine; MetS, metabolic syndrome. a Results were derived from observation study of the
KARE cohort and adjusted for age, sex, and regional area. b Results were derived from merged data of the HEXA and CAVAS cohorts and
were adjusted for age, sex, and study site.

We investigated the association between each of the five selected SNPs and other
confounding factors (smoking, alcohol consumption, dietary habits (RFS), and BMI). There
were no confounding factors associated with IVs (Table 4).

Table 4. The association between each instrumental variable and confounding factors.

Instrumental
Variable

Confounding Factors (Beta (Standard Error), p-Value)

Smoking Alcohol
Consumption

Dietary Habits
(RFS) BMI

rs12567136 0.22(0.32),0.50 −0.11(0.29),0.70 1.21(1.03),0.24 −0.05(0.38),0.89
rs1801133 0.02(0.11),0.85 0.01(0.08),0.91 −0.54(0.28),0.05 −0.05(0.11),0.62
rs2336377 −0.06(0.12),0.60 0.03(0.09),0.72 0.10(0.31),0.75 0.11(0.12),0.35
rs1624230 −0.15(0.13),0.25 0.12(0.10),0.22 0.12(0.34),0.73 −0.19(0.13),0.15
rs1836883 0.16(0.11),0.13 0.03(0.08),0.73 −0.40(0.27),0.15 −0.08(0.10),0.44

RFS, recommended food score; BMI, body mass index; Smoking: current smoker vs non-, ex-smoker; Drinking:
current drinker vs non-, ex-drinker. Analyses were adjusted for age, sex, and area. Genetic model is additive.
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We also analyzed the association between the five SNPs and each component of MetS,
and the odds ratio of SNPs for each component of MetS. As a result, only two SNPs,
rs2336377 and rs1801133, were found to be associated with high blood pressure and high
triglyceride level, respectively (Figure S1). Thus, this component-wise analysis shows that
the five SNPs have no or selective effects on MetS components, which resulted in no direct
association with MetS.

3.4. One-Sample MR

To assess one-sample MR using the MTHFR C677T variant for causality of association
between Hcy and MetS, we calculated an MR estimate of the effect of the plasma Hcy levels
on the risk of MetS (ORMetS/Hcy) as log ORMetS/Hcy = (log ORMetS/per T-allele)/ βHcy/per T-allele,
as in previous studies [17,18]. Log ORMetS/Hcy is the (log) increase in MetS risk by SD unit
increase in the natural log-transformed plasma Hcy (MR estimate). βHcy/per T-allele is the
number of SD differences in the Hcy levels per allele (SD/ allele). The standard error of
the MR estimate was derived using the Delta method [19]. We observed that each 1-SD
increase in the natural log-transformed plasma Hcy level was significantly associated with
a 2.07-fold increased risk of MetS (95% CI: 1.05–27.35, p = 0.044).

The genetic risk score (GRS) comprising five SNPs was approximately normally
distributed within the KARE dataset. Results from MR analysis using weighted GRS as IVs
for Hcy were consistent with the observational analyses, providing evidence that increased
Hcy caused a higher risk of MetS. When checking the assumptions of 1SMR, we found
evidence of an association between the weighted GRS and MetS. Using weighted GRS with
five SNPs, the highest OR was observed in the dominant model (CC vs CT or TT genotype;
OR = 3.93, 95% CI = 3.074–5.026, p = 0.043).

3.5. Two-Sample MR

With 27 SNPs, we identified that estimated the potential causal effect of Hcy on MetS
was significant in two Korean cohorts (0.735–1.024 SD change in MetS per 1 SD higher
Hcy depending on methods). Using five genetic variants based on LD-clumping, we
found that increased Hcy was significantly associated with increased MetS risk using
weighted median regression (estimate (95% CI),0.73 (0.54–0.92); p < 0.01) and IVW (beta
(95% CI), 0.72 (0.50–0.94); p < 0.01) by HEXA and CAVAS cohorts (Table 5). The MR–Egger
method also showed that Hcy increased the risk of MetS (beta (95% CI), 2.07 (0.42–3.73);
p = 0.01). It showed evidence of low heterogeneity (Cochran Q = 8.696, p = 0.10). There
was no evidence of directional pleiotropy with five variants from the MR–Egger regression
analysis (intercept = −0.097, p = 0.107, I2

GX= 98.5%). A high value of I2
GX suggests that the

instrument effect sizes are estimated well, and that measurement error/weak instrument
bias is unlikely to affect the results of standard MR–Egger analyses [19].

Table 5. Estimates from MR methods for the association between Hcy and MetS.

Number of IVs Methods Beta Coefficient 95% CI p-Value 1

27 SNPs

Weighted
median 0.735 0.548, 0.923 <0.001

IVW 2 0.741 0.588, 0.894 <0.001
MR–Egger 3 1.024 0.391, 1.656 0.002

5 SNPs

Weighted
median 0.734 0.544, 0.923 <0.001

IVW 4 0.723 0.496, 0.941 <0.001
MR–Egger 5 2.073 0.421, 3.725 0.014

Weighted GRS 6 1.369 1.123, 1.615 0.043
1 Adjusted for age, sex, and study site. IV, instrumental variable; 2 Q = 22.58, p = 0.707; 3 intercept: −0.019,
p = 0.367, I2_GX, 87.1%; 4 Q = 8.696, p = 0.10; 5 intercept: −0.097, p = 0.107, I2_GX, 98.5%; 6 derived from
one-sample MR.
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4. Discussion

Previous observational studies of Hcy have yielded inconsistent results, some asso-
ciating Hcy with hypertension, one of the components of MetS [20], and others failing to
identify such association [21]. Inferring causal effects from classical observational studies
may be problematic because of unmeasured confounding factors or reverse causality for
identifying risk factor of disease. MR studies between Hcy and T2D or coronary artery
disease have been well conducted [22–24]. However, an association between Hcy and MetS
using MR approach compared to previous studies has not been identified. So far, coffee
intake, C-reactive protein, vitamin D, and uric acid were assessed for the causal relationship
with MetS using MR [20,25–27]. To our knowledge, this is the first study demonstrating
that elevated Hcy may have a causal role in the development of MetS.

Many studies support the contributions of the MTHFR C677T polymorphism to
folic acid metabolism and blood Hcy levels [28,29]. Methylenetetrahydrofolate reductase
(MTHFR) is a key enzyme of Hcy that catalyzes the conversion of Hcy to methionine. The
MTHFR C677T allele results in an amino acid change, and a reduction in MTHFR activity
leads to hyper-homocysteinemia, which is potentially an independent risk factor for my-
ocardial infarction, hypertension, and stroke [30,31]. Therefore, we chose the MTHFR C677T
polymorphism as a target SNP for one-sample MR, which is the standard implementation
of MR in a single data set on the SNPs, exposure, and outcome for all participants.

We found that Hcy is associated with an increased risk of MetS (OR 2.07 per 1-SD
Hcy increase). In addition, our IV (MTHFR C677T) was associated with homocysteine
concentration, with an F statistic = 208 (p = 6 × 10−46; crude model), indicating that weak
instrument bias is unlikely to be substantially influencing our analyses. Even though the
frequency of this risk allele is variable (Han Chinese 0.47, East Asian 0.29, European 0.36,
African 0.09, American 0.47, and South Asian 0.12 from 1000 Genomes Project Phase 3),
our data had 87% (OR = 2.07) power to detect the causal odds ratio (Type 1 error rate
0.05) according to online sample size and power calculator. Consistent with this finding,
weighted GRS with five SNPs per SD increase in Hcy (µmol/L) was associated with an
increase in odds of MetS (OR = 3.93; 95% CI = 3.074–5.026; p = 0.043). By applying the
two-sample MR approach, the causal effect estimates of Hcy levels on MetS across the
individual SNPs confirmed again that increased Hcy was significantly associated with
increased MetS risk using weighted median regression (estimate (95% CI),0.73 (0.54–0.92);
p < 0.01) and IVW (beta (95% CI), 0.72 (0.50–0.94); p < 0.01) by two Korean cohorts (Table 4).
The MR–Egger method also showed that Hcy increased the risk of MetS (beta (95% CI),
2.17 (0.87–3.47); p < 0.01).

We investigated the association between IVs and other confounding factors (smoking,
alcohol consumption, dietary habits, and BMI) for MetS. Furthermore, we found that each
IV was not linked to the confounders we measured. Given these results, confounding
factors, including dietary habits, were not associated with IVs which were found to be asso-
ciated with MetS through Hcy in this study. However, it is difficult to rule out unmeasured
or unknown confounders that can affect the association between Hcy and MetS.

The association between Hcy and MetS risk remains poorly understood. Several
possible explanations have been proposed to offer some mechanistic insights. Hyperho-
mocysteinemia has been proposed as being part of the pathophysiology of cardiovascular
disease due to its various biological effects, such as vascular damage, oxidative stress-
induced DNA damage [32], neuronal apoptosis [33], cell cytotoxicity [34], and endothelial
nitric oxide production [35]. Homocysteine acts as a methyl donor when it is converted to
S-adenosyl-methionine, and a recent study demonstrated an association between the Hcy
and DNA methylation in cardiovascular disease and dementia [36,37] with MTHFR C677T
polymorphism, which suggests that Hcy also might play a role in the pathogenesis of those
diseases via alterations in DNA methylation. However, the role of Hcy in the development
of metabolic disease is unclear.

Our study had several limitations. Firstly, some epidemiological studies suggested
that the pathogenesis of NAFLD and MetS seems to have common pathophysiological
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mechanisms, with focus on insulin resistance and obesity as key factors [38–40]. There
was strong evidence for genetic determinants of each MetS and NAFLD [41]; however, few
studies have investigated the causal effect of Hcy on both NAFLD and MetS components.
Since Hcy levels were involved in the development of non-alcoholic fatty liver disease
(NAFLD) [42], there is a need to investigate the underlying mechanisms linking Hcy-
associated NAFLD and MetS [43]. However, there are no such data available for NAFLD.
Thus, the genetic association between NAFLD and Hcy for the development of MetS is
not feasible in the present study. Further studies on the Hcy-associated MetS and NAFLD
using an MR approach are warranted to identify more relevant genes for understanding
etiology of metabolic disease. Secondly, our finding was conducted in a Korean population,
and therefore, this study might not be generalized across populations. However, this
could avoid the potential bias that might be caused by differences in genetic background.
In addition, it is difficult to completely exclude the influence of potential directional
pleiotropy. The causal effect estimates of Hcy on MetS across the individual SNPs showed
low heterogeneity (Q = 8.696, p = 0.10), but no evidence of a pleiotropic effect through
MR–Egger intercept test (Egger intercept for Hcy = 0.097, p = 0.107 for five SNPs). However,
we caution the interpretation of the sensitivity analyses, due to the small number of SNPs.
Besides, due to a limited number of individuals included in our study, our results should be
further confirmed and strengthened by other validation studies, using larger cohorts. Lastly,
one of the predominant molecular mechanisms of Hcy in the human body is reported to be
related to folate and methionine cycles through transmethylation pathway [3]. We need
to consider the epigenetic mechanism in modifying DNA methylation without genetic
changes or interplay between genetic and epigenetic mechanisms that may therefore lead
to increased risk of MetS. Nonetheless, MR studies can provide reliable evidence for the
effect of modifiable risk factors on disease and can overcome some of the limitations of
observational studies [44].

Recent advances in large-scale genetic studies provide thousands of genetic variants
that underlie complex diseases, leading to a better understanding of the genetic architec-
ture of the diseases. Mendelian randomization shows the potential use of observational
epidemiological studies with genetic availability along with biological knowledge to inves-
tigate the causal relationship between exposure and outcome. In this study, we identified
the SNPs affecting Hcy, not directly MetS, suggesting that the associated genetic variants
might provide information on the biological mechanisms of MetS. Hcy might be a func-
tional intermediate to understand the biological process through which genetics affect
MetS [45,46]. The strength of the causal relationship between modifiable exposure and risk
of disease identified by MR can also help improve the drug target identification or drug
development. An understanding of the causal role of Hcy in MetS patients and its risk
factors including obesity might be relevant because Hcy concentration can be effectively
lowered by simple, safe, and inexpensive interventions, such as supplementation with folic
acid and vitamin B.

5. Conclusions

We provide evidence by implementing a comprehensive MR study design that there
is a causal link between Hcy and increased MetS risk. We expect that our results might
provide the effect of Hcy exposure on MetS adjusting for potential genetic confounders.
The findings from our study warrant further research to uncover the mechanism that
implicates Hcy and metabolic-related traits in MetS onset.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13072440/s1, Table S1: Summary of independent Korean cohorts (HEXA and CAVAS)
for MetS status. Table S2: Summary of genotyping and quality control for outcome data. Table S3:
The association between metabolic syndrome and potential confounders in KARE cohort. Table
S4. Instrumental variables associated with blood Hcy and MetS. Table S5. The association between
each instrumental variable and confounding factors. Figure S1. Odds ratio of five selected SNPs
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and individual components of MetS in KARE. DM, diabetes; HDL, high density lipoprotein; HT,
hypertension; TG, triglyceride; WC, waist circumference.
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