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Abstract

Olfaction in most animals is mediated by neurons bearing cilia that are accessible to the

environment. Olfactory sensory neurons (OSNs) in chordates usually have multiple cilia,

each with a centriole at its base. OSNs differentiate from stem cells in the olfactory epithe-

lium, and how the epithelium generates cells with many centrioles is not yet understood. We

show that centrioles are amplified via centriole rosette formation in both embryonic develop-

ment and turnover of the olfactory epithelium in adult mice, and rosette-bearing cells often

have free centrioles in addition. Cells with amplified centrioles can go on to divide, with cen-

trioles clustered at each pole. Additionally, we found that centrioles are amplified in immedi-

ate neuronal precursors (INPs) concomitant with elevation of mRNA for polo-like kinase 4

(Plk4) and SCL/Tal1-interrupting locus gene (Stil), key regulators of centriole duplication.

These results support a model in which centriole amplification occurs during a transient

state characterized by elevated Plk4 and Stil in early INP cells. These cells then go on to

divide at least once to become OSNs, demonstrating that cell division with amplified centri-

oles, known to be tolerated in disease states, can occur as part of a normal developmental

program.

Introduction

Olfaction, the primary way that animals sense their chemical environment, begins in olfactory

sensory neurons (OSNs). In many chordates, each OSN has multiple cilia, which protrude

from the end of a dendrite at the apical surface of the olfactory epithelium. At the apical sur-

face, odorants contact receptors on the surface of cilia, initiating a signaling event in the OSN.

At the base of each cilium, a centriole organizes the structure (Fig 1A). Cilia are necessary for

olfaction, as are the centrioles that organize their microtubule structures [1,2]. To have multi-

ple cilia, each OSN must have multiple centrioles, raising the question: How are these many

centrioles made?

The centriole number in OSNs lies between that of two well-studied cases, the centriole pair

present in most animal cells and the highly amplified centrioles of multiciliated epithelial cells.

Many cell types, and most cycling cells, have exactly two centrioles, with the older of the two

often serving as a basal body for a primary cilium (S1A Fig). This older centriole is often

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000852 September 15, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ching K, Stearns T (2020) Centrioles are

amplified in cycling progenitors of olfactory

sensory neurons. PLoS Biol 18(9): e3000852.

https://doi.org/10.1371/journal.pbio.3000852

Academic Editor: Piali Sengupta, Brandeis

University, UNITED STATES

Received: June 4, 2020

Accepted: August 20, 2020

Published: September 15, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pbio.3000852

Copyright: © 2020 Ching, Stearns. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: CMB Training Grant from the National

Institutes of Health under award number

T32GM007276 (KC), by the National Science

http://orcid.org/0000-0002-0517-2421
http://orcid.org/0000-0002-0671-6582
https://doi.org/10.1371/journal.pbio.3000852
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000852&domain=pdf&date_stamp=2020-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000852&domain=pdf&date_stamp=2020-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000852&domain=pdf&date_stamp=2020-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000852&domain=pdf&date_stamp=2020-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000852&domain=pdf&date_stamp=2020-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000852&domain=pdf&date_stamp=2020-09-25
https://doi.org/10.1371/journal.pbio.3000852
https://doi.org/10.1371/journal.pbio.3000852
http://creativecommons.org/licenses/by/4.0/


referred to as the mother centriole and the newer centriole as the daughter centriole. The

daughter centriole forms orthogonally to the mother centriole in G1/S phase of the cell cycle

and is engaged to the mother until mitosis. Upon passage through mitosis, it becomes disen-

gaged, and in the ensuing cell cycle, it acts as a mother centriole upon which another new

daughter centriole can form [3]. In contrast, multiciliated epithelial cells have as many as sev-

eral hundred centrioles, each serving as a basal body for a motile cilium. In this state, cells exit

the cell cycle and initiate a transcriptional program that facilitates this centriole amplification

[4–7]. Centriole amplification in multiciliated epithelial cells occurs by two means: (1) centri-

ole growth from deuterosomes, structures that are specific to multiciliated epithelial cells, and

(2) by growth of multiple daughter centrioles from each mother centriole, forming rosettes [8].

Centriole rosettes are thought to contribute only a small percentage of the total number of cen-

trioles in multiciliated epithelial cells, although rosette amplification is reported to be sufficient

in the absence of deuterosomes [9,10]. Cycling cells can also be induced to form centriole

rosettes by overexpression of Polo-like kinase 4 (Plk4), a kinase required for centriole duplica-

tion, or by overexpression of certain other centriole duplication proteins [11–15].

Interestingly, centrioles in the olfactory epithelium were previously described to be

arranged in a rosette-like array in some cells [16]. However, these centriole rosettes have not

been investigated in the context of the cell cycle or differentiation. Our work builds upon this

early observation by describing a role for rosettes in centriole amplification, highlighting their

formation in cycling progenitor cells, and identifying developmental timing of centriole

amplification.

Results

To better define the range of centriole numbers in our preparations, we counted centrioles in

OSNs from mice expressing centrin2 conjugated to enhanced green fluorescent protein

(eGFP-centrin2), a marker of the centriole [17]. In nasal septa from adult mice, OSNs had an

average of 15.7 centrioles per cell, with wide variation around the mean (6 to 37 centrioles/cell,

SD 6.15 centrioles) but no apparent trend across the anterior–posterior axis. This number of

centrioles is similar to previous reports of cilium and centriole number in OSNs [2,18].

We next considered the potential means by which cells amplify centriole number during

differentiation from stem cells to OSNs. Centrioles in the olfactory epithelium were previously

described to be arranged in a rosette-like array in some cells [16]. To assess the presence and

role of centriole rosettes in the olfactory epithelium, we visualized centrioles by transmission

electron microscopy (TEM) and fluorescence microscopy in both adult and embryonic tissue.

First, ultrathin sections were made from dissected olfactory turbinates taken from adult mice

and examined by TEM. We observed dendritic knob structures with multiple centrioles, typi-

cal of OSNs (Fig 1A), as well as horizontal basal cells with centriole pairs and primary cilia

(S1A Fig). Near the basal lamina, where OSN progenitor cells are typically found, we found

cells with centriole rosettes (Fig 1B). Next, we determined whether centriole rosettes were

present in cryosections of embryonic (E12.5) olfactory epithelia from mice expressing eGFP-

centrin2 (Fig 1C, S1B Fig). Rosettes were apparent as clusters of eGFP-centrin2 foci with the

expected dimensions. Note that the cell shown in the inset has two rosettes, consistent with

rosette formation on both preexisting centrioles. In addition, we found that rosette-bearing

cells were positive for the neuronal marker β-tubulin III, confirming that these cells were com-

mitted to a neuronal cell fate (S1C Fig). Our results suggest that centrioles are amplified by

rosettes in both adult and embryonic olfactory epithelium.

By observing olfactory epithelia of adult mice by TEM and embryonic mice by fluorescence

microscopy, we also found cells that had free centrioles in addition to two rosettes. In olfactory
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Fig 1. Location of rosette structures and free centrioles in adult and embryonic mouse olfactory epithelium. (A) Schematic of the olfactory epithelium. The

inset shows an OSN dendrite from adult mouse imaged by TEM with pseudocolored cilia and centrioles. Inset scale bar = 1 μm. (B) TEM image of wild-type

adult mouse olfactory epithelium. Double solid line marks the basal lamina. Box shows the approximate location of the inset in the panel to the right. The panel

on the right shows an inset of a centriole rosette in cross section, near the basal lamina. Scale bar = 10 μm. Inset scale bar = 0.5 μm. (C) Fluorescence image of

embryonic olfactory epithelium at E12.5 in mice expressing eGFP-centrin2 to mark centrioles, as well as Arl13b-mCherry to mark cilia. The maximum

projection inset shows a deconvolved image of 2 rosette-like centriole clusters from a cell positive for β tubulin III, near the basal lamina. Dashed line marks the

apical surface of the olfactory epithelium. Double solid line marks the basal lamina. Box shows the location and orientation of the inset. Scale bar = 20 μm. Inset

scale bar = 1 μm. (D) TEM images of wild-type adult mouse olfactory epithelium in serial sections. The images show 2 centriole rosettes, R1 and R2, and free

centrioles, C1-4. Section sequence is indicated in the bottom right of each panel. The bottom panel summarizes the locations of centrioles in all 4 panels, where

new centrioles are shown in purple and mother centrioles are shown in gray. Scale bar = 1 μm. See S1 Fig for additional details. Arl13b-mCherry, ADP-

ribosylation-factor-like GTPase 13b conjugated to mCherry; eGFP, enhanced green fluorescent protein; nuc, nucleus; OSN, olfactory sensory neuron; TEM,

transmission electron microscopy.

https://doi.org/10.1371/journal.pbio.3000852.g001
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epithelia from adult mice, we found cells with two rosettes, one per parent centriole, as well as

free centrioles by TEM (Fig 1D, S1D1–S1D4 Fig). Similarly, puncta of eGFP-centrin2 were

observed near rosettes in embryonic olfactory epithelia by fluorescence microscopy (see Fig

1C, S1B Fig). Whether free centrioles formed by detaching from a centriole rosette or free of a

parental centriole (i.e., de novo) requires further investigation.

Next, we next asked whether centriole amplification can occur in cycling cells or only in

nondividing differentiated cells, using fluorescence microscopy in adult and embryonic olfac-

tory epithelium. We used stage-specific markers to assess centriole amplification in cells in dif-

ferent stages of the cell cycle. In the olfactory epithelium of wild-type adult mice, some cells

with nuclear proliferating cell nuclear antigen (PCNA), a marker for S phase, had centriole

rosettes (S2A and S2A’ Fig). To determine whether cells which amplify centrioles in S phase

proceed through mitosis, we probed for phosphorylated histone 3 (phospho-H3) and con-

firmed the mitotic state by DAPI staining. Previous studies have shown that phosphorylation

at serine 10 of the histone subunit H3 gradually increases to become highest at metaphase

before the signal decreases and relocalizes away from chromatin during anaphase [19,20]. In

the olfactory epithelium of adult mice expressing eGFP-centrin2, many mitotic cells with con-

densed chromatin and high phospho-H3 had clusters of centrioles (Fig 2A, 2A’ and S2B Fig,

S2C Fig). When mitotic spindles were observed in wild-type olfactory epithelium, centrioles

were found clustered at each pole (Fig 2B). Likewise, clusters of centrioles were observed at

opposite ends of the cell during anaphase, when phospho-H3 signal is more diffuse (Fig 2C).

We also found mitotic cells in cryosections of developing olfactory epithelia from embryonic

(E12.5) mice expressing eGFP-centrin2. Similar to what we observed in adult tissue, clusters of

centrioles were found on either side of metaphase chromatin and at each pole of the cell during

cleavage furrow formation (Fig 2D and 2E–2E”). These results demonstrate that OSN precur-

sors are able to divide after centriole amplification in both adult and embryonic olfactory epi-

thelium, and that both sister cells from a division can receive an amplified set of centrioles.

To determine when centriole amplification occurs within the OSN lineage, we conducted a

secondary analysis of an existing single-cell RNA sequencing (scRNAseq) data set. Fletcher

and colleagues sequenced cells from dissociated mouse olfactory epithelium and grouped cells

into distinct cell states by Slingshot analysis [21,22]. Analysis of a suite of genes associated with

cell cycle progression showed that progenitors known as globose basal cells (GBCs) and early

immediate neuronal precursors (INPs) are likely mitotically active [21]. We specifically exam-

ined individual genes known to be up-regulated in association with DNA synthesis, including

Rrm2, which encodes ribonucleotide reductase 2 [23]. We found that the mRNA for many of

these genes was abundant only in cells in the GBC and INP1 states, consistent with these being

mitotically active (Fig 3A). Next, we analyzed the scRNAseq data for the expression pattern of

centriole-associated genes. In particular, we analyzed expression of Plk4, a gene whose expres-

sion is necessary for centriole duplication and whose up-regulation is a signature of centriole

amplification in multiciliated cells [4]. Remarkably, the mRNA for Plk4 was strongly elevated

in neuronally-fated INP1s and INP2s compared with the multipotent GBCs (Fig 3B). Plk4

drives centriole formation in conjunction with a binding partner, SCL/Tal1-interrupting locus

gene (Stil) [13,15]. We found that the mRNA for Stil was also elevated in INP1s and INP2s

(Fig 3B, S3B Fig). The mRNA for centrosomal protein 152 (Cep152), another binding partner

of Plk4, also followed this pattern (S3A Fig) [24]. Given that up-regulation of Plk4 or Stil

mRNA drives centriole rosette formation in cell culture and coincides with centriole amplifica-

tion in multiciliated cells, we hypothesized that elevated Plk4 and Stil might mark the timing

of centriole amplification in early INPs.

To determine whether elevated Plk4 and Stil mRNA levels correlate with the timing of cen-

triole amplification, we used neuronal differentiation 1 (NeuroD1) as a marker of
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Fig 2. Division of cells with amplified centrioles. (A) Maximum projection image of immunofluorescence in olfactory epithelium cryosections from an adult mouse

expressing eGFP-centrin2. Dashed line marks the apical surface of the olfactory epithelium. Double solid line marks the basal lamina. Box marks the location of the inset

shown in A’. Scale bar = 5 μm. Inset (A’) shows a deconvolved maximum projection of centrioles shown in panel A. eGFP-centrin2 and γ tubulin mark 2 clusters of

centrioles. Phospho-H3 marks a cell in an early phase of mitosis. DAPI shows DNA condensed near the basal lamina and is excluded from the merge. Inset scale

bar = 2 μm. (B) Immunofluorescence in cryosections of olfactory epithelium from a wild-type adult mouse. DAPI shows DNA condensed and aligned in metaphase with

strong phospho-H3 colocalization. Centrin marks the distal ends of centrioles. In this single optical section, centriole clusters are shown at the spindle poles, marked by

acetylated tubulin. DNA is excluded from the merge. Scale bar = 2 μm. (C) Single optical section image of immunofluorescence in olfactory epithelium from a wild-type

adult mouse. Diffuse phospho-H3 marks a cell in anaphase. White arrows denote clusters of centrioles on opposite sides of the dividing cell. Scale bar = 2 μm. (D)

Maximum projection of a deconvolved fluorescence image in olfactory epithelium from a mouse at embryonic stage E12.5. DAPI shows DNA condensed and aligned in

metaphase. One spindle pole is shown with a cluster of centrioles marked by eGFP-centrin2. Scale bar = 2 μm. (E) Fluorescence image of a mouse at embryonic stage
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developmental timing within the differentiation pathway for OSNs (S3C Fig). NeuroD1 is a

transcription factor specifically up-regulated in early INPs, which are fated to become OSNs

(Fig 3C) [21,25]. We identified OSN progenitors in sections of adult olfactory epithelium by

their localization near the basal lamina and presence of nuclear NeuroD1 immunofluorescence

signal. We found examples of cells with two centrioles and cells with more than two centrioles

within the NeuroD1-positive progenitor population (Fig 3D and 3E). To avoid counting arti-

facts associated with sectioning and to improve imaging resolution, we used cells dissociated

from olfactory epithelia of adult mice expressing eGFP-centrin2 to quantify centriole number

in NeuroD1-positive precursors (Fig 3F and S3D Fig). We compared these counts to the num-

ber of centrioles per OSN imaged in septa from adult mice expressing eGFP-centrin2. As in

cryosections, we found two groups within the NeuroD1-positive cells: A minority (n = 4) of

cells that had only one or two visible centrioles, suggesting that they had not yet amplified cen-

triole number, and a majority (n = 36) that had many more centrioles per cell (6 to 39 centri-

oles per cell). This distribution of centriole numbers suggests that centrioles are amplified

during NeuroD1 expression (S3C Fig). Together, our data support a model in which centriole

amplification occurs during a transient state characterized by elevated Plk4 and Stil in early

INP cells, which then go on to divide at least once to become OSNs (Fig 4).

Discussion

OSNs in mammals have a configuration of centrioles and cilia that distinguishes them from

most other cells. Building on a previous observation of centriole rosettes in the olfactory epi-

thelium of embryonic mice [16], we have found that centrioles in both adult and embryonic

olfactory epithelium can be amplified from the centrosome of the progenitor cell via centriole

rosettes prior to cell division. This amplification occurs in neuronally fated progenitors and is

correlated with increased expression of the centriole duplication proteins Plk4 and Stil.

One of the questions raised by these findings is how the final number of centrioles in

mature OSNs is achieved. The simplest possibility is a that a single round of formation of new

centrioles in a rosette around the two mother centrioles in a progenitor cell is sufficient.

Mature OSNs had a mean centriole number of 15.7, with as many as 37 observed in a single

cell, whereas the rosettes that we observed in the olfactory epithelium and in cultured cells

overexpressing Plk4 had no more than eight centrioles, suggesting that this simple model can-

not account for the total number. It is possible to form rosettes with more centrioles, similar to

what has been observed in multiciliated cells lacking deuterosomes [10]. We did not observe

such cases in olfactory epithelium, but we cannot rule out that it occurs. However, our obser-

vation of free centrioles in cells with rosettes suggests as alternatives that centrioles might form

by de novo synthesis coincident with rosette formation or that new centrioles disengage from

rosettes, allowing new centrioles to form continuously on the mother centriole. It is also possi-

ble that centriole amplification might occur in more than one cell cycle or after the final cell

division in OSN differentiation. There is precedence for the latter in multiciliated epithelial

cells, the only other widely studied example of centriole amplification in vertebrates, in which

cells only amplify centrioles after division ceases [26].

Our results show that centriole amplification can occur in mitotically active progenitors of

the olfactory epithelium. This is interesting because division with amplified centrosomes,

E12.5. DAPI shows DNA decondensing to form 2 daughter cell nuclei. White lines show cell boundaries, including a cleavage furrow, as approximated by cytoplasmic

eGFP-centrin2 resulting from overexpression. Boxes mark the location of inset images. Scale bar = 5 μm. The insets (E’ and E”) show deconvolved maximum projection

images of centriole clusters in the top and bottom boxes, respectively. Centrioles are marked by eGFP-centrin2. Inset scale bars = 2 μm. See S2 Fig for additional details.

Arl13b-mCherry, ADP-ribosylation-factor-like GTPase 13b; eGFP, enhanced green fluorescent protein; phospho-H3, phosphorylated histone 3.

https://doi.org/10.1371/journal.pbio.3000852.g002
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mature centrioles that are able to nucleate microtubules, is considered to be detrimental

because of the increased frequency of chromosome missegregation, particularly in the context

of cancer [27,28]. Several features of the process in the OSN lineage mitigate the potential

problem of mitosis with amplified centrioles. First, newly formed centrioles would not have

matured by undergoing centriole-to-centrosome conversion, which promotes their ability to

nucleate microtubules and form spindle poles in the mitosis [29]. Even if amplified centrioles

had matured, for example, by amplification occurring over more than one cell cycle, known

mechanisms could enforce bipolar spindle formation, for example, by kinesin family member

KifC1/HSET-dependent centriole clustering [28]. Second, many of the amplified centrioles are

contained within rosettes with only a single mother centriole (S1D1–S1D4 Fig) that would be

competent to nucleate microtubules. Indeed, we found that each rosette in this case had only a

single focus of γ-tubulin (Fig 2A’, S2A’ Fig). This is similar to what appears to occur in sper-

matogenesis in some snails, during which cells with rosettes go through meiosis [30,31].

Cosenza and colleagues showed that the fidelity of mitosis in cells with overexpression-

induced rosettes is sensitive to asymmetry in the number of daughter centrioles per rosette

[32], although it is unknown whether this phenomenon plays a role in the OSN lineage.

We showed that the transcripts for key proteins in centriole duplication, Plk4 and Stil, are

transiently up-regulated during OSN differentiation. OSN differentiation closely resembles

that of multiciliated epithelial cells, except that no deuterosomes are found in cells amplifying

centrioles (Fig 1D). In multiciliated epithelial cells, up-regulation of Plk4 and other centriole-

associated genes is a signature of centriole amplification via deuterosomes and rosettes during

differentiation [4]. Up-regulation is not only relevant to the timing of centriole amplification

though. Plk4 and Stil can each drive rosette formation upon overexpression in tissue culture

[11,15]. This raises the question of whether this up-regulation is sufficient to coordinate the

formation of centriole rosettes in the olfactory epithelium. Besides Plk4 and Stil, the only other

centriole-associated gene that followed the same pattern of sharply increased RNA levels in

early INP cells was Cep152. Some other genes necessary for centriole duplication [12,33] show

modest changes in expression between cell types (see S3A Fig) but none as striking as Plk4,

Stil, and Cep152. Interestingly, Cep152 protein is known to be necessary for anchoring Plk4

and Stil at the mother centriole [24], but increased Cep152 has not been associated with rosette

formation. Additionally, how Plk4 and Stil transcription or RNA half-life is increased in early

INPs remains unclear.

In summary, our work characterizes a differentiation program in which centriole amplifica-

tion and cell division occur as a normal part of development and organ maintenance. These

findings highlight the robustness of mitotic division to alterations in centriole number, adding

Fig 3. Plk4 and Stil RNA levels and centriole number in early immediate neuronal precursors in the olfactory epithelium. (A-C) Secondary

analysis of an existing single-cell RNA sequencing data set from Fletcher and colleagues compares RNA levels for specific genes across cell types

in the olfactory epithelium [21]. The vertical axis shows average log2(normalized RNA counts). Each dot represents one cell. The horizontal axis

shows cell groups in the pseudotime lineage order determined by Fletcher and colleagues and is summarized at the top of panel A. (A) RNA

levels for Rrm2, a gene specific to DNA synthesis in S phase. (B) RNA levels for genes that drive centriole formation Plk4 and Stil. (C) RNA levels

for NeuroD1, a transcription factor marking early immediate neuronal precursor cells. Center lines = mean. Error bars = standard deviation. See

S2 Data for values. (D-E) Fluorescence images of olfactory epithelium from adult mice expressing eGFP-centrin2 and Arl13b-mCherry.

Cryosections were stained with antibodies against NeuroD1 and γ tubulin and with DAPI to mark DNA. (D) A NeuroD1-positive cell with two

centrioles. (E) A NeuroD1-positive cell with greater than two centrioles. DNA is excluded from the merge. Scale bars = 5 μm. (F) Comparison of

centriole counts in different cell types from olfactory epithelium of adult mice expressing eGFP-centrin2 and Arl13b-mCherry. Centrioles in

NeuroD1-positive cells were counted in dissociated olfactory epithelia (N = 2 mice, n = 40 cells). Centrioles in OSNs were counted by en face

imaging of the apical surface of septum olfactory epithelia (N = 6 mice, n = 90 cells). Note the small population of NeuroD1-positive cells with

unamplified centrioles. See S3 Data for centriole counts. See S3 Fig for additional details. Arl13b-mCherry, ADP-ribosylation-factor-like GTPase

13b; eGFP, enhanced green fluorescent protein; NeuroD1, neuronal differentiation 1; OSN, olfactory sensory neuron; Plk4, polo-like kinase 4;

Rrm2, ribonucleotide reductase molecule 2; Stil, SCL/Tal1 interrupting locus gene.

https://doi.org/10.1371/journal.pbio.3000852.g003
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to existing evidence from disease states, such as cancer, and the flexibility of centriole amplifi-

cation programs to meet the needs of specific cell types.

Methods

Ethics statement

This study uses samples from mice. All animal procedures in this study were approved by the

Stanford University Administrative Panel for Laboratory Animal Care (SUAPLAC protocol

11659) and carried out according to SUAPLAC guidelines.

Fig 4. Summary of centriole amplification in the olfactory epithelium. OSN, olfactory sensory neuron; Plk4, polo-like kinase 4.

https://doi.org/10.1371/journal.pbio.3000852.g004
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Antibodies used

Primary antibodies used for immunofluorescent staining are listed in Table 2. AlexaFluor-con-

jugated secondary antibodies (Thermo-Fisher) were diluted 1:1,000.

Transmission electron microscopy

Mice (Table 1) were euthanized by CO2 in accordance with Stanford’s APLAC guidelines.

Facial bones were removed in a dish of cold Tyrode’s solution (140 mM NaCl, 5 mM KCl, 10

mM HEPES, 1 mM CaCl2, 1 mM MgCl2, 1 mM sodium pyruvate, 10 mM glucose in ddH2O),

as in other reports [34], and turbinate scrolls were mechanically separated from septa. Epithe-

lia from turbinate scrolls were removed mechanically and fixed immediately in a solution of

2% glutaraldehyde and 4% PFA in 0.1M Na cacodylate buffer for 3 to 4 hours at 4˚C. Samples

were then rotated in a 1% solution of OsO4 for 1 hour at room temperature, washed 4 times

gently in water, then rotated in a 1% solution of uranyl acetate overnight at 4˚C. Samples were

then dehydrated in a graded ethanol series (30%, 50%, 70%, 95%, 100%, 100%) for 15 to 20

minutes per step, rotating at room temperature. Samples were washed twice for 10 minutes

each in propylene oxide (PO), then embedded through a graded PO:EMBED resin series (2:1

for 1 hour, 1:1 for 1 hour, 1:2 overnight). Samples were then rotated in pure EPON with lids

Table 2. Primary antibodies used.

Target Source Dilution Treatment

β tubulin III BioLegend, clone TuJ1 1:2,000 none needed

γ tubulin Sigma-Adrich, clone

GTU88

1:1,000 none needed

centrin

(all isotypes)

EMD Millipore, clone 20H5 1:5,000 10-minute pretreatment in 0.5% (w/v) sodium dodecyl sulfate in PBS for olfactory epithelium

phospho-H3,

Ser10

Cell Signaling, #53348T 1:200 none needed

GFP Invitrogen, #A-11120 1:1,000 none needed

Sass6 Santa Cruz Biotech,

#91.390.21

1 μg/mL requires cell fixation in −20˚C methanol

NeuroD1 Proteintech, #12081-1-AP 1:100 10-minute pretreatment in 0.5% (w/v) sodium dodecyl sulfate in PBS, requires overnight incubation in

primary antibody

NeuroD1, neuronal differentiation 1, w/v, weight in grams per 100 mL volume.

https://doi.org/10.1371/journal.pbio.3000852.t002

Table 1. Mice and cells used.

Experiment Samples used

TEM 3-week-old male wild-type CD1 mice from Charles River

quantification of centrioles per OSN and

centrioles per NeuroD1-positive progenitor

adult (1 to 14 months) TgCAG-Arl13b-mCherry, eGFP-

centrin2 mice from Jackson Laboratories [17]

immunofluorescent staining in olfactory

epithelium

adult (7 to 12 months) C57BL/6 mice and TgCAG-Arl13b-

mCherry, eGFP-centrin2 mice from Jackson Laboratories [17]

embryonic stage E12.5 TgCAG-Arl13b-mCherry, eGFP-

centrin2 mice from Jackson Laboratories [17]

centriole area analysis in cell culture hTert RPE-1 TetOn-Plk4-Flag, eGFP-centrin2 cells (a gift from

Bryan Tsou)

Arl13b-mCherry, ADP-ribosylation-factor-like GTPase 13b; eGFP, enhanced green fluorescent protein; NeuroD1,

neuronal differentiation 1; OSN, olfactory sensory neuron; RPE-1, retinal pigmented epithelial; TEM, transmission

electron microscopy.

https://doi.org/10.1371/journal.pbio.3000852.t001
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open for 5 hours to evaporate remaining PO before embedding in molds at 50˚C for 4 days.

Semithin sections were taken and imaged on a dissecting scope to find samples in the correct

orientation. Sections of 80 nm thickness were treated with uranyl acetate and mounted on

grids before imaging on a JEOL JEM-1400. Samples were prepared from two separate animals,

and rosettes and free centrioles were observed in both. Images were processed in Fiji [35], and

images in panels that include low-magnification images were rotated such that the basal lam-

ina is at the bottom.

Immunofluorescence staining of cryosections

Olfactory epithelia were dissected as described for TEM. Whole olfactory epithelia, turbinate

epithelia, or E12.5 embryo heads from mice (Table 1) were fixed immediately in 4% PFA in

PBS at 4˚C for 3 to 24 hours. Samples were then washed in PBS and stored at 4˚C. Before

mounting, samples were equilibrated in 1 to 5 mL of 30% sucrose solution in water for a mini-

mum of 12 hours at 4˚C. Samples were embedded in OCT compound (Sakura Tissue-Tek) on

dry ice and stored at −80˚C. Embedded samples were sectioned at 8 to 14 μm on a Leica cryo-

stat and adhered to charged slides by drying at room temperature for approximately 1 hour.

Slides were stored with drying pearls (Thermo-Fisher) at −80˚C and thawed under desiccation

no more than twice. Samples were pretreated as needed (see antibody summary chart), then

rehydrated and blocked for 0.5 to 4 hours in 5% milk in 0.1% Triton-x 100 that had been spun

in a tabletop centrifuge to pellet undissolved milk particles. Slides were incubated in primary

antibody for approximately 3 hours, washed in PBS, incubated in secondary antibody for

approximately 1 hour, washed in PBS, incubated in DAPI for 1 to 5 minutes, washed in PBS,

and mounted in MOWIOL. The adult sample shown in Fig 2A and all embryonic samples

were imaged on a Leica SP8 spinning disk confocal microscope using the Leica Application

Suite X (LAS X) software, and insets were deconvolved using HyVolution. All other adult sam-

ples were imaged on a Zeiss inverted widefield microscope using MicroManager [36]. Images

were processed in Fiji [35]. Images from the widefield microscope were deconvolved using the

Iterative Deconvolve plug-in [37] and theoretically generated point spread functions (Diffrac-

tion PSF 3D). Images were processed in Fiji [35], and images in panels that include low-magni-

fication images were rotated such that the basal lamina is at the bottom. For images with high

background, contrast in the representative images was adjusted uniformly across the image

such that the area outside of cells was black and areas of high signal were just below saturation.

Each immunofluorescent staining procedure was performed at least three times (N� 3) with

samples taken from at least two separate animals.

Analysis of centriole structure area

To quantify the area of centriole structures, samples were imaged on a Zeiss inverted widefield

microscope. For proof of concept, centrioles from RPE-1 cells processed for immunofluores-

cence staining (see procedure described next) were imaged in z-stacks with 0.5-μm steps to

include all centrioles in the field of view (N = 3 replicates from cell seeding through staining).

A total of 30 images of each condition were taken and processed in Fiji [35]. Z-stacks were

converted into a maximum projection image, and the green channel was deconvolved using

the Iterative Deconvolve plug-in [37]. Engaged structures were selected based on the presence

of anti-Sass6 immunofluorescence signal between adjacent GFP puncta (visualized by immu-

nofluorescence for GFP, and rosettes were defined as structures with at least three GFP puncta.

We measured the area of GFP fluorescence in structures meeting these criteria and normalized

all measurements such that the average area of centriole pairs was exactly 2. The normalized

fluorescence area had approximately a 1:1 ratio with actual centriole number (0.9208),
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demonstrating that it is an appropriate approximation for centriole number (S2C Fig). Next,

we used this method to assess centriole structures from the olfactory epithelium (Fig 3C). We

estimated the probability density distribution of centriole pair areas to be a Gaussian function.

We used this distribution to estimate a cutoff area (0.7085 μm2) above which a structure has

less than 1% probability of belonging to the centriole pairs data set. As a proof of concept,

73.0% of rosettes measured in cell culture were above this cutoff. For olfactory epithelia, sin-

gle-plane images were used for analysis shown here, though similar results were obtained with

z-stacks. We applied the cutoff to mitotic cells of the olfactory epithelium because, in contrast

to S-phase cells, mitotic cells’ centrioles separate in preparation for spindle formation, reduc-

ing overlap and making structures more amenable to measurement. Images of anti-centrin

immunofluorescence signal in mitotic cells in cryosections from adult mice were deconvolved

using the Iterative Deconvolve plug-in, and area was measured by outlining puncta in the anti-

centrin channel. Images in which centriole pairs were clearly visible were categorized as such.

All other images were categorized as “nonpair” structures. Immunofluorescent staining was

performed five times, and all mitotic cells centrioles that could be imaged were included. A

total of 87.2% of area measurements in this group fell above the cutoff. Probability calculations

were performed in R (code available at https://github.com/katieching/

CentrioleAreaAnalaysis). Dot plots, means, and standard deviation values were generated with

Statistika [38]. Linear regression was carried out using Excel. Data are available in S1 Data.

Overexpression of Plk4 in cell culture

RPE-1 cells (Table 1) were cultured in DMEM/F-12 (Corning #MT-10-092-CV) with 10%

Cosmic Calf Serum (GE Healthcare #SH30087.04) and periodically tested by PCR for myco-

plasma contamination. Stock cultures were selected by hygromycin B (Thermo-Fisher

#10687010) prior to the start of experiments. Cells were seeded to be 70%–80% confluent at

the start of the experiment. S-phase arrest was initiated by incubating cells in 2 mM thymidine.

After 24 hours, media was replaced with new media containing 1 μg/mL doxycycline and 2

mM thymidine to induce overexpression or with 2 mM thymidine and DMSO for the control

condition. After 24 additional hours, cells were washed in PBS, fixed for 20 minutes in metha-

nol at −20˚C, washed again in PBS, and stored at 4˚C.

Immunofluorescence staining of RPE-1 cells

Cells cultured on poly-L-lysine-coated coverslips were fixed in methanol at −20˚C for 20 min-

utes and washed in PBS. Samples were blocked for a minimum of 30 minutes in 5% dry milk

in 0.1% Triton-x 100 that had been spun to pellet undissolved milk particles. Samples were

then washed 3 times in PBS, incubated with primary antibodies for 1 to 2 hours at room tem-

perature, washed 3 times in PBS, incubated with secondary antibodies for 0.5 to 2 hours,

washed 3 times in PBS, incubated with DAPI for 5 minutes, washed 3 times in PBS, and

mounted in MOWIOL. Cells were imaged on a Zeiss inverted widefield microscope with

MicroManager [36]. Images were processed in Fiji [35].

Secondary analysis of scRNAseq data

Single-cell RNAseq data from Fletcher and colleagues in 2017 [21] were obtained as a .rda file

from the authors and are also available using the authors’ accession number GEO, GSE95601.

Cells were pooled for average RNA levels based on categories determined by Fletcher and col-

leagues. Analyses for single gene expression and coexpression were performed in R (code

available at https://github.com/katieching/RNAseq). Mean and standard deviation values are

available in S2 Data.
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Quantification of centrioles in OSNs

Samples were dissected as described for TEM, except that dissections were performed in PBS.

Septa were immediately transferred to 4% paraformaldehyde (PFA) in PBS and fixed for 3 to

24 hours at 4˚C. Septa were washed and stored in PBS at 4˚C. For imaging, septa were

mounted in a chamber of double-sided tape on glass slides with SlowFade Gold mountant

(Invitrogen) and high-precision 1.5 weight coverslips (Deckglässer) sealed with nail polish.

Samples were imaged on a Leica SP8 scanning confocal microscope. For each sample, 5 fields

of view were spaced approximately evenly along the anterior–posterior axis of the olfactory

epithelium. Within each field of view, the cell at the center of each quadrant of the field was

imaged such that the z-stack included all centrioles within the dendritic knob. The lowest-

quality image from each field of view was excluded from the analysis, giving 15 cells per animal

(N = 6 animals, n = 90 cells total). Individual dendrites were identified by their tightly clustered

centrioles. Image stacks were processed by semiautomated detection in the program Imaris

x64 9.2.1 (Oxford Instruments) using the Surfaces function and separating touching objects by

seed points of 0.3-μm diameter. Dot plots were generated using Statistika [38]. Data are avail-

able in S3 Data.

Olfactory epithelium dissociation

The turbinate region of olfactory epithelia was dissected in cold Tyrode’s solution, as described

for TEM. Samples were incubated in 1 to 2 mL of 0.25% trypsin (Thermo-Fisher, #MT-25-

053-CI) and minced with a feather scalpel periodically, between incubations at 37˚C, for 10 to

15 minutes in total. Trypsin was inactivated by adding 10 mL of DMEM with 10% serum. Sam-

ples were poured over a 40-μm cell strainer to remove bone fragments and other large debris.

Samples were spun at 800g for 5 minutes to pellet, washed in PBS, and spun again. Samples

were resuspended and fixed in 4% PFA in PBS overnight at 4˚C, then washed and stored in

PBS at 4˚C.

Quantification of centriole number in progenitor cells

Dissociated samples (N = 2) were stained to identify NeuroD1-positive progenitors by first

spinning at 8,000 rpm for 2 minutes in a tabletop centrifuge to remove PBS, then pretreating

by resuspending in 0.5% (w/v) SDS in water for 1 minute. Cells were spun to remove SDS,

then resuspended and blocked for 0.5 to 1 hour at 4˚C in a solution of 5% dry milk in 0.1% Tri-

ton-x 100 that had been spun to remove undissolved milk particles. Samples were washed in

PBS, incubated in primary antibody overnight at 4˚C, washed in PBS, incubated in secondary

antibody for 30 minutes at room temperature, washed in PBS, incubated in DAPI solution for

2 minutes, washed in PBS, then resuspended in MOWIOL. Samples were mounted with

1.5-weight coverslips, and centrioles were imaged (n = 20 cells per sample, n = 40 total) and

counted by the same method as quantification of centrioles in OSNs. Data are available in S3

Data.

Supporting information

S1 Fig. Coexistence of engaged and nonengaged centrioles. (A) TEM image of wild-type

adult mouse olfactory epithelium. Dashed line marks the apical surface of the olfactory epithe-

lium. Double solid line marks the basal lamina. Box marks the location and orientation of the

inset shown in the panel to the right. Scale bar = 10 μm. The inset shows a centrosome and pri-

mary cilium pseudocolored purple and cyan, respectively. Inset scale bar = 0.5 μm. (B) Inset

from a maximum projection fluorescence image of embryonic olfactory epithelium at E12.5 in
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mice expressing eGFP-centrin2 to mark centrioles, shown in Fig 1C. Deconvolved images

show two rosette-like centriole clusters and separate puncta positive for centriole markers

eGFP-centrin2 and γ tubulin. Scale bar = 2 μm. (C) Inset from a single optical section of

embryonic olfactory epithelium at E12.5 in mice expressing eGFP-centrin2 to mark centrioles,

shown in Fig 1C and S1B. Arrows mark the location of a rosette (shown in panel B) at the base

of a primary cilium in a cell that is positive for β tubulin III. Asterisks mark a nearby cell that is

negative for β tubulin III. Labels denote method of detection. Scale bar = 5 μm. (D1-D4) TEM

images from serial sections of olfactory epithelium from a wild-type adult mouse. R1, R2

denote centriole rosettes, identified by morphology. C1-5 denote centrioles not associated

with rosettes. Note that both mother centrioles in panel D1 have accessory structures, confirm-

ing that both rosettes form on centrioles that existed for at least one previous cell cycle. Scale

bar = 1 μm. TEM, transmission electron microscopy.

(TIF)

S2 Fig. Division of cells with amplified centrioles in the olfactory epithelium. (A) Immuno-

fluorescence in cryosections of olfactory epithelium from a wild-type adult mouse. Punctate

nuclear PCNA marks a cell in S phase, whereas nearby nuclei are PCNA-negative. Dashed line

marks the apical surface of the olfactory epithelium. Double solid line marks the basal lamina.

Box marks the location of the inset. Scale bar = 20 μm. In the inset (A’), DAPI marks DNA of

the S-phase cell, identified by punctate PCNA. CP110 marks the distal ends of centrioles and γ
tubulin marks centrosomes. In this single optical section, daughter centrioles are visible as

rings around γ tubulin foci, consistent with rosette formation. For clarity, the DNA panel is

excluded from the merge. Inset scale bar = 2 μm. (B) Analysis of eGFP-centrin2 fluorescence

area in mitotic cells in the olfactory epithelium. The pair (culture) column (N = 3, n = 208)

shows measurements of centriole pairs in RPE-1 cells, which were used to set a threshold of

0.7085 μm2 (purple line), above which area measurements have<1% probability of belonging

to the centriole pairs data set. The rosette (culture) column (N = 3, n = 115) shows measure-

ments of centriole rosettes in cells overexpressing Plk4, 73.0% of which are above the thresh-

old. The mitosis pair (OE) column (N = 5, n = 29) shows measurements of centriole pairs in

adult olfactory epithelium, all of which fall below the threshold. The mitosis nonpair (OE) col-

umn (N = 5, n = 46) shows measurements of centriole structures which could not be defini-

tively classified as pairs. A total of 87.2% are above the threshold. See S1 Data for measurement

values. (C) Plot of anti-GFP fluorescence area against centriole number in cell culture. Immu-

nofluorescence images were taken of hTert RPE-1 TetON-Plk4, eGFP-centrin2 cells with and

without doxycycline induction. Anti-GFP fluorescence area of Sass6-positive structures was

measured, and puncta were counted by eye. A line of best fit was generated in Microsoft Excel.

The slope of the line is 0.9208, showing an approximately linear relationship between centrin

fluorescence area and centriole number. See S1 Data for measurement values. eGFP, enhanced

green fluorescent protein; OE, olfactory epithelium; PCNA, proliferating cell nuclear antigen;

Plk4, polo-like kinase 4.

(TIF)

S3 Fig. RNA levels in scRNAseq data and images of a NeuroD1-positive cell. (A) Secondary

analysis of an existing single-cell RNA sequencing data set from Fletcher and colleagues (2017)

compares RNA levels for specific genes across cell types in the olfactory epithelium. The verti-

cal axis shows log2(normalized RNA counts). Cell groups are ordered by pseudotime along the

horizontal axis. Plots show RNA levels for Cep152, Cep192, and Sass6, genes required for cen-

triole duplication (see Hatch and colleagues, 2010; Gomez-Ferreria and colleagues, 2007; Lei-

del and colleagues, 2005). Dots represent individual cells. Center lines = mean, and error

bars = standard deviation. See S2 Data for values. (B-C) Secondary analysis of data from
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Fletcher and colleagues, 2017 shows coexpression of genes. Each dot represents a single cell.

Both axes show log2(normalized RNA counts) (B) Plot shows RNA levels for Plk4 and Stil, cen-

triole-associated genes known to drive rosette formation in cell culture. Points in the upper

right corner are cells that express both genes at high levels. These are INP1 and INP2 cells (see

A for color coding). (C) Plot shows RNA levels for NeuroD1, a transcription factor that marks

INP1 and INP2 cells, and Plk4. Points in the upper right corner are cells that express both

genes. These show that individual INP1/2 cells express high levels of Plk4. (D) A fluorescence

image of NeuroD1-positive cells in dissociated olfactory epithelium. Note that this image

includes other nuclei that are NeuroD1-negative. Boxes in the eGFP-centrin2 panel mark the

locations of insets. DNA is excluded from the merge. Scale bar = 5 μm. The insets (1, 2) show

deconvolved maximum projection images of centrioles, marked by eGFP-centrin2. Inset scale

bars = 2 μm. Cep152, centrosomal protein 152; Cep192, centrosomal protein 192; eGFP,

enhanced green fluorescent protein; INP, immediate neuronal precursor; NeuroD1, neuronal

differentiation 1; Plk4, polo-like kinase 4; Sass6, spindle assembly abnormal protein 6; scRNA-

seq, single-cell RNA sequencing; Stil, SCL/Tal interrupting locus gene.

(TIF)

S1 Data. Measurements of centriole area by anti-centrin fluorescence.

(CSV)

S2 Data. Mean and Standard Deviation Values for Secondary Analysis of scRNAseq Data

from Fletcher and colleagues, 2017. Corresponding plots are shown in Fig 3A–3C and S3A

Fig. scRNAseq, single-cell RNA sequencing.

(XLSX)

S3 Data. Number of centrioles in NeuroD1-positive progenitor cells and OSNs. NeuroD1,

neuronal differentiation 1; OSN, olfactory sensory neuron.

(CSV)
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