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Trust calibration for a human–machine team is the process by which a human adjusts their
expectations of the automation’s reliability and trustworthiness; adaptive support for trust
calibration is needed to engender appropriate reliance on automation. Herein, we leverage
an instance-based learning ACT-R cognitive model of decisions to obtain and rely on an
automated assistant for visual search in a UAV interface. This cognitive model matches well
with the human predictive power statistics measuring reliance decisions; we obtain from
the model an internal estimate of automation reliability that mirrors human subjective
ratings. The model is able to predict the effect of various potential disruptions, such as
environmental changes or particular classes of adversarial intrusions on human trust in
automation. Finally, we consider the use of model predictions to improve automation
transparency that account for human cognitive biases in order to optimize the bidirectional
interaction between human and machine through supporting trust calibration. The
implications of our findings for the design of reliable and trustworthy automation are
discussed.

Keywords: cognitive architectures, ACT-R, trust in automation, automation transparency, trust calibration,
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1 INTRODUCTION

The interpersonal trust literature asserts that trust in another person is influenced by indicators of
trustworthiness such as loyalty (John et al., 1984), integrity (Mayer et al., 1995), and competence
(Grover et al., 2014). Similarly, machines can be seen as having trustworthiness characteristics such
as capability, robustness, and reliability that influence an operator’s trust in the tool. Ideally, the
operator can accurately assess these characteristics and develop well-calibrated trust (Lee and See,
2004).

According to Lee and See (2004), trust calibration is part of a closed-loop process that influences
an operator’s intentions and, ultimately, decisions to rely on the automation (or not). In their process
model, trust in the automation evolves based on performance feedback from the technology,
organizational influences, cultural differences, and one’s propensity to trust. Although all of these
factors likely influence trust evolution, a recently developed cognitive model of trust calibration
suggests system feedback plays a particularly powerful role in trust calibration (Blaha et al., 2020).

Poor trust calibration occurs when there is a gap between the operator’s trust and the actual
trustworthiness of the tool (Lee and See, 2004). This gap can either be the result of underestimating
the tool’s trustworthiness or overrating the tool’s capability, robustness, or reliability. Regardless of
the direction, poor trust calibration presents a vulnerability in the human–machine system. In the
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risk literature, vulnerability has been defined as a “physical
feature or operational attribute that renders an entity, asset,
system, network, or geographic area open to exploitation or
susceptible to a given hazard” (Risk Steering Committee, 2010,
p. 38). In a human–machine system, vulnerabilities can exist
within the human, within the machine, or within the interaction
between the two. Human vulnerabilities such as stress (Matthews,
2021) may impact the perceptual and cognitive abilities of the
operator leaving the human component of the system open to
threats. Machine vulnerabilities such as poor automation
reliability (Chavaillaz et al., 2016) place strain on the
human–machine system that may lead to hazards. The
organization of vulnerabilities into human and machine
categories is similar to the human and technical/
environmental antecedent (i.e., genotype) error categories
identified in human reliability analysis techniques like
cognitive reliability and error analysis method (CREAM)
(Phillips and Sagberg, 2014).

Poor trust calibration is an example of a third class of
vulnerability in that it is not strictly associated with the
human or the tool. This vulnerability is instead a
dysfunctional interaction between the human and machine
that can lead to performance breakdown. For example, poor
trust calibration can lead to automation bias, if the operator
overestimates the tool’s performance and begins substituting the
automated aid’s recommendation in place of their own vigilance
and careful analysis (Mosier et al., 1996). This bias is triggered
when the automated decision aid provides an incorrect
recommendation that is accepted by the operator without
scrutiny. Wickens et al. (2015) found that automation bias
may be more detrimental to performance when compared to
other human–machine interaction problems such as operator’s
complacency.

Underestimating the tool’s trustworthiness may also lead to a
decline in tool use or even a complete breakdown in the
human–machine system. Research on operator’s response to
alarm systems with high false alarm rates illustrates the
negative impact of low trust on the human–machine system.
Alarms that generate a high number of false alarms can cause the
operator to distrust the technology leading to a reduction in
compliance and possibly a complete rejection of the technology
(Bliss and Fallon, 2006). For example, Seagull and Sanderson
(2001) examined alarm response in an anesthesia environment
and found that many of the alarms were perceived as false and
ignored by the health care workers. Although in some instances
ignoring the alarm is the appropriate response, this pattern of
behavior may lead the operator to ignore an actual threat
(i.e., true alarm). Lack of trust also appears to reduce a user’s
intention to adopt new technology (Kim et al., 2009; El-Masri and
Tarhini, 2017).

Many operators recognize the dangers of poor trust calibration
and work to properly calibrate their perception of the machine’s
trustworthiness indicators to its actual capabilities and
limitations. Well-calibrated trust requires that the operator
receives accurate information about the tool which can come
through a variety of channels such as feedback on tool
performance, training, or conversations with other users. One

approach is to include this important information as part of the
tool’s interface. This approach transforms tools from a “black
box” to a more transparent machine. Transparency may include
information about the underlying analytical principles of the tool,
about when the tool might struggle to perform, and about its
intended functionality (Lyons, 2013).

Human factor practitioners advocate for more transparent
display design to accelerate proper trust calibration. For example,
Wickens et al. (2015) recommend automated decision aids that
include transparency about the confidence of their
recommendations as a way to reduce automation bias.
Unfortunately, the interfaces that communicate critical
transparency information present an opportunity for
adversaries to disrupt the trust calibration process and exploit
this vulnerability.

Adversaries can attack the human–machine system in a
variety of ways to induce poor trust calibration. One attack is
to simply remove one or more sources of transparency the
operator relies on for calibrating trust. Another technique is to
create a dissociation between the tool’s actual performance and
what the system is communicating about its performance. One
way the adversary might create this dissociation is by disrupting
the tool’s performance, such as the accuracy of its
recommendations, without triggering the associated change in
transparency displayed on the interface. When employing this
attack, the adversary is likely unable to disrupt system
performance continuously or permanently. Instead, the
adversary may be limited to a few attacks executed
strategically. An adversary may decide to attack the machine
to create this dissociation in a concentrated series of consecutive
attacks in an attempt to create a forceful blow to trust calibration.
Another approach might be to attack intermittently over a longer
period of time in an attempt to slowly create doubt in the
operator. Cognitive modeling work into attacker–defender
behavior has investigated various attacks and defense
maneuvers (Cranford E. et al., 2020). Similar modeling
approaches may be used to model the impact of various attack
strategies on operator trust calibration.

We can model a human’s response to various transparency
cues to simulate how humans would respond to such attacks.
Modeling will allow us to investigate which conditions might
cause the greatest disruption to trust calibration. Modeling is a
low-cost, fast-turnaround approach for exploring various
research questions. The findings from our various models can
inform the development of specific hypotheses that can be tested
with future human subjects’ research.

We are interested in exploring the following research
questions by modeling human interaction with an unreliable
automated aid.

1. How does the removal (or addition) of transparency
information from an automated assistant impact trust
calibration? The adversary may disrupt trust calibration
by removing transparency information provided to the
operator. Without impacting underlying system
performance, simply removing transparency cues can
create a less transparent system that leads to
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inappropriate trust and reliance. We can model the short-
term and long-term effects of removing transparency cues
on human reliance and trust.

2. Some attacks may be designed to create a disassociation
between machine performance and transparency
information. How does the scope and timing of these
attacks impact trust calibration and performance? The
adversary may have limited resources and is, therefore,
unlikely to disrupt machine performance continuously or
permanently. One goal of the adversary may be to adjust
the timing of attacks to maximize their impact on reliance
and trust. For example, several consecutive attacks to a
system’s performance may impact trust differently than
the same number of attacks distributed randomly over a
long period of operation. Modeling human reliance and
trust to various attack distributions may provide insights
into how the attack timing impacts trust and reliance.

2 MATERIALS AND METHODS

2.1 Model of Reliance Calibration
We adopt the perspective that an operator’s calibration of trust
and reliance is the result of learning and memory for experiences
with an automation technology or system, that is, calibration does
not require a specialized cognitive mechanism. Rather, the sum of
an observer’s experiences over time with a system serve to shape

their expectations about the system’s capabilities and likely
performance in different situations. This is consistent with the
process description in Lee and See (2004). Computational
cognitive architectures simulate human mechanisms of
learning and memory, under realistic constraints of human
information processing. We can use these computational
models to simulate operator decision-making about use and
reliance on automation or other system features under
different task demands or changing task constraints over time.

In Blaha et al. (2020), we developed a computational model of the
trust and reliance calibration process using instance-based learning
theory (Gonzalez et al., 2003; Gonzalez andDutt, 2011) integrated into
the ACT-R computational cognitive architecture (Anderson et al.,
2004). Figure 1 provides a diagram of the various cognitive modules
and mechanisms available in the ACT-R architecture. Various
modules formally represent information in perception and
memory stores, together with the operator’s goals and intentions in
the task stored in working memory. The central executive functions
provide production rules for the ways in which perceptual and
memory inputs interact with goals and intentions to make
decisions and execute actions in the environment.

Instance-based learning theory (IBLT), combined with the
ACT-R architecture, provides a formal approach for new
information to be contextualized by leveraging similar prior
experiences and added to memory for use in future decision-
making, that is, when someone encounters a new situation for the
first time, IBLT provides mechanisms for them to both decide
how to react to the present situation and to also integrate the new
information into their memory and knowledge to inform future
decisions.

We have asserted that calibration results through experiential
learning. Experiences are comprised of a person’s observations of
cues, the decisions and actions they take, and the feedback they
receive about outcomes of those decisions and actions. These
prior experiences are stored in memory as a set of instances;
instances are structured as the triplet of information
{situation cues, choicemade, outcome}. According to IBLT,
when a person encounters an instance of some situation
needing a decision or action (which corresponds to a distinct
occurrence of some experience), the person will recall their
similar, prior experiences and use those to set expectations
about potential outcomes for the current instances. This can
be thought of as a process of assessing instance similarity via the
formal triplet store. IBLT posits that people will make decisions
based on the choice that is likely to have the desired or best
possible outcome, based on this comparison to prior experiences.

Over time, experiences stored in memory may increase or be
strengthened by repeated experiences, while also decaying over
time without subsequent exposure. Thus, decisions based on
similarity of current instances to those in memory are a
function not just of the specific tuples but also the recency
and frequency with which a person has had similar
experiences or made similar decisions. In the case of
automation reliance calibration, this means that if a person
has interacted with a system frequently and recently, then
representations of the system’s behavior and the operator’s
interactions will be readily available and likely heavily

FIGURE 1 | Diagram of the adaptive control of thought-rational (ACT-R)
computational cognitive architecture. Each module indicates the neural areas
associated with the cognitive mechanisms. The general functionality of the
modules is indicated by the color coding.
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weighted in present decisions. In this way, both recent successes
and failures of automation can then carry a strong influence on
decisions; the salience of past successes and failures will be a
function of repeated successes or failures (i.e., similar
experiences) building up in memory. And it is through this
process of building experience and the salience of desired or
undesired outcomes in various situations that reliance calibration
emerges through experience.

In our IBLT-based model, we derive an estimate of the
reliability of automation (and the alternative options) from the
internal state of the model, that is, the internal representation
provides the basis for considering the cues and potential choices
and setting expectations for the outcome given the features of a
specific situation. This expectation is akin to an operator’s
calibrated expectation of whether automation will be reliable
or perform as intended, given the current circumstances. If
this expectation is high enough, in particular higher than
alternatives means, the operator will choose to rely on the
automation. Otherwise the operator will resort to alternatives
such as manual action or the help of human teammates. The
outcomes of each decision are then integrated back into memory
and informs the computation of future expectations; that is, the
calibration process evolves every time a decision is made and is
constantly adaptive to the outcome of choices made.

We now describe the formal mechanisms of the IBLT model.
Recall that an instance i is defined by the triplet
{situation cues, choicemade, outcome}. Memory instance
availability is controlled by activation, Ai:

Ai � log(∑ n

j�1t
−d
j ) + N(σ) (1)

Here, i is the memory instance, d is the decay parameter
controlling the power law of recency, and σ is the magnitude
parameter controlling stochastic noise; the summation over all
references to that memory provides the power law of practice.
Given a particular situation, relevant memories are retrieved by
computing their match score that combines their activation with
their degree of relevance:

Mi � Ai +∑ l

j�1MP × Sim(dj, vij) (2)
.

Here, j is a feature in the situation representation, dj is the
corresponding value in the current situation, vij is the
corresponding value in memory i, and Sim is the similarity
between those two values. Rather than retrieving a single
memory, a consensus outcome is generated using the memory
blending mechanism satisfying this constraint:

V � argmin
Vj

∑ k

i�1Pi × Sim(Vj, vij)2 (3)
.

Here, V is the consensus value among the set Vj of possible values
and Pi is the probability weight of memory i, reflecting its match
score Mi through a Boltzmann softmax distribution.

This consensus value, derived from a weighted blending of
prior experiences, sets the expectations for potential outcomes of

selected decisions, and guides a decision maker to the option that
will be most likely to produce a desired outcome. V is not an overt
behavior of the system; it is a component of the internal
representation in the model of the situation that guides action
selection. Blaha et al. (2020) found that querying this blended
value after a series of decisions about reliance on automation
(i.e., a set of experiences), the model reported a general
expectation for decisions about using the automation
comparable to the subjective ratings that people had given
about the automation system’s reliability after the same
amount of experience. V computed after some period of time
as a blended retrieval with no features specified (i.e., a general,
hypothetical rather than specific situation) provided a direct
estimate of the calibration of automation reliance. When this
calibration metric is comparable to the ground truth of
automation reliability, we might generally claim that the
model reflects good calibration. When queried under specific
situational constraints, the value can indicate if the calibrated
model predicts the decision that would be considered accurate
(using automation when it is reliable).

2.2 Vulnerability in the Model
Model reliance calibration is a function of the experiences with
the human–machine system. The situation cues informing the
instance representations include both the external signals about
the task and any transparency cues that have been designed into
the system’s user interface. Likewise, the ability of the human to
complete the task, the positive and negative outcomes of their
decisions, and the behaviors of the automation can all factor into
the instance representation of the outcome of decisions. Here,
note that we only represent decisions about the use of automation
within the model; decisions about other task aspects, like when to
initiate a task or trial, that do not concern use of the automation,
do not inform the memory for the automation’s reliability.
Because the resulting expectations are a combination of both
the transparency cues and the automation’s performance, both
dimensions of the system offer opportunities for disruption and
miscalibration over experiences. For transparency cues, sources
of potential miscalibration are cue values or cue types that are
unfamiliar or novel because people may not know how to factor
them into the instance representation or might attach to them the
wrong interpretation; missing cues that the instance relies upon
for judging similarity are another vulnerability. These are directly
connected with the instance-based representation of the cues
themselves in memory instance i. On the behavioral side, after
someone has learned which transparency cues should signal
particular types of outcomes (e.g., automation acts as desired
or automation fails), changes in the model behaviors that deviate
from the learned cue-behavior outcomes provide a salient error
cue. This will influence the similarity calculations between the
current and past experiences, because now there may be
transparency cues signaling both positive and negative
outcomes that will be factored into V. Presence and salience of
conflicts over time will influence the calibration process.

We note that V can be influenced through these vulnerability
mechanisms to produce both over- and under-reliance on
automation. If the behavior of the system is signaled to be
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more reliable than cues indicate, an operator might ignore
transparency cues and overuse the automation. Likewise, some
negative dissociation between the diagnosticity of cues, or the loss
of cues, may garner lower usage of the automation than may be
appropriate.

In the following paragraphs, we will explore several ways in
which reliance calibration may be influenced through adversarial
disruption of a human–machine system. We leverage the IBLT
model to explore the degree to which different disruptions
influence patterns of decisions to rely on automation and the
internal representation of the automation’s reliability through
changes of V over different conditions.

2.3 COBALT Task Environment
Our IBL model of automation reliance decisions was developed
with empirical data previously collected by this research team in
the COBALT task environment (Fallon et al., 2019; Blaha et al.,
2020). The COBALT software shown in Figure 2 offers a high-
fidelity environment for measuring human decision-making in
tasks requiring human–machine teaming, such as monitoring or
interacting with automation. The empirical data were taken from
an aided visual search task which included two stages on each
trial. In the first stage, a user must decide if they would like to have
either an Automated assistant or a human Commander assistant
provide a search cue to aid their visual search. In the second stage,
a user must search through the overhead image (Figure 2B) to
find a prespecified target (a red circle) placed on the image.

The search cues were in the form of an arrow on the image
potentially pointing in the direction of the target. Cues provided
by the Commander were 100% accurate, but there was a 5-s delay
before the cue would appear, potentially slowing the search
process overall. Participants could wait for the cue, doing

nothing, or search unaided while waiting. Cues provided by
the Automated assistant were 70% reliable, meaning that in
30% of trials, it would point to some random location in the
image other than the location of the target. It was, however,
instantaneously available at the start of the trial.

The flow of each trial was as follows. A user initiated a search
trial by selecting a UAV in the map window (Figure 2A); note
that at the start of a trial, the visual search window (Figure 2B) is
“closed,” or shown as a black screen, such that no searching can
be completed until a search aid is selected. Each UAV has up to
two possible transparency cues that were then given to the user;
the purpose of these transparency cues was to provide the user
with information that may inform their decision about the
reliability of the Automated assistant. The transparency cues
were shown in the transparency cue window (Figure 2C);
below the transparency cue window are two buttons,
Automated and Commander. Users mouse-clicked on the aid
of their choice to indicate which search aid type they wanted for
that trial. Selection of the search aid instantly initiated the search
stage by opening the search window to show the overhead image,
appearing like in Figure 2B. Note that although there was a time
delay associated with the appearance of the Commander cue,
there was no difference in the timing of the start of the search
window availability after the assist type selection was made.
Participants then searched the visual search window by
panning the camera view with the arrow buttons until they
located and clicked on the search target.

In the search phase, users can choose to rely on the search cue
by panning in the direction the cue indicates; they can choose not
to rely on a cue by freely searching in any other direction. If users
selected the Commander, they could search unaided or simply
wait for the cue; when the Commander cue appeared, users

FIGURE 2 | The COBALT task environment. (A)marks the UAVmap window; users select a UAV to initiate each trial here, (B)marks the visual search window, and
(C) marks the automation transparency cue window. The four images on the right show the four transparency cue types, from top to bottom: number of sensors only,
age of data only, age and number in text format (Text condition), and age and number in visual graphic format (Graphic condition).
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relying on it would follow its direction to reach the target. If users
selected and relied on a reliable Automated cue by following it,
they could quickly find the target panning in the direction the cue
indicated. If users selected and relied on an unreliable Automated
cue by following it, the unreliable cue would visibly fail by
disappearing from the screen when the participant panned to
the false target location. At this time, users could select the
Commander button and/or freely search unaided for the
target. The longest search times occurred in the task when
participants followed an unreliable Automated cue, saw it fail,
requested the Commander cue, waited or freely searched
unsuccessfully until the Commander cue appeared, and then
followed the Commander cue to the target.

2.4 Automation Transparency Cues
To help users decide if the Automated assist was going to be
reliable, transparency cues were available in the COBALT
interface (Figure 2C).

Transparency cues were presented in two formats: text and
graphic; examples of all four types are shown to the right of the
interface in Figure 2. In the text-based cues, a statement was
presented about either the data: age, number of sensors, or both,
for example:

Age: Data are 15 h old.
Number: Objective was detected by two sensors.
(Age and Number) Text: Objective was detected by two
sensors and data are 15 h old.

We note that this last case is usually referred to as “Text” in our
plots and analyses.

The Graphic condition cues always presented both Age and
Number data together, like the Text condition. The graphic itself
was a circle-packing visualization with the number of circles
corresponding to the number of sensors. All circles had a white
outline and the brightness of the inner fill color corresponded to
the age of the data. A solid white circle was the newest data, 1 h
old; the darkest gray fill, matching the background of the circular
area, was the oldest data, 36 h old.

The Automated assistant was set to be reliable on 70% of trials.
In both Text and Graphic cue conditions, the cues were
completely predictive of Automated assist reliability. The
Automated assist would be unreliable (point to the wrong
location) if age is over 24 h old or the number of sensors is 1.
In the Age and Number conditions, the transparency cues
appeared more stochastic; they were treated not as a singular
cue with deterministic transparency but as multiple cues where
one source of information is missing, that is, for the Age
condition, there was a small set of trials where data less than
25 h old would result in failed automation because the number
cue missing from the display was equal to 1. And for the Number
condition, there were a small number of trials where the
Automation failed for two or three sensors, because the
missing age cue was greater than 24 h old. But across all
conditions, the baseline experiment held the reliability rate at
70% reliable and 30% over all trials.

2.5 Model Representation of COBALT
Automation Reliance Decisions
Our IBL model adopts a straightforward representation of the
COBALT task. Examples are shown in Figure 3, where the
middle row is a current trial instance, and the top row is one
of many similar instances from declarative memory. The
{situation cues} in i are the Age and/or Number transparency
cues; the decision captured in i is the first task phase, the decision
whether to rely on the Commander or Automated assist search
cue (the Action slot showing aid in Figure 3). In this model, the
{outcomes} represent two aspects of task performance: whether
the Automated assist was reliable (Reliability slot) and the total
time to complete the visual search (Latency slot).

Tomake a decision about which search assist type to select, the
model generates an expected outcome for each assist type by
performing blended retrievals for the specific situation feature(s)
available (age, number, or both) and each assist type (Automation
Aid or Commander), extracting an expected value for total search
time. The model then selects the assist type with the lowest
expected search time. Note that the activation of each memory
instance includes random noise, making the expected value
generated by the blended retrieval stochastic, and the decision
selected probabilistic. The model then generates an expectation
for the reliability of the Automated assist in a similar manner,
using a blended retrieval over situation feature(s) and selected
assist type. If the automation is expected to be reliable, then it
chooses to rely on it, otherwise not. The model then executes the
selected option and stores a new instance combining that
situation’s feature(s), the option chosen, and the outcomes
experienced in terms of reliability and search latency.

We can query the model for its calibration of automation
reliability at any time. Usually, we query at the end of a block of
trials to give time for experiences to shape the internal
representation. At the end of each condition, the model
generated a general expectation of reliability through a
blending retrieval with no features specified.

2.6 Model Initialization
IBL models need either a backup strategy (such as random
exploration) to get started or some initial instances to
bootstrap the learning process. We chose the latter route,
creating three practice instances to represent as broad a range
of outcomes as possible. Those instances could have resulted from
a short practice phase or fairly straightforward reflection upon the
instructions; both instructions and a few practice trials were given
to COBALT participants in Fallon et al. (2019). The first initial
instance featured the most reliable cues (three sensors and 1-
hour-old data), a decision to rely on Automation, outcomes of
reliable Automation, and fastest search time (directed search time
of 3 s). The second instance featured the least reliable cues (one
sensor and 36-hours-old data), a decision to rely on Automation,
outcomes of unreliable Automation, and the slowest search time
(random search time of 15 s). The third instance featured average
cues (two sensors and medium age), a decision to rely on the
Commander assist, outcomes of reliability, and an intermediate
search time (wait then direct search for a total time of 8 s).
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2.7 Model Parameters
In our simulation experiments, all parameters were left at their
default ACT-R values: decay d � 0.5; activation noise s � 0.25;
mismatch penalty factor MP � 1.0; and linear similarities over
[0,−1.0].

2.8 Reliability Metrics
We measure calibration of reliance with three metrics.

The first metric is a subjective assessment of the Automated
assist. For the human participants in Fallon et al. (2019),
participants were asked to provide a numeric rate for the
reliability of the Automated assist on a scale of 0–100 percent.
For the model, this estimate was extracted as the blended value
estimate as described above.

The second and third metrics are the positive and negative
predictive power statistics, derived from a signal detection theory
interpretation of the choice response rates. Positive predictive
power is the rate of correctly giving a positive response (true
positive rate), out of all the times a positive response was given:

PPP � True Positive
True Positive + False Positive

(4)

Negative predictive power is the rate of correctly giving a
negative response (true negative) out of all the times a negative
response was given:

NPP � True Negative
True Negative + False Negative

(5)

We computed predictive power statistics separately for the two
task phases because the interpretation of true/false positive/
negative is dependent on the nature of the decision being
made. In the Decision stage, the decision maker (human or
the IBL model) selected between requesting the Automated

assist or the Commander assist. Table 1 gives the
interpretation of choice types relative to the ground truth
reliability of the automation on each trial. From the
perspective of calibrating reliance on automation (rather than
calibrating reliance on the commander), a true positive is
selecting the automation when it was reliable, and so on for
the other conditions. Thus, for decisions, PPP provides the degree
of calibration of the decision maker to making an Automated
assist request when the automation will be reliable, and NPP gives
the decision maker’s calibration to selecting the Commander,
when the Automation will not be reliable.

For the Search phase of the task, reliance on automation is
defined as following the automation cue in the search task
(panning in the direction the cue points). Table 2 gives the
signal detection theory response mappings for the Search phase
on the trials in which Automated assist was selected in the
Decision stage. Note that for this analysis, we only consider

FIGURE 3 | Instance-based learning model representation of the COBALT decisions to rely on automation. The colors used to code each aspect of the IBL model
correspond to the type of cognitive module or mechanism leveraged from ACT-R.

TABLE 1 | Signal detection theory mapping of decision stage.

Actual reliability of automated assist

User action Reliable Unreliable

Automation selected True positive False positive
Commander selected False negative True negative

TABLE 2 | Signal detection theory mapping of search stage.

Actual reliability of automated assist

User action Reliable Unreliable

Follow automation cue True positive False positive
Not follow automation cue False negative True negative
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the trials where participants had selected the Automated assist in
the Decision stage because there was no reliance on automation in
the decisions to rely on the Commander assist; a secondary
predictive power analysis is possible for reliance on the
Commander assist in search, but this was a small subset of
trials and does not tell us much about the calibration of
automation reliance.

Predictive power statistics provide direct metrics of appropriate
reliance because they reflect the decision maker’s ability to correctly
select the automation when it will be reliable and not select the
automation when it will be unreliable, respectively, while accounting
for the prevalence of reliable and unreliable trials in the experiment.
Accounting for the base rate of reliability is a core part of the
definition of trust/reliance calibration. Many studies leverage the
metrics d′ and β (decision criterion) to examine human judgments
about the reliability of alarms or automation recommendations (e.g.,
Bartlett and McCarley, 2019). These metrics emphasize the
participants’ abilities to discriminate signal cues from noise or
non-signals. Application in the present study would measure
participants’ abilities to discriminate the transparency cues
indicating the Automation reliability; the emphasis is on how
participants internally represent the transparency cues. While this
is of interest toward understanding trust calibration, d′ and β are
only indirect indicators of how well someone’s reliance has been
calibrated. PPP and NPP give us a direct indicator of calibration.
Additionally, there is evidence that PPP and NPP better reflect the
time-varying nature of decision-making processes without changing
their statistical properties (Repperger et al., 2009).

2.9 Blocks and Trials
Each block of task simulation included 143 trials, matching the
trial numbers used by Fallon et al. (2019). Twenty simulations per

condition were run, for model sample sizes comparable to the
total number of human participants in the earlier study (N � 16).

3 RESULTS

Figure 4 describes the results of the Baseline version of the model
presented earlier. Note that the plot includes the human data
from Fallon et al (2019) that was used to develop this model in
Blaha et al (2020), plotted as black points. The model selected the
Automation about 72% of the time in the Age condition, 67% of
the time in the Number condition, and 82% of the time in both
the Text and Graphic conditions. This indicates a higher reliance
on automation when both transparency cues are presented. The
assist type Decision stage decision’s mean PPP value was 0.77 for
the Age condition, 0.79 for the Number condition, and 0.82 for
the Text and Graphic condition, indicating that reliance on
automation was also more accurate when both features are
presented. More significantly, the Decision stage decision’s
mean NPP value was 0.48 for both Age and Text conditions,
but 0.81 for both Text and Graphic conditions. This indicates a
muchmore accurate reliance on the Commander and lack of trust
in Automation when both transparency cues are presented.

Patterns are similar but more muted for the Search stage’s
search cue reliance decision. The reliance decision’s mean PPP
values are 0.60 for the Age condition, 0.62 for the Number
condition, and 0.72 for both Text and Graphic conditions. The
mean NPP values are 0.28 for Age and Number conditions and
0.30 for both Text and Graphic conditions.

The mean estimates of automation reliability are 0.77 for the
Age condition, 0.80 for the Number condition, 0.80 for the Text
condition, and 0.81 for the Graphic conditions. These are roughly

FIGURE 4 | Performance of the Baseline model together with human performance. Human data are from Fallon et al. (2019). Left plot shows the plot of True
Positive against False Positive scores; colored icons are the model performance for each condition, and the black dots are the human data overlaid. The right plot gives
the predictive power scores for the humans and the Baseline model in both phases and all conditions. Bar heights are the mean values and the points represent either
one person or one iteration of the Baseline model.
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in line with the respective PPP values, indicating a generally
accurate and well-calibrated judgment of automation reliability.
Reliability estimates from the model are given in Table 3, which
also includes the subjective human ratings from Fallon et al.
(2019) for reference.

3.1 Cue Transfer Impacts
The first set of manipulations concern transfer of trust and
reliance across different levels of transparency and information
provided to the user. Figure 5B describes the effects of transfer
from conditions that present one of the transparency cues (either
age of data or number of sensors) to conditions that present both

of them (either in the text or graphic form); Figure 5C shows the
opposite direction of transfer from two cues to one. The model’s
predictions for transfer between conditions reflects the IBL
approach of decisions by experience. All experiences are stored
in the same memory structures regardless of content. This allows
the model to use all instances to make decisions, regardless of
which condition they were accumulated under. However, the
activation processes determine how those instances are weighted
to generate the expectations that lead to decisions using the
blending mechanism. As the model transitions from one
condition to another, memory instances from both conditions
compete on the basis of activation. Instances from the previous

TABLE 3 | Reliability ratings.

Condition Age Number Text Graphic

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Human ratings 0.75 (0.14) 0.74 (0.12) 0.82 (0.11) 0.80 (0.15)
Baseline 0.77 (0.06) 0.80 (0.16) 0.80 (0.06) 0.81 (0.07)
Frontload 0.82 (0.07) 0.81 (0.09) 0.81 (0.06) 0.83 (0.06)
Frontload-Commander 0.69 (0.11) 0.77 (0.11) 0.73 (0.08) 0.74 (0.06)
Frontload-Positive 0.73 (0.09) 0.80 (0.10) 0.81 (0.06) 0.79 (0.07)
Midload 0.74 (0.08) 0.79 (0.10) 0.78 (0.06) 0.77 (0.07)
Random 0.78 (0.07) 0.82 (0.06) 0.74 (0.13) 0.79 (0.06)

FIGURE 5 | Predictive power statistics plotted for the cue transfer manipulations.
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condition initially have the advantage of higher frequency and
dominate accordingly but will decay over time. Instances from the
new condition are initially few but have the advantage of recency
and gradually take over as their number increases and instances
from the previous condition decay further. Consequently, the
transfer between conditions will reflect changing generalization
patterns as one set of instances gradually comes to dominate over
another.

We will look first at the transfer from single-cue conditions to
double-cue conditions (Figure 5B). A basic question is how do
the accuracy patterns of the lower information condition transfer
to the higher information condition? While the transfer is almost
perfect in cases when the automation is reliable, the impact is
significant in cases when the automation is unreliable. In those
cases, while the choice between Automation and Commander is
evenly split in the Baseline data, the transfer in this condition
results in choosing the unreliable automation almost 60% of the
time. This results in a slight decrease in decision PPP and NPP by
a few percent but an especially sharp decrease in search PPP, and
to a lesser extent in search NPP, compared to the Baseline. This
pattern is more pronounced in the transfer from the Age
compared to the Number condition, presumably because
Number involves greater accuracy than Age (36 values vs. 3).
In summary, increasing automation transparency and the
information available improves performance, but the time
spent with lower transparency and information does carry a cost.

Conversely, the question when transitioning from the higher
information double-cue condition (Figure 5C) is whether the
more accurate patterns will improve performance or introduce
biases in the lower information condition. The primary effect is to
significantly increase reliance on the Automation by about
13–15% from about 72 to 85% for Age and from about 67 to
82% for Number. That increase happens in all conditions but is
more pronounced in cases when the automation is reliable. That
leaves decision PPP relatively unchanged but significantly
improves decision NPP from about 0.47 to 0.65 for Age and

from about 0.49 to about 0.74 for Number, reflecting a much
more targeted use of the Commander choice. In summary, prior
training with a high transparency system retains benefits and
improves performance when some of that information is no
longer available.

We have just seen that transitioning from low to high
information carries costs, while the reverse transition from
high to low information carries benefits. An important
question is whether those transition costs and benefits decay
over time or retain some asymptotic value. To determine that, we
ran a variant of the transfer manipulations above, where we
repeated the second condition for another two blocks, replicating
the full length of the original study. Figure 6 summarizes those
results. For transfers from single-cue conditions to double-cue
conditions (i.e., low to high information/transparency), the main
long-term effect is an increased use of the Automation when it is
reliable and the Commander when it is not, resulting in both a
slight increase in PPP from about 0.81 to about 0.84 and a much
more substantial increase in NPP from about 0.81 to about 0.93
over the Baseline. Results for transfer in the opposite direction are
more mixed: for both Age and Number conditions, the main
effect is an increased use of the Automation across the board,
resulting in relatively unchanged decision PPP values but
significantly improved decision NPP values by about 20%. In
summary, in both cases, we observe significant long-term benefits
from training in one condition before transitioning to a different
long-term condition providing either more or less information
and transparency.

3.2 Disrupting Cue–Behavior Relationship
Impacts
The second set of manipulations concerns the impact on trust
calibration of attacks or disruptions of the performance and
transparency information. Those attacks will take the form of
disruptions (either degrading or upgrading) to the performance

FIGURE 6 | Plots of predictive power statistics over repeated transfer, where the second cue type is repeated for three blocks total. Bars are the means and points
are the individual model scores.
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of the Automation (or the Commander) at various points in the
experiment. Figure 7 summarizes the predictive power in both
decision and search phases for the various manipulations. The
bulk of the effects are in the Decision stage, and we will focus on
that aspect of the data in the following description.

The first manipulation (Random) is to introduce a
probabilistic disruption (10% of the time) when the
automation is selected and otherwise reliable. The effect is to
render the automation unreliable in those cases, which account
for about 7% of total trials, decreasing the overall reliability from
70% to about 63%. Figure 7E summarizes the impact on
predictive power measures for each of the four transparency
conditions. The primary effect is to raise the probability of
choosing the Commander option in all conditions by about
12% in the Age condition (from 28 to 40%), 8% in the
Number condition (from 32 to 40%), and 8% in the Text and
Graphic condition (from 19 to 27%). The increased reliance on

the Commander is across the board, and the impact on decision
accuracy is mixed, with PPP decreasing by about 0.07 in all
conditions and NPP unchanged for the Age and Number
conditions and decreasing by about 0.1 for the Text and
Graphic conditions. Reliance PPP was slightly lower in the low
information conditions (Age and Number) and more
substantially impacted in the high information conditions
(Text and Graphic), reflecting the comparative impact of
random disruptions. In summary, a randomly distributed
disruption of automation reliability results in a roughly
proportional increase in shift away from automation in all
conditions, indicating that the model behaves quite rationally
in its calibration of trust in automation.

A fundamental question is whether there are disruptions that
can be more strategically targeted to impact trust in automation.
One possible manipulation is to mass the disruptions to the
automation rather than spreading them throughout the trial

FIGURE 7 | Predictive power statistics plotted with the Baseline condition scores on the x-axis and one of the cue-performance disruption manipulations on the
y-axis. The subplots capture the different manipulations. (A) Frontload. (B) Frontload-Positive. (C) Frontload-Commander. (D) Midload. (E) Random.
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blocks. The first option, Frontload, aims to take advantage of
primacy effects to disrupt trust before it is fully established by
concentrating disruptions is the first third of trials. The
disruption probability is tripled to 30% to make it directly
comparable to the Random condition in terms of an equal
amount of disruptions. Figure 7A summarizes the impact on
predictive power measures for each of the four transparency
conditions. Even though the automation reliability averaged over
the entire period is exactly the same as for the Random condition,
use of Automation is significantly impacted, with the probability
of choosing the Commander increased 9% in the Age and
Number conditions (from 40 to 49%) and 7% in the Text and
Graphic conditions (from 27 to 34%) compared to the Random
condition. As with the Random condition, the shifts happen
across the board, with decision PPP slightly increasing in all
conditions and decision NPP decreasing for the Text and Graphic
conditions. Estimates of automation reliability also decreases
significantly in all conditions.

A third manipulation, Midload, is similar to Frontload but is
focused on the middle third rather than the first third of trials.
Figure 7D summarizes the impact on predictive power measures
for each of the four transparency conditions. Unlike Frontload,
results in Midload are substantially similar to Random,
confirming that the greater disruption achieved by Frontload
that resulted from exploiting a lack of existing trust at the start of
the experiment rather than the concentration of disruptions
per se.

A fourth manipulation, Frontload-Positive, is similar to
Frontload but increases the reliability of automation rather
than decreasing by the same amount of 7%, up to 77% from
70%. While such a manipulation would seem counter-intuitive,
raising trust in automation above a level that would be supported
might be equally disruptive, preventing users from properly
relying on alternative options when appropriate. Figure 7B
summarizes the impact on predictive power measures for each
of the four transparency conditions. Compared to the Baseline,
reliance on the Commander decreases by 12%, from 28 to 16%, in
the Age condition, by 10%, from 32 to 22% in the Number
condition, and by 6%, from 19 to 13%, in the Text and Graphic
conditions. However, the shift in reliance away from the
Commander happens largely from unreliable conditions,
leading to a slight increase in decision PPP but a significant
decrease in decision NPP. Estimates of automation reliability are
largely unchanged because the artificial increase in reliability is
canceled by the induced reliance on automation in conditions
where it is not usually warranted. In other words, increasing
automation reliance in situations where it is not normally reliable
can lull the user in using it more in those conditions, leading to
increase in unwarranted use.

A fifth and final manipulation, Frontload-Commander, is
similar to Frontload but disrupts the reliability of the
Commander instead of the Automation. In its intended effect,
it is similar to Frontload-Positive in its attempt to raise
unwarranted use of Automation, but even more effective.
Figure 7C summarizes the impact on predictive power
measures for each of the four transparency conditions.
Compared to the Baseline, reliance on the Commander

decreases by 18%, from 28 to 10%, in the Age condition, by
17%, from 32 to 15% in the Number condition, and by 9%, from
19 to 10%, in the Text and Graphic conditions. The sizable shift in
reliance on Automation across all conditions results in a drop in
decision PPP by about 6% for all conditions and a similar 6%
decrease in decision NPP for the Text and Graphic conditions
only. Estimates of automation reliability drop by about 10%
across all conditions. As with Frontload-Positive, but even
more effectively, unduly increasing (relative) trust in
automation by strategically degrading performance of
alternatives can lead to a prolonged overreliance on automation.

4 DISCUSSION

We introduce a general methodology for studying effects of trust
calibration and reliance in automation. We developed a cognitive
model representing the cognitive processes involved in
interacting with automation, learning from experience to
estimate its trustworthiness, then deciding whether to rely on
it or on other sources such as a human expert. Once the model is
validated against experimental data, computational experiments
can then be run to explore manipulations that can impact or
distort trust calibration and reliance on automation. Additional
human subject experiments can then be run to confirm the model
predictions in the conditions of greatest interest.

Human users develop trust in automation in an incremental
way. They follow a process of sequential decision-making in
which information gradually accumulates, intermediate
judgments are made, and additional information is sought and
integrated to yield revised judgments. These iterative
sensemaking processes have been modeled using the same
dynamic activation processes used to develop computational
accounts of cognitive biases such as anchoring and adjustment
(Lebiere et al., 2013) and confirmation bias (Cranford E. A. et al.,
2020). Once biased judgments lead to decisions such as whether
to rely on automation, emergent phenomena such as risk aversion
can emerge from self-fulfilling biased sampling processes (Lebiere
et al., 2007).

In this work, we posed two exploratory questions to probe the
potential for trust calibration to be a source of potential
vulnerability or a target for adversarial disruption of the
human–machine system. First, we probed how changes in
transparency cues, through adding or removing cues, may
influence appropriate reliance. Second, we probed how
disruptions in the relationship between transparency cues and
the actual behavior of the automation can be manipulated. In
both types of situations, we found ways to artificially increase and
decrease appropriate reliance. We also showed the strength of the
impact depended on the amount and nature of the prior
experience with the cues, both types of cues and diagnosticity
of cues for reliable behavior, that is, we predict that calibration of
trust through transparency cues can be manipulated to cause
automation overreliance and under-reliance, or automation
misuse and disuse, respectively (Parasuraman and Riley, 1997).

We note that a limitation of the current approach using the
COBALT interface and automation-aided search task is that the
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single interface does not currently separate the dimensions of
actual automation performance reliability and the user’s
perception of the automation’s reliability or performance as
captured through the interface (including transparency cues,
observed automation failures). If a human user can directly
observe the automation failure and so learns about the
automation’s actual performance through direct experience,
the user may have a different calibration of reliance on the
automation from the reliance on the cues or system interface.
Direct experience with automation system degradation, separable
from the interface, may be more common when a person is
directly interacting with a robot, such as in the use of personal
assistance robots. Here, the observation of the machine may
influence a user’s reliance on it without influencing reliability
perception of interface elements. The inverse is also possible, in
that perceived reliability of the interface can be undermined when
it communicates information different from the direct
observations. Direct observation is often hard for unmanned
vehicle settings where line of sight to the vehicle may be
limited or not possible; our current work that manipulates
only interface elements applies here. In such remote
automation control settings, humans may have no or only
delayed additional information about the system to add to
their knowledge about the automation vs. interface system
components. Future work may benefit from further
exploration of the impacts of asynchronous or time-delayed
feedback about automation performance. Teasing out these
differences may be important for training or mitigation as we
use such systems over time. However, from the perspective of an
adversary, undermining appropriate calibration through any of
these direct or indirect avenues is a success.

The key for our modeling purposes is that degradation is
limited, and our purpose was to explore the most effective way
for an attacker to make use of that limited attack capability. From
that perspective, the attacker has two potential desirable outcomes:
1) under-reaction where the user keeps relying on the automation
while it is degraded and 2) overreaction where the user gives up on
the automation entirely even though the degradation is limited.
The proper trust calibration would be to stop relying on the
automation in circumstances where it is effectively degraded but
to continue relying on it when the degradation stops. But as we
have seen in the present simulations, the recovery of calibrated
reliance is not instantaneous. If an operator were to fail to detect an
attack or simply underreact to one, then automation reliance
decision rates would not change during or after; we would
predict that this would cause even decision rates but a drop in
the positive predictive power rates. This would be due to an
increasing number of false positives among the steady rate of
automation reliance choices. Overreaction would be observed in
the negative predictive power rates. In this case, the observer would
stop relying on the automation altogether; this increases the
number of Commander reliance decisions. After an attack, this
would be evident as both a change in the relative rates of
Automation/Commander decisions and an increased number of
false negatives, decreasing the negative predictive power. These
predictions would be testable through future empirical work.

Once computational cognitive models used in simulation, as
we have here, have improved our understanding of biases and
breakdowns in trust calibration, they can be used to develop
automated systems to alleviate those threats to effective
human–machine teaming. However, human decision makers
have numerous individual differences in knowledge, strategies,
and cognitive capacity that automated systems have to be
sensitive to. Cognitive models tuned to the specific
experience and decisions of individuals have been developed
to control personalized automated processes, such as defensive
cyber deception, in which the model generates a deceptive signal
that balances the potential benefits of deceiving a potential
attacker against the costs of rebuilding trust if the signal is
exposed as deceptive (Cranford E. et al., 2020). The cognitive
model developed in this study could therefore serve as the basis
of a system designed to limit the damages of attacks and
disruptions and properly calibrate human trust in
automation. That system could also be used to optimize the
complexity of information presented and find the optimal level
of transparency by leveraging techniques such as measures and
visualization of cognitive salience developed for explainable AI
systems (Somers et al., 2019; Cranford E. et al., 2020). In
conclusion, cognitive models provide promising computational
tools to understand, manage, and calibrate trust and reliance in
automation.
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