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Adaptive Natural Killer (NK) cells, a heterogenous subpopulation of human NK cells with a

unique phenotypic and functional signature, became arguably one of the central areas of

interest in the field. While their existence seems closely associated with prior exposure to

human cytomegalovirus (HCMV), many questions regarding their origin and regulation

remain unanswered. However, a common denominator for the majority of adaptive

NK cells is the expression of the activating heterodimeric receptor CD94/NKG2C that

binds to HLA-E, a non-classical HLA molecule, that displays a comparably restricted

expression pattern, very limited polymorphism and presents a distinct set of peptides.

Recent studies suggest that—in analogy to T cell responses—peptides presented on

HLA-E could play an unexpectedly decisive role for the biology of adaptive NK cells.

Here, we discuss how this perspective on the CD94/NKG2C-HLA-E axis aligns with the

existing literature and speculate about possible translational implication.
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The view of Natural Killer (NK) cells as exclusively innate lymphocytes has been challenged for
more than a decade now. Ever since the seminal reports by Gumá et al. (1, 2), an increasingly
clear picture of human NK cell subsets with adaptive features is emerging. Adaptive NK cells are
characterized by a distinct epigenetic signature, alterations in key transcription factors, signaling
adaptors, and cell surface receptors (3–6). This phenotype is accompanied by expansions of
adaptive NK cell subsets resembling clonal T cell responses and a functional specialization that
seems to favor antibody-triggered responses over natural cytotoxicity (7–9). These features are
observed in different combinations on the single cell level, resulting in substantial heterogeneity
within the adaptive NK cell subset. While we are far from understanding the biological relevance
of this complex picture, two hallmarks—already defined in the early studies by López-Botet’s group
(2, 10)—remain unifying features: (1) The majority of adaptive NK cells expresses the activating
heterodimeric lectin-like receptor CD94/NKG2C that binds the non-classical HLA-E molecule.
(2) Prior exposure to human cytomegalovirus (HCMV) usually seems to precede the emergence
of adaptive NK cells, even though adaptive NK subsets have been described in NKG2C-deficient
individuals as well where CD2 engagement can compensate for the lack of NKG2C-mediated
co-stimulation of antibody-driven responses (11). Other viral infections have been described to
trigger the expansion of adaptive subsets, but it seems that this expansion does not take place in
CMV-seronegative donors (10, 12, 13). Since primary CMV infection is usually asymptomatic,
most reports are likely studying secondary expansions that accompany CMV reactivation events,
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e.g., after transplantations (14–16). The molecular events
underlying the initial formation of the adaptive NK cell subset
remain strikingly enigmatic.

Very recently, Hammer et al. (17) as well as our own group
(18) highlighted the critical importance of peptides, most notably
a peptide derived from the leader sequence of HLA-G, presented
on HLA-E for the regulation of adaptive NK cells, further
emphasizing the role of this receptor-ligand system.We speculate
here that the remarkable degree of peptide specificity together
with certain features of the HLA-E biology make a compelling
case for the HLA-E/NKG2C axis as the central driver for CMV-
induced generation of adaptive NK cells.

We will set out by recapitulating some evolutionary aspects
of HLA-E molecules that need to be considered with regard
to the ongoing battle between the mammalian immune system
and persistently infecting viruses, which holds in particular for
the beta-herpes virus CMV that has developed a multitude of
immune escape strategies targeting innate as well as adaptive
immune responses.

The non-classical MHC class I molecule HLA-E plays a
threefold role in the regulation of certain aspects of the innate
and adaptive immune system. Firstly, HLA-E molecules loaded
with peptides derived from various HLA class I ER leader
sequences block conventional NK cells expressing the inhibitory
heterodimeric NKG2A/CD94 receptor containing two ITIM
motifs in the cytoplasmic domain of NKG2A (19–25). Secondly,
HLA-E molecules preferentially loaded with the HLA-G leader
peptide have the capacity to trigger ADCC-competent “adaptive”
NK cells expressing the activating NKG2C/CD94 receptor that is
associated with the ITAM-containing adaptor molecule DAP12
(17, 18, 22, 26, 27). Thirdly, HLA-E molecules presenting
various self and virus-derived peptides can be ligands for CD8+

cytotoxic T cells expressing αβ T cell receptors (28–33). HLA-E-
restricted T cell responses are, however, beyond the focus of this
Perspective.

UNIQUE EVOLUTIONARY FEATURES OF
DIMORPHIC HLA-E MOLECULES

Evolutionary studies indicate that the HLA-E locus is the most
well conserved among all primateMHCmajor histocompatibility
complex (MHC) class I genes (34) indicating that it serves
specialized functions in the immune system distinct from the
highly polymorphic HLA-A, B, and C locus products. In humans
two allelic variants can be distinguished in Caucasian populations
that differ only in amino acid 107 (Arg in HLA-E∗0101, Gly
in HLA-E∗01031 and E∗01032) (35, 36). Amino acid 107 is
located in an outwardly exposed loop below the α2-helix of
the peptide-binding platform and does not affect the general
structure of peptide-assembled HLA-E molecules (37). While
HLA-EG seems to be older allele since Gly107 is exclusively
found in all primate HLA-E orthologs, population studies suggest
that the HLA-ER single nucleotide polymorphism has emerged
before the expansion ofHomo sapiens (38). HLA-EG andHLA-ER

alleles occur in about equal frequencies in different ethnic groups
and are maintained in diverse ancestral HLA haplotypes by

stabilizing selection (38). While influences of the genetic HLA-E
dimorphism on graft-vs.-leukemia reactions after hematopoietic
stem cell transplantation, spontaneous abortions, viral infections,
and susceptibility to autoimmune diseases have been described
elsewhere (39–42), we will focus here on features of HLA-E
proteins related to the formation of ligands for CD94/NKG2A/C
NK receptors.

PEPTIDE-LOADED HLA-E MOLECULES AS
BINDING PARTNERS FOR NKG2A/C

While HLA-E transcripts show a broad tissue distribution (43),
surface expression of of HLA-E proteins is mainly restricted
to resting and activated T cells, NK cells, B cells, monocytes,
and macrophages as well as endothelial cells (23, 44). Hence
NKG2A-expressing NK cells that circulate through blood vessels
and lymphoid tissues will constantly be exposed to varying
levels of inhibitory stimuli. Due to the ∼6-fold lower affinity
of peptide-loaded HLA-E molecules to NKG2C (45, 46) and
stricter peptide selectivity of the HLA-E/NKG2C interaction
(17, 18, 22, 47) it seems, however, more unlikely that NKG2C+

NK cells will receive tonic stimulation under physiological
conditions. While HLA-E was noted to possess generally low
surface expression levels as compared with HLA-A and B
molecules, the HLA-EG allotype loaded with different peptides
shows consistently higher surface expression than HLA-ER (37,
48, 49). This can be attributed to various factors including less
efficient assembly with β2-microglobulin and slower ER egress,
lower affinity for all tested HLA leader peptide ligands and
reduced thermostability of the HLA-ER variant (37, 48, 49).
This suggests that background NKG2A/C engagement will be
very low in the HLA-ER homozygous situation which might
reduce the inhibition/activation threshold of NKG2A+/C+ NK
cells, but also of NKG2A+ T cells, during viral infection
and other pathological conditions (50). In this context it is
interesting to note that the presence of the HLA-EG variant
was reported to be associated with higher incidence of CMV
infection after kidney transplantation (51), which might be
related to a more pronounced dampening of NKG2A+ NK cell
responses.

The HLA-E ligands for NKG2 family members are usually
formed after loading HLA-E molecules with 9-mer peptides
processed out of ER leader sequences from various HLA-A, B,
and C allotypes as well as HLA-G in a TAP- and proteasome-
dependent fashion (22, 24, 25, 52–54). HLA-E-stabilizing leader
peptides that confer protection from NK cell lysis by binding
to NKG2A have the consensus sequence VM(A/P)PRT(L/V)
(V/L/I/F)L and thus exclude several HLA-B allotypes (containing
a Thr or Ala residue instead of Met), a few HLA-C allotypes
and the leader peptides from HLA-F and HLA-E itself that do
not match this motif. HLA-E molecules thereby monitor the
biosynthesis of most polymorphic class I allotypes as well as
the class Ib molecule HLA-G and regulates NK cell activity as a
functional complement to the polymorphic KIR system.

During cellular stress Hsp60 is upregulated and can give rise
to a competing HLA-E ligand (55). HLA-E/Hsp60 leader peptide
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complexes are not bound by NKG2A/CD94 and thus provide
a mechanism for NK cells to specifically attack stressed cells
(55). In addition to the Hsp60 peptide, a great number of non-
canonical, sometimes pathogen-derived HLA-E ligands (with
striking differences between HLA-EG and HLA-ER) have been
identified (56–59) that will probably be of little relevance for NK
cell recognition.

By clear contrast, the requirements for the recognition
of peptide-loaded HLA-E molecules by NKG2C/CD94 are
much more restricted. It was noted that the HLA-G-derived
leader peptide VMAPRTLFL in complex with HLA-E has a
dominant role in inducing cytotoxic activity in NKG2C+ NK cell
clones using peptide-pulsed, HLA-E∗0101-expressing 721.221 B-
lymphoblastoid cells or PBMC as stimulators (22, 47). Using
microspheres charged with recombinant peptide-loaded HLA-
E∗0103 molecules we have recently shown that only the HLA-
EpHLA−G complex is able to trigger FcεRIγ downmodulation,
IFN-γ release, CD25 upregulation, proliferation, and ADCC
responses in NKG2C+ NK cells (18). The pivotal role of theHLA-
G peptide for NKG2C/CD94 stimulation in vitro appears to be
in accordance with biochemical studies analyzing the affinities
and thermodynamic parameters of NKG2x/CD94–pHLA-E
interactions (46). Crystal structures surprisingly revealed that the
critical Phe8 residue in the HLA-G peptide is in contact with
CD94 but not with the differentially regulated NKG2A/C chains
(60, 61). The predominance of the HLA-G peptide-loaded HLA-
E for adaptive NK cells prompts questions regarding the natural
availability of such complexes in light of the restricted tissue
distribution of HLA-G (62–64).

HUMAN CYTOMEGALOVIRUS (CMV)
INFLUENCES THE HLA-E/NKG2
INTERACTION

Human cytomegalovirus has highjacked the HLA-E/NKG2A axis
for the purpose of immune evasion. In the presence of TAP
peptide transporter blockade through the CMV protein US6,
HLA signal peptide-mimicking sequences derived from the CMV
glycoprotein UL40 are able to supply HLA-E molecules with
stabilizing peptides TAP-independently (65, 66). Interestingly,
the early HCMV gene products US2 and US11, that attack HLA-
A, B, C, and G molecules in an allotype-specific fashion, do
not downmodulate HLA-E heavy chains (67); and the HLA-EG

but not the HLA-ER alloform may be resistant to TAP blockade
by US6 (67, 68). The HCMV glycoprotein US10 selectively
targets the NK-inhibitory HLA-G molecule for degradation
while HLA-E levels are only slightly affected (69). Since HLA-
G is inserted into the ER membrane before US10-mediated
degradation, HLA-G leader peptides will likely remain available
for HLA-E loading and NKG2C interaction in CMV-infected
tissues unless their ER entry is blocked by the late HCMV gene
product US6. We conclude that HLA-E appears to be remarkably
spared from the attack of HCMV immunoevasins principally
favoring not only the blockade of conventional NKG2A+

NK cells but simultaneously also the expansion of NKG2C+

NK cells.

ADAPTIVE NK CELLS BENEFIT FROM
HLA-E LOADED WITH CMV UL40-DERIVED
PEPTIDES

There seems to be an ongoing coevolution likely resulting
in mutual benefit for the propagation of HCMV variants
and the persistently infected human host. This assumption is
underpinned by the finding that in clinical HCMV isolates,
the UL40 protein shows a mutational hotspot at position 8 of
the potential HLA-E-binding peptide at position UL40(15–24)
(70). Some UL40 variant peptides reduced the affinity of
the interaction between HLA-E and CD94/NKG2A and some
selectively reduced the NK cell-mediated lysis by NKG2C+ NK
cell clones (70). Notably, UL40 is endowed with a dual function
and does not only provide HLA-E binding sequences but also
promotes UL18 expression (71). The UL18 gene product is
a high affinity decoy-ligand for the inhibitory receptor LIR-1
(72), that is highly expressed on adaptive NK cells and that
mediates decreased susceptibility of HCMV-infected cells to LIR-
1+ NK cells (73). This could suggest that the immune-evasive
functions of UL40 are primarily targeted at adaptive NK cell
populations. In a very profound analysis it was recently shown
that UL40-encoded peptides control the activation, expansion
and differentiation of NKG2C+ adaptive NK cells in a subtle
fashion (17). A rare UL40 peptide identical with the above-
mentioned HLA-G leader peptide was confirmed to be optimally
stimulating, followed by a frequent UL40-derived peptide
mimicking the leader peptide present in most HLA-C alleles
(VMAPRTLIL) (17). This study elegantly recapitulated prior
knowledge regarding the epigenetic imprinting and expansion of
adaptive NKG2C+ NK cells in the presence of genetically diverse
HCMV strains. The authors propose that different strain-specific
UL40-derived peptides account for the heterogeneity of adaptive
NK cell populations.

HCMV-DRIVEN PRIMING AND EXPANSION
OF ADAPTIVE NK CELLS

The relevance of HLA-E-NKG2C interactions for the expansion
of adaptive NK cells has been demonstrated in vitro (2, 74–
76) and is supported by studies showing that NKG2C zygosity
directly correlates with NKG2C surface levels and the size and
distribution of NKG2C+ NK cells in vivo (77–79).

Interestingly, Gumá et al. had already studied the influence of
HLA-E alleles—and thereby presumably HLA-E surface levels—
on HCMV serology and percentage of NKG2C+ cells. While
the limited number of subjects makes definitive conclusions
challenging, the authors noted a weaker correlation between
NKG2C expression and HCMV serology in individuals with the
HLA-EG allele, i.e., potentially higher HLA-E expression (1).
Does this indicate amore successful antiviral NK cell response via
NKG2C–HLA-EG which is in turn reflected by reduced antibody
responses? Or is an increased ligand engagement of NKG2C, both
under homeostatic conditions as well as during HCMV infection,
an underlying reason for the lower percentage of cells with the
NKG2C receptor in HLA-EG homozygous individuals?
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FIGURE 1 | Hypothetical model of adaptive NK cell differentiation driven by the HLA-E ligandome. (A) Monocytes/macrophages and endothelial cells represent the

primary site of CMV infection and consecutive latency. Simultaneous expression of HLA-E and increased availability of HLA-G-derived peptides—either derived from

rare viral UL40 variants or from cellular HLA-G, upregulated during infection—generate HLA-E molecules in complex with the HLA-G-derived peptide VMAPRTLFL.

This strong ligand triggers adaptive NK cells (or precursors) via the heterodimeric CD94-NKG2C receptor, which initiates epigenetic imprinting and the gradual loss of

signaling molecules, e.g., FcεRγ or transcription factors, e.g., PLZF. (B) Reactivation of CMV from latency reservoirs or other infections that affect HLA-E levels and/or

the pool of presented peptides provide a diverse range of ligands for CD94-NKG2C. Depending on the respective affinities and the ensuing interactions, adaptive NK

cells continue to downregulate additional molecules of intracellular signaling, eventually giving rise to an increasingly heterogenous population of adaptive NK cells. For

reasons of clarity, the figure does not take into account that different HLA-E alleles result in different HLA-E expression levels and that infections are accompanied by

distinct cytokine signatures. We also omit the characteristic modulation of cell surface receptors on adaptive NK cells compared to canonical NK cells and the

potential need for costimulation for weak HLA-E-peptide ligands.

An intriguing open question remains why HCMV appears
to have such a decisive role for the generation and expansion
of adaptive NK cell populations (80). What is the difference

compared to other pathogens, and which combination of
parameters is unique to cytomegalovirus? Together with recent
studies, that show the profound impact of the HLA-G-derived
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leader peptide (17, 18), we are tempted to speculate that only
CMV infection provides both, elevated HLA-E and HLA-G
expression on a single cell level. Interestingly, a polymorphism in
the 3′-untranslated region of the HLA-G gene that affects HLA-
G expression levels has been reported to modify susceptibility
to CMV infection (81). Macrophages and monocytes express
HLA-E (23, 44) and de novo induction of monocyte HLA-G
cell surface expression was reported for active HCMV infection
(77) and reactivation of latent infection in vitro (82). HLA-
G upregulation in monocytes/macrophages is supported by
increased levels of cellular IL-10 and cmvIL-10 (HCMV gene
product UL111A) during infection while expression of classical
MHC class I molecules is suppressed (83, 84). Intriguingly,
monocytes, monocyte-derived macrophages, and DCs were
identified as the major cellular target for cmvIL-10 and hIL-
10 (85). Co-expression of HCMV gene products and HLA-G
has been demonstrated for macrophages with reactivated CMV
infection on a single-cell level (82). In line with studies using
cell lines overexpressing CMV immunoevasins US2, US3, or US6
(86, 87), other researchers noted, however, a down-regulation
of HLA-G cell surface expression in freshly CMV-infected
astrocytoma cells in vitro (88). For a successful loading of HLA-E
molecules with HLA-G leader peptide the activity of the TAP-
blocking HCMV immunoevasin US6 is, in our opinion, of
foremost relevance. US6 expression levels peak only around 48 h
post-infection and then slowly decrease (89). Since US2 and
US11, showing maximum expression levels within 24 h post-
infection (89), do not affect HLA-E surface expression (67) we
propose that there is a sufficient time window for the formation
of HLA-EpHLA−G complexes in a subset of acutely CMV-infected
monocytes/macrophages before TAP inhibition through US6 sets
in and HLA-E continues to be supplied with UL40-derived TAP-
independent peptide ligands. The study by Onno et al. (82)
indicates that even 20 days after reactivation of latent CMV
high HLA-G levels can be observed in infected macrophages
while only a partial down-modulation of HLA-A,B,C molecules
was noted, suggesting that the activity of US6 may have ceased.
In this setting, which may aptly reflect the in vivo situation
of a chronic CMV infection with sporadic reactivations, HLA-
EpHLA−G complexes should be abundant.

A similar setting seems possible for endothelial cells that
were reported to trigger NKG2C+ NK cells upon primary CMV
infection (90) and that represent a major non-lymphoid cell
type displaying substantial HLA-E expression, particularly under
inflammatory conditions (44). This would permit a scenario
of sufficient HLA-E complexes, presenting the VMAPRTLFL
peptide. Since both, monocytes as well as endothelial cells are
considered reservoirs of viral latency (91), they could also act as
critical mediators for secondary expansion of adaptive NK cells
upon CMV reactivation which aligns with in vitro data (6, 75,
90) and a study that observed a correlation between monocyte
counts and the magnitude of NKG2C+ NK cell expansion during
reactivation (92).

If we consider the differential reactivity of NKG2C with HLA-
E-bound leader peptides together with the allelic dimorphism
of HLA-E itself, it becomes clear that one has to envisage a
range of NKG2C ligands with different affinities expressed at

different surface densities. Weaker NKG2C ligands were shown
to require costimulation through CD2 for adaptive NK cell
triggering through CD16 and to have a lesser impact on gene
methylation (17). The VMAPRTLFL peptide is set apart from
other HLA-E ligands by its strong impact on adaptive NK cell
populations. Whether it is primarily derived from rare UL40
variants as described by Hammer et al. (17) or more often the
result of increased cellular HLA-G levels as a consequence of
HCMV infection remains an open question.

In light of the exquisite peptide specificity of adaptive
NK cells, we hypothesize that the strength of the HLA-
E/NKG2C interaction in conjunction with variable conditions of
costimulation and a favorable cytokine milieu is the molecular
basis for the complex inter- and intraindividual heterogeneity
of adaptive NK cells (Figure 1). To test this hypothesis, future
studies have to systematically dissect the impact of different HLA-
E-peptide ligands on the characteristic epigenetic profile and
altered intracellular signaling of adaptive NK cells.

ADAPTIVE NK CELLS IN CELLULAR
IMMUNOTHERAPY—A VIABLE OPTION
FOR HLA-E+ TUMORS?

Mounting evidence indicates that CMV reactivation can result in
a reduced relapse rate in acute myelogenous leukemia (93, 94)
and chronic myelogenous leukemia (95). Cichocki et al. observed
that patients with hematologic malignancies receiving HSCT
displayed a selective and sustained expansion of adaptive NK cells
after experiencing CMV reactivation (92), and another report
showed higher cytotoxicity of adaptive NK cells from CMV-
seropositive donors compared to seronegative donors (96). This
suggests that adaptive NK cell subsets can mediate a substantial
anti-leukemia effect, even though the molecular mechanisms
remain unclear at this point. A recent study demonstrated that
the reactivity against primary pediatric ALL blasts is largely
independent of CD94(/NKG2C)-HLA-E interactions but rather
relies on “missing-self ” recognition (97) and possibly DNAM-1
(98). However, NK cell activation and receptor usage can
vary dramatically depending on the cellular context and the
therapeutic potential of adaptive NK cells, particularly in tumor
entities that are characterized by increased HLA-E levels, merits
further investigation. High expression of non-classical MHC
class I molecules is often associated with poor clinical prognosis
(62, 64, 99), rendering those malignancies a potential scenario for
the utilization of NKG2C+ NK cells. Cellular immunotherapies
might also benefit from other favorable properties, e.g., elevated
resistance to MDSC and Treg suppression, that were ascribed
to adaptive NK cell populations (100, 101). Given their
superior capacity for mediating ADCC, adaptive NK cells could
also be combined with therapeutic interventions relying on
monoclonal antibodies, bi-specific or tri-specific killer engagers
(BiKEs/TriKEs) (102).

First steps toward devising clinical protocols for the use of
adaptive NK cells have been taken and promise cellular NK
cell-based therapies with higher efficiency (97). Expansion of
NKG2C+ cells by HLA-E expressing transfectants is a successful
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strategy for obtaining robust proliferation (74, 97) of functional
adaptive NK cell populations. In light of recent findings regarding
the remarkable peptide specificity of adaptive NK cells (17, 18,
47) a further optimization of these approaches by tailoring the
peptide ligand on HLA-E appears desirable.
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