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Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium
accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the
disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflam-
mation, which exacerbates primary brain damage.Therefore, reducing oxidative stress (OS) and downregulating the inflammatory
response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of
modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet
been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and
the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in
the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate
for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke,
and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative
stress is an important promoter of damage. In the present paper, we focus on the role ofNODas possible neuroprotective therapeutic
agents for ischemia/reperfusion treatment.

1. Introduction

When the brain blood flow is interrupted, it results in
deprivation of oxygen and nutrients to the cells; this situation
constitutes an ischemic stroke. Restoration of the flux, or
reperfusion, can reduce the damage, but only when this
is performed very early after the onset of ischemia, and
its efficacy is restricted by secondary injuries, mainly by
oxidative stress (OS) and an inflammatory reaction, which
lead to cell death by apoptosis [1].

It is noteworthy that ischemic damage not only affects
neurons.Thus, in recent years the concept of the neurovascu-
lar unit has been highlighted, emphasizing the need to protect
not only the neurons, but also all cells in the brain [2–5].

In contrast to the known vulnerability of neurons and
astrocytes, it is thought that endothelial cells tend to be more
resistant to ischemic or oxidative injury [6]. Hence, to be
successful, stroke therapies should be widely effective and
must protect all neuronal, glial, and endothelial components
in the brain [7].

After focal ischemia, primary neuronal death appears
rapidly in the core area and is followed by secondary death
in the ischemic penumbra, which evolves from the delayed
activation of multiple cellular death pathways. At the core
of the ischemic lesion, one of the first events is the rapid
decline of adenosine triphosphate (ATP) reserves [8]. Con-
sequently, all energy-dependent processes gradually cease
their activity, leading to changes in transmembrane potential.
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The consequent depolarization (denominated anoxic depo-
larization) produces massive influx of Na+, Cl−, and Ca2+
inside the cell with K+ efflux [9].

Core anoxic ischemic depolarizations induce release of
neurotransmitters such as glutamate. Once released, gluta-
mate generates a phenomenon of peri-infarct depolarization,
which increases energy consumption and promotes Ca2+
influx into the cells [10].

The increase in intracellular Ca2+ in neurons and glial
cells initiates a set of nuclear and cytoplasmic events that
produce deep brain tissue damage that includes the fol-
lowing: Ca2+ mitochondrial overload (which compromises
the already affected ATP production and promotes the
opening of the mitochondrial transition pore); the increase
in OS, and the activation of a number of Ca2+-dependent
enzymes. Such enzymes include proteases, kinases, phospho-
lipases, and endonucleases, which destroy biomolecules [10].
Additionally, increased intracellular Ca2+ also promotes the
production of NO from constitutive synthases that, together
with acidosis and peri-infarct depolarization, contribute to
the initiation of damage; later, inflammation and activation
of apoptotic phenomena contribute to increased injury [2].

OS is a major mechanism implicated in stroke and in a
variety of neurodegenerative diseases, mainly in Alzheimer
and Parkinson (reviewed in [11, 12]). The most accepted the-
ory regarding neurodegeneration in Parkinson disease refers
to OS as the main cause of damage to neurons in the substan-
tia nigra. In addition, in Alzheimer disease, the OS generated
by the action of 𝛽-amyloid, which causes massive entry of
Ca2+ and caspase activation, leads to neuronal death [13, 14].

During ischemia, reactive oxygen (ROS) and nitrogen
species can be generated in the ischemic penumbra but can
also be produced during reperfusion injury [15, 16]. Indeed, it
is now established that albeit maintenance of partial or com-
plete blood flow is essential for preserving cerebral tissue, it
is during reperfusion when it paradoxically induces excessive
generation of ROS, such as superoxide anion radical (O∙−

2
),

hydroxyl radical (OH∙), hydrogen peroxide (H
2
O
2
), and

nitric oxide (NO), which contribute to increased neuronal
death by oxidizing proteins, damaging DNA, and inducing
lipid peroxidation [17].

Reperfusion-induced ROS contribute to a decrease of
the NO availability responsible for postischemic endothelial
dysfunction [18, 19]. During the ischemic period, reduction in
O
2
availability reduces the activity ofNO synthase, producing

O2− instead of NO; later, during reperfusion, the arrival of O
2

increases NO synthase activity. These can exert a deleterious
effect by promoting nitrosative stress and diminishing the
availability of NO for preserving endothelial integrity.

Over the past decade, remarkable advances have been
made in understanding the basic molecular mechanisms
underlying neuronal death. However, clinically effective neu-
roprotectants have not yet been discovered and no specific
therapy for stroke is available at present. The body of experi-
mental data supports the view that reducing OS should con-
tinue to be a potentially viable target for stroke therapy [20].
In addition, the inflammatory response requires considera-
tion as a potential target of therapy for ischemic stroke [21].

Therefore, agents capable of modulating both elements will
constitute promising therapeutic solutions [22–25].

2. Ischemic Lesion and Immune Response:
Brain Inflammation

It has now been established that the Central nervous system
(CNS) is able to raise an immune response to the major-
ity of threatening stimuli, whereby resident cells generate
inflammatorymediators including cytokines, prostaglandins,
free radicals, complementary chemokines, and adhesion
molecules that recruit immune cells and activate glia and
microglia (reviewed in [21, 26–28]). The role of microglia
and proinflammatory cytokines in the CNS has been char-
acterized in models of brain insults, such as experimental
stroke, the most common form of ischemic injury [26].
As mentioned previously, cerebral ischemia triggers acute
inflammation, which exacerbates primary brain damage.
Although inflammation should be adaptive, the release of
proinflammatory cytokines has often been associated with
harmful consequences to neurons and myelin [29].

The control of early CNS inflammation is a careful
balancing act, as both too much and too little inflammation
will lead to decreased or delayed recovery. Whether the
inflammation is neurotoxic or protective may depend upon
the context and the location of the inflammatory mediator in
relation to an injury, and the timing of inflammatory response
may determine the outcome (see Table 1 in [27]).

For example, tumor necrosis factor alpha (TNF-𝛼) upreg-
ulated in the proximity of an evolving lesion contributes
to secondary infarct growth, whereas cytokine induction
remote from the ischemic lesion confers neuroprotection
[30]. TNF-𝛼 could enhance apoptotic processes through its
action on its tumor necrosis factor type 1 receptor (TNFR1)
in models of acute (ischemia, excitotoxicity) and chronic
(Alzheimer disease, multiple sclerosis) neurodegeneration
[31]. TNF-𝛼 and interleukin 1beta (IL-1𝛽) exert neurotoxicity
in cerebral ischemia in the presence of elevated inducible
nitric oxide synthase (iNOS), while in the absence of iNOS,
both cytokines appear to contribute to neuroprotection and
plasticity, highlighting the role of the context [32].

There is important recognition that protection of endo-
thelial function and downregulation of vascular inflamma-
tion comprise part of neuroprotection phenomena and may
possess added therapeutic benefit against stroke injury [33].
However, research on clinically effective neurovascular pro-
tective therapies for brain damage remains at an early phase
[34]. Much attention has been focused on the role of NO in
vessel protection from OS and inflammation [35]. Because
OS coexists with inflammation and endothelial dysfunction,
determining antioxidant status may be helpful in monitoring
the progress of Nitric oxide donors (NOD) treatment. A
variety of structurally differentNOD,which releaseNOeither
as a free radical (NO∙) or as an NO ion (NO+/NO−), have
shown to reduce OS/inflammation and to increase cerebral
blood flow [35–38]; thus, these can be considered attractive
candidates for therapeutic agents in experimental models of
stroke.
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3. Nitric Oxide Donors (NOD) as
Neuroprotective Agents in Ischemic Stroke

3.1. Nitric Oxide in Ischemic Stroke. Nitric oxide (NO) plays
a dual role, that is, neuroprotection and neurotoxicity, in
the pathophysiology of cerebral ischemia-reperfusion injury
[39]. NO is synthesized by NOS, of which there are three
known isoforms: nNOS; eNOS, and inducible or immuno-
logical NOS (iNOS).The first two are constitutively expressed
and their activity is dependent on changes at the intracellular
Ca2+ level, while iNOS acts in a Ca2+-independent manner
[40]. Baseline concentration of NO in the brain is mainly
due to nNOS activity, and secondarily to eNOS. iNOS is not
expressed under physiological conditions [41, 42].

In the brain, eNOS is mainly produced by the vascular
endothelium and the choroid plexus [43]. Although eNOS-
NOproduction is aminor part of total brainNOS activity, this
enzyme is critical for the regulation of cerebrovascular hemo-
dynamics and for the protection of endothelium integrity
from inflammatory, oxidative, and procoagulant stimuli. It
has been demonstrated that eNOS-derived NO scavenges
ROS [44] and inhibits the expression of cellular adhesion
molecules [45], platelet aggregation [46], and leukocyte
adhesion [47].

During ischemia, NO concentration decreases because
of oxygen deficiency [41]. However, immediately after reper-
fusion, biosynthesis of this molecule is triggered mainly
by overactivation of nNOS, as evidenced in nNOS (−/−)
mice [48] or with specific inhibitors such as 7-NI [41, 49].
Glutamate-induced Ca2+ overload in ischemic neurons is
responsible for the rise of nNOS-derived NO [50]. Concen-
tration of NO returns to physiological levels approximately
1 h after reperfusion [48, 49, 51] and increases again due to
iNOS expression between 12 h and up to 8 days later [52, 53].
iNOS sources at this stage comprisemicroglia [53], astrocytes
[54], endothelial cells [55], and infiltrated leukocytes [56].
The amount of iNOS-NOderived is 100–1,000 times than that
produced by nNOS [57].

Therefore, NO deriving from different sources (neurons,
brain vessels, glia, and neutrophils)may exert an influence on
the evolution of brain damage at different time-points after
an ischemic insult [42]. Thus, the use of relatively selective
inhibitors ofNOS isoforms and geneticallymodifiedmice has
contributed to clarifying the role of NO in cerebral ischemia-
reperfusion injury as follows.

Total suppression of eNOS activity in knockout mice
(eNOS −/−) renders them hypertensive [48] and more sus-
ceptible to ischemia-reperfusion injury, with larger infarcts
compared with those of controls and a more severe reduc-
tion in cerebral blood flow (CBF) [48, 51, 58]. Conversely,
overexpression of eNOS by flavonoids induces a protective
effect [59]. In contrast to eNOS, infarct volume and neuronal
death are consistently decreased by nNOS gene deficiencies
or by nNOS inhibition [48, 60–64]. nNOS abolition also
reduces excitotoxicity [65], nitrosative stress [63, 66], and
O2− production [67] and downregulates calpain and caspase-
3 in ischemic lesion [61, 64]. Additionally, during reperfusion,
iNOS-produced NO contributes to brain injury [42, 68].

iNOS expression is transcriptionally regulated by nuclear
factor kappa B (NF-𝜅B) secondary tomoderate inflammatory
stimuli such as TNF-𝛼 [69] and IL-1𝛽 [70], and also by
oxidative radicals [71]. Due to the large amount of NO pro-
duced by iNOS, this enzyme is relatedwith high peroxynitrite
production and significant nitrosative damage of biological
molecules [72].

Consequently, nNOS mediates early neuronal injury,
while iNOS contributes to late neuronal injury, whereas
eNOS activity might be protective [41, 42, 73]. Whether the
effects of this molecule are beneficial or harmful depends on
the cellular compartment in which NO is generated, on its
concentration, on the environment’s redox state, and on the
evolutive stage of ischemic brain injury [42, 48, 73].

In addition to their involvement in ischemia, the expres-
sion of iNOS in astrocytes and microglia and the production
of large amounts of NO contribute to dopaminergic neuronal
death in the neuropathology of experimental Parkinson
disease [74, 75]. In the brains of patients with Alzheimer
disease, nitrosylation of proteins is a hallmark of tissue
damage [76] and is particularly high in hippocampus and
cerebral cortex. The presence of beta amyloid is sufficient for
triggering iNOS activation in astrocytes and microglia [77].
In addition, nNOS activity in reactive astrocytes surrounds
beta-amyloid plaques in entorhinal cortex and is related with
DNA fragmentation in CA1 and CA4 fields [78], while there
is a correlation between neurofibrillary tangles and senile
plaques with a reduction in eNOS capillary levels [79].

According to the dual role of NO in brain ischemia, there
is a rationale for the use of NO for promoting treatments
shortly after the occurrence of focal cerebral ischemia as
neuroprotective strategies [42, 53, 80, 81]. The neurovascular
protective mechanism of eNOS-NO suggests that interven-
tion with NO may be most effective when delivered at an
optimal amount by a suitable source at the correct time in an
appropriate environment [82].

3.2. Nitric Oxide Donors (NOD). Nitric oxide donors are
a heterogeneous group of drugs whose common feature
is the ability to release NO or an NO-related species,
such as the Nitrosonium ion (NO+) or the Nitroxyl anion
(NO−), in vitro or in vivo, independently on its endoge-
nous sources [83]. The following are the NOD most fre-
quently employed in clinical and basic research: organic
nitrates (e.g., nitroglycerin, isosorbide-5-mononitrate, nico-
randil, pentaerythritol tetranitrate); S-nitrosothiols (e.g.,
S-nitroso-N-acetylpenicillamine and S-nitroso-glutathione);
sydnonimines (e.g., molsidomine, SIN-1); NONOates (JS-K,
SPERMINE-NONOate, and PROLI-NONOate), and sodium
nitroprusside [84]. Table 1 illustrates NOD effects on experi-
mental cerebral ischemia.

Despite the fact that all of these are consideredNOD, they
have different pharmacokinetic and dynamic profiles that
determine the type and extent of their biological effects. The
main determinant of these effects is the manner in which NO
is released, the amount of NO generated, and the time during
which it is released. Moreover, some of these generate alter-
native products that may arise during their metabolism or
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Table 1: Nitric oxide donors in experimental cerebral ischemia.

Species Model Time of
ischemia/reperfusion Nitric oxide donor Doses and

administration Effect Reference

Rat MCAO 20󸀠/24 h GSNO
1mg/kg at the
onset of
reperfusion

Reduction in infarct size
Increase in CBF
Decrease in cortical expression of
TNF-𝛼 and IL-1 in penumbral
region
Attenuation of iNOs expression in
microglia, astrocytes and vessels of
penumbral region
Inhibition of
monocyte/macrophage infiltration
Downregulates adhesion molecules
(ICAM-1, LFA-1)
Reduction in TUNEL-positive cells
and caspase-3 activity
Blocks NF-𝜅B (p65/p50 complex)
and is able to bind to DNA in
astrocytes and microglial cells in
vitro

[53]

Rat MCAO 20󸀠/24 h

SNP
GSNO
SNAP
MAHMA/NONO-
ate
PAPA/NONOate
SIN-1

2 and 3 𝜇mol/kg
per 10min IV at
onset of
reperfusion

Increase in CBF (except MAHMA
and PAPA)
Reduction in infarct size (GSNO,
SNP, and SNAP)
Improvement in neurological score
(GSNO, SNP, and SNAP)
Reduction in lipid peroxidation in
plasma (all of them)
Decrease in plasma levels of
nitrotyrosine (GSNO, SNP and
SNAP)
Increase in NO plasma level (except
SNAP)
Reduction in mRNA expression of
ICAM-1 (GSNO, SNAP, SNP) and
E-selectin (except SIN-1)

[38]

Rat MCAO 90󸀠/24 h ZJM-289
0.1 and
0.2mmol/kg IV 1 h
prior to ischemia

Improvement in neurological deficit
(motor function)
Reduction in infarct size
Reduction in brain water content
Decrease of neuronal degeneration
Inhibition of nNOS expression
Increase of NO level ipsilateral to
ischemia
Increase in cGMP level

[85]

Rat MCAO 90󸀠/1.5, 3, 4.5, 6 and
12 h Sodium nitrite

480 nmol per 1min
at 1.5, 3, 4.5, and 6 h
postischemia, IV

Reduction in infarct size (1.5, 3, 4.5
and 6 h)
Improvement in motor function
(4.5 h)
Decrease of microhypoxic areas
(12 h)
Reduction in free reactive oxygen
and nitrogen species (12 h)

[86]

Rat MCAO 2h/7 days
SNP
Sperm-
ine/NONO-ate

SNP: 0.11mg/kg
per 120min,
trans-ischemia, IV
Spermine:
0.36mg/kg per 120
min,
trans-ischemia, IV

Reduction in infarct size
Increase in cerebral perfusion [87]
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Table 1: Continued.

Species Model Time of
ischemia/reperfusion Nitric oxide donor Doses and

administration Effect Reference

Rat MCAO 2h/3 days SIN-1
0.1 and 1mg/kg
30min before
ischemia, IV

Reduction in infarct size in normo-
and hyperglycemic rats [88]

Rat Permanent
MCAO 24 h/no reperfusion SNP

SIN-1

SNP: 3mg/kg/h
trans-ischemia, IA
SIN-1: 1.5, 3, and
6mg/kg/h
trans-ischemia, IA

Both produced an increase in CBF
and a reduction in infarct size
SNP decreased platelet aggregation
in vitro but not in vivo at the same
doses

[80]

Rat Permanent
MCAO 24 h/no reperfusion SIN-1

3mg/kg/h per
60min at 3, 15, 30,
60, and 120min
after ischemia, IA

Reduction in infarct size
Increase in CBF [89]

Rat 4-VO 15󸀠/30󸀠, 6 h, 12 h, 3
and 5 days SNP

5mg/kg, 3 doses:
30min prior to
ischemia, 1 h
postischemia, and
2.5 h postischemia,
IP

Suppression of JNK3 downstream
pathway (30󸀠, 3 h)
Increase in Akt and Bad
phosphorylation (12h)
Inhibition of Cytochrome c release
from mitochondria (6 h)
Reduction in TUNEL-positive cells
and caspase-3 activity (3 h)
Augmentation of neuronal survival
in CA1 pyramidal layer (3–5 d)

[61]

Rat 4-VO 15󸀠/6 h, 3 and 5 days SNP

5mg/kg, 3 doses:
30󸀠 prior to
ischemia, 1 h
postischemia and
2.5 h postischemia,
IP

Decreased hippocampal activation
of nNOS by nitrosylation and
phosphorylation (6 h)
Suppression of JNK3 downstream
pathway (6 h)
Inhibition of release of Cytochrome
C into cytoplasm (6 h)
Attenuation of caspase-3 activity
(6 h)
Reduction in neuronal degeneration
(5 d) and TUNEL-positive cells (3
d) in CA1 pyramidal layer

[65]

Rabbit
and rat MCAO 60󸀠/2, 4 h

respectively
ProliNO/
NONO-ate

Rabbit: 10−6 mol/L
Rat: 10−5 mol/L
At the onset of
reperfusion per
60min, IA

Reduction in free reactive oxygen
species
Reduction in infarct size

[90]

Goat MCAO 20󸀠/7 days
SNP
DEA/NONOate
DETA/NONOate

SNP: 10−9–3 ×
10−4 mol/L, IV
DEA: 10−9–3 ×
10−4 mol/L, IV
DETA: 10−7–3 ×
10−4 mol/L, IV

MCA relaxation [91]

Lines of evidence are ordered first by animal model and then by surgical procedure and severity of the ischemia. In cases in which the effects were different
at different reperfusion times, this is indicated after each effect by the corresponding time as a superscript between parentheses. MAP: Mean arterial pressure;
CA1: Cornu Ammonis; CBF: Cerebral blood flow; GSNO: S-nitrosoGlutathione; IA: IntraArterial; ICAM-1: Intercellular adhesion molecule-1; IL1: Interleukin
1; iNOS: inducible Nitric oxide synthase; IP: Intraperitoneal; IV: Intravenous; JNK3: c-Jun N-terminal kinase-3; LFA: Lymphocyte function-associated antigen-
1; MAHMA: Methylamine hexamethylene methylamine NONOate; MCA: Middle cerebral artery; MCAO: Middle cerebral artery occlusion; nNOS: neuronal
Nitric oxide synthase; NO: Nitric oxide; PAPA: Propylamine propylamine NONOate; SAP: Systolic arterial pressure; SIN-1: 3-morpholinoSydnonimine; SNAP:
S-nitroso-N-acetyl-penicillamine; SNP: Sodium nitroprusside; TNF: Tumor necrosis factor; TUNEL: Terminal dUTP nick end labeling; 4-VO: four Vessel
occlusion model.

decomposition.These products may even be present in quan-
tities exceeding NO with independent or side effects [92].

For example, organic nitrates, the most common NOD
utilized in coronary artery disease, require enzymatic bioac-
tivation in order to deliver NO [93]. Their principal effect

is at the vascular level, by increasing venous capacitance
and coronary vasodilation [84]. S-nitrosothiols are a het-
erogeneous group characterized by a nitroso group attached
by a single chemical bond to the sulfur atom of a thiol
[83]. S-nitrosoGlutathione (GSNO) is found in vivo and is
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an important intermediary in organic nitrate metabolism.
The remaining nitrosothiols are synthetic. These compounds
act as NO-carriers, NO-reservoirs, and intermediates in
protein nitrosylation.They also possess the ability to transfer
the different NO species through chains of thiols, without
releasing the NO molecule itself. This feature decreases the
possibility of NO reacting with O2− to form ONOO−, or
that of reacting with other molecules to nitrosylate these
[94, 95]. Sydnonimines release NO spontaneously, without
enzymatic activity. Superoxide is generated concomitantly
and may combine with NO to generate ONOO−. This
process also releases significant quantities of hydroxyl radical,
which increases its prooxidant potential [96]. Therefore,
these compounds are considered peroxynitrite donors more
than NOD and are utilized as nitrosative stress inducers in
experimental models. NONOates decompose spontaneously
in solution, at physiological pH and temperature, without
interaction with biological molecules and in a concentration-
dependent manner; thus, they usually are employed as NO-
release models [90].

Sodium nitroprusside (SNP) is a compound consisting of
an iron core surrounded by fiveCyanide ion (CN−)molecules
and one molecule of the Nitrosonium ion (NO+). SNP does
not liberate NO spontaneously in vitro, but does require
partial reduction (one-electron transfer) by a variety of
reducing agents present in membrane cells. It is also possible
to release NO from SNP by photolysis. In addition to NO,
SNP can release, in aqueous solution, a range of oxidant and
free radical species, such as iron, cyanide, superoxide, H

2
O
2
,

and hydroxyl radical in direct proportion to its concentration
[97–99]. Because of the nitrosative and prooxidant potential
inherent in the different NOD, these have beenwidely used as
models of neuronal damage (for a more detailed review, see
[83, 84, 94]).

3.3. Sodium Nitroprusside-Induced Neurotoxicity. The poten-
tially adverse effects of SNP on cells and tissues have been
widely used in vivo and in vitro to study the mechanisms
involved in nitrosative and OS injury. While many of the
pharmacological effects elicited by SNP are attributed to the
NOmolecule, several in vitro studies [100, 101] revealed other
biological SNP properties that are independent of the NO
moiety, due to the huge number of by-products released
during its decomposition (e.g., cyanide, iron, and ROS).

In vitro, SNP is usually neurotoxic. This compound is
able to cause cytotoxicity in the human neuroblastoma cell
line SH-SY5Y by means of OS. In addition, SNP treatment
activates the (ERK1/2) pathway and inactivates the Akt
pathway, leading to cell death [102]. Additionally, inhibition
of ERK activation or exogenous Superoxide dismutase (SOD)
treatment protects human melanoma from SNP toxicity
[103]. Furthermore, in hippocampal neurons, SNP and SIN-1
are capable of decreasing Bcl-2 and increasing Bax expression
along with caspase-3 activation, leading to neuronal apop-
tosis [104]. Concentration-dependent neuronal death was
induced in cerebellar granular cells after exposure to SNP by
hydroxyl radical generation, as well as by increasing the level
of iron and lipid peroxidation [105]. In cultured cholinergic
cells, SNP impairs oxidative metabolism of Acetyl Co-A

by suppression of choline acetyltransferase and pyruvate
dehydrogenase activities in mitochondria and cytoplasm.
This effect triggers OS and a reduction in neuronal viability
[106].

In addition to SNP, other NOD are able to elicit cyto-
toxicity in vitro. In cortical neuronal cultures, SIN-1 induced
neurotoxicity by ATP depletion and protein nitration, which
was counteracted by the addition of hemoglobin (a NO
scavenger), SOD, and an ONOO scavenger, demonstrating
that the main mediator of damage in this case is ONOO−
[107]. In the same cell culture type, neuronal viability was
significantly reduced when compared with that of controls
after DETANONOate exposure. This effect was associated
with a decrease in catalase activity and expression [108].

Likewise, SNP has been used to induce neurotoxicity in
vivo. While not mimicking a specific neuropathology, the
rapid and localized neurodegeneration and demyelination
caused by the SNP, when injected into the brain, provides
a very practical tool for studying the role of the individual
molecular players that can be involved in the immediate and
consequent damage implicit in neurodegenerative processes.
In animal models, SNP causes acute and localized excitotoxic
cell death when infused within the brain parenchyma. This
damage is also associated with a transient inflammatory
response [109]. The neurodegeneration caused by SNP is
accompanied by microglial activation and the induction of
the proinflammatory cytokines TNF-𝛼 and IL-1𝛽. Injection
of exogenous TNF-𝛼 was shown to exacerbate the damage
and inflammation caused by SNP through specific and tran-
sient activation of resident microglia [109]; in contrast, the
abolition of the endogenous production of TNF-𝛼 genetically
is also detrimental, because it delays microglial activation,
which is later expressed in an excessive manner. However,
these effects do not extend to the IL-1B. Thus, this suggests
that the source, timing, and dose of TNF-𝛼 are preponderant
in determining the fate of neurons and myelin during SNP-
induced neurotoxicity [29].

Additionally, when infused into the substantia nigra, SNP
induces an acute increase in lipid peroxidation, which is
blocked by NO, oxyhemoglobin, and deferoxamine (an iron
chelator), suggesting that OS is elicited, at least in part, by the
iron moiety of SNP [110, 111]. Thus, the addition of SNP and
other NOD to neuronal cultures or into brain parenchyma
causes damage through the establishment of OS, nitrosative
stress, and the disturbance of cellular oxidative metabolism.
The death pathway activated through these mechanisms is
mainly apoptotic.

However, it should be considered that the cytotoxic
effects of NOD are not necessarily due to the presence of
NO, because its addition to culture media alone does not
cause neurotoxicity [112]; therefore, other compounds that
are also part of the NOD molecules can be delivered with
different effects. Such is the case of SNP, in which its toxicity
lies more in its content of iron [110, 112, 113] and cyanide
ions [114] rather than in its NO content or, as the case of
SIN-1, whose decomposition releases superoxide anion and
hydroxyl radicals along with NO, leading to the production
of large amounts of ONOO− [96].
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Finally, it should be taken into account that the cyto-
protective and physiological effects of NO described (e.g.,
vasodilatation, neurotransmission, endothelial protection)
require extremely small concentrations (pico- to nanomolar),
while harmful effects take place at higher concentrations, par-
ticularly under OS [93]. In culture and in intracerebral appli-
cation, the NOD concentrations usually administered fall
within the micro- to millimolar range.Thus, direct contact of
NODwith neurons in culture or intraparenchymally coupled
with the high concentration of these could be mimicking
overactivation of nNOS or iNOS during the postischemic
reperfusion period or in other neurodegenerative disorders
[83]. Figure 1 depicts the signaling pathways involved in the
neurotoxic effects of NO.

3.4. Nitric Oxide as an Anti-Inflammatory and Neuropro-
tective Agent. In contrast to the evidence presented in the
previous section based on the reactivity of NO with iron
and ROS, in 1994 Chiueh proposed that NO and related
donor compounds may protect against the OS induced by
small-molecular-weight iron complexes in the dopaminergic
nigrostriatal system [115]. Since then, a growing number
of reports have confirmed the potent neuroprotective and
antioxidant actions of NO in the brain in experimental
models of Parkinson disease [116–120]. In addition, NO has
shown to inhibit lipid peroxidation of low-density lipoprotein
oxidation [121, 122] in order to protect against neurotoxin-
induced dopaminergic neurotoxicity [112, 118, 123, 124] and
to shield cells from OS [125–127], protecting these in vivo
through both antioxidative and -apoptotic mechanisms [118].

In the hippocampus, NO mediates cellular transduction
mechanisms, regulates neuronal plasticity [128], and sup-
presses neuronal apoptotic cell death [129]. Thus, NO may
be neuroprotective or restorative after a stroke [130–132],
after traumatic brain injury [133, 134], and during Alzheimer
disease [135] and depression [136].

3.5. NO Donors Exerted a Neuroprotective Effect against
Cerebral Ischemia-Reperfusion Injury at Different Levels by
Influencing Cellular Oxidative Status. SNP and SPERMINE-
NONOate are able to reduce infarct size after transient focal
cerebral ischemia when administered early [87]. Likewise,
S-nitrosothiols (GSNO and SNAP) and SIN-1 additionally
reduced infarct volume and improved neurological perfor-
mance [38, 88, 89]. Hemodynamically, SNP, GSNO, and
SNAP increase CBF in the penumbral region when admin-
istered at the onset of reperfusion [38, 80, 89].

In addition, pre- and postischemic administration of
SNP attenuates the ischemia-induced increase of caspase-3
at 6 h of reperfusion and downregulates neuronal apoptosis
by inhibiting increased phosphorylation of JNK, c-Jun, and
Bcl-2 [61, 65]. This effect is achieved through nitrosylation
of nNOS, which decreases its NO production. This means
that SNP can regulate NO metabolism in the target cells.
In focal ischemia, SNP and S-nitrosothiols decrease lipid
peroxidation and nitrotyrosine formation in plasma, which
is associated with less oxidative and nitrosative stress, neuro-
protection, and fewer anti-inflammatory effects [38].

The effects of NOD on ischemia-reperfusion injury are
also related with modulation of the inflammatory response,
and these effects are probably the neuroprotective effects with
the greatest impact after cerebral ischemia and reperfusion
of this drug type. To shield nerve tissue from ischemia-
reperfusion injury is not sufficient to protect the brain
parenchyma, but alsomust preserve the integrity of the Blood
brain barrier (BBB). Thus, the cerebral vascular endothelium
is essential in the control of vascular inflammatory and
oxidative responses, leukocytemigration, and the production
of inflammatory mediators capable of spreading to nerve
tissue [26]. Under physiological conditions, eNOS-NO is
responsible for maintaining the integrity of the vascular
endothelium. But under ischemic conditions, endothelial
dysfunction could be offset by mimicking eNOS-derived NO
neuroprotective functions by intravascular administration of
aNOD [137]. Control of endothelial inflammatory and oxida-
tive responses in turn allows restriction of their impact on
resident brain cells, particularly on those with an inflamma-
tory phenotype, such as microglia and astrocytes. Therefore,
effective neuroprotection should include protection of the
BBB and of the elements within it [138, 139].

In vivo, high expression of TNF-𝛼, IL-1𝛽, and iNOS
in microglia and astrocytes after focal cerebral ischemia is
reduced by GSNO. Likewise, GSNO induces a reduction in
microglial and macrophage cells in the penumbral region,
which is associated with less expression of cellular adhe-
sion molecules such as ICAM-1 in endothelial cells [56].
Decreased expression of adhesionmolecules (ICAM-1 and E-
selectin) was also demonstrated with SNP and SNAP in the
same model [38].

Anti-inflammatory effects are also demonstrated in other
neuronal-damaged models, such as experimental autoim-
mune encephalomyelitis [140] and traumatic brain injury
[134]. Under both conditions, NOD inhibited the expres-
sion of cell adhesion molecules and infiltration of vascular
immune cells into the CNS, which subsequently led to
reduction in the expression of proinflammatory cytokines at
the site of injury. This suggests less damage to BBB integrity,
which is an indicator of neuroprotection.

Beyond the CNS, SNP protects other organs from inflam-
matory damage. In cardiac surgery, SNP decreases cardiac
cytokine release [141–143] and improves postischemic car-
diac function [143]. In experimental models of ischemia-
reperfusion injury, such as those in kidney [144] and
lung [145], SNP attenuates the expression of proinflamma-
tory cytokines and reduces leukocyte-endothelium adhesion,
respectively.

3.6. Anti-Inflammatory Mechanisms of Nitric Oxide Donors.
In vitro studies have elucidated some of the mechanisms
involved in the anti-inflammatory effect of NOD. It is well
documented that cerebral ischemia, and particularly reperfu-
sion, leads to nuclear translocation ofNF-𝜅B into the core and
ischemic penumbra [146, 147], as well as into themicrovessels
of the affected region [148, 149]. NF-𝜅B is a key regulator
of innate immunity, inflammation, and of cell survival and
proliferation [150]. This inducible transcription factor is
comprised of two subunits. There are five subunits that can
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Figure 1: In vitro and intracerebral effects of sodium nitroprusside and other nitric oxide donors (NOD) on neuronal survival. SNP is capable of
releasing or producing diverse byproducts, such as nitric oxide (NO), iron, cyanide anions, hydroxyl radicals, and peroxynitrite. Collectively,
these are all capable of inducing oxidative and nitrosative stress [1], with the possibility of modifying the structure and function of proteins,
nucleic acids, and lipids bymeans of oxidation and nitrosylation. Iron, via the Fenton reaction, generatesOH− that, together withONOO− and
other reactive species, damage membranes by lipid peroxidation [2] with decreased cellular viability. This effect is blocked by the addition of
NO, oxyhemoglobin, and deferoxamine, which suggests the important role of iron andNO in this reaction.The oxidative stress (OS) produced
by SNP increases the activation of MEK1/2 and its substrate ERK1/2 by phosphorylation [3]. Both effects are blocked by SOD, suggesting the
participation of (O2−) in this reaction, probably in the form of ONOO−. Activation of ERK1/2 is associated with a reduction of Bcl2 and an
increase in (Bax), and both conditions are associated with an activation of mitochondrial apoptotic pathways. Mitochondria are a target of
SNP at different levels: SNP induces lipid peroxidation of its membrane with the subsequent activation of proapoptotic pathways via caspases.
In addition, NO and CN− affect the functioning of the mitochondrial respiratory chain, thereby altering mitochondrial membrane potential,
reducing ATP production and the generation of large amounts of reactive oxygen species [4]. The addition of ONOO− scavengers and SOD1
counteracts this effect. Also, SNP decreases Akt phosphorylation [5] and reduces the expression and function of SOD1 and catalase [6].These
actions decrease antioxidant responsiveness and the activation of neuronal survival pathways. OH−, hydroxyl radical; ONOO−, peroxynitrite;
Akt, protein kinase B (PKB); Bax, Bcl-2-associated X protein; Bcl2, B-cell lymphoma 2; CN−, cyanide anion; ERK1/2, extracellular signal-
regulated kinase 1/2; IL-1𝛽, interleukin 1 beta;MEK1/2,mitogen-activated protein kinase kinase 1/2;MMP,mitochondrialmembrane potential;
NO, nitric oxide; ROS, reactive oxygen species; SNP, sodium nitroprusside; SOD1, superoxide dismutase (Cu-Zn); TNF-𝛼, tumor necrosis
factor alpha.

be combined to yield homo- or heterodimers of NF-𝜅B as
follows: p50, p52, c-Rel, p65 (RelA), and RelB [151]. C-Rel-
containing dimer activation increases neuron resistance to
ischemia [152]. Moreover, the prevalent heterodimer during
cerebral ischemia and reperfusion is formed by p50- and
p65-inducible subunits, and its activation contributes to the
pathogenesis of postischemic injury [146, 152, 153]. NF-𝜅B is
maintained in latent form in the cytoplasm of cells bound to
inhibitory I𝜅B proteins. Phosphorylation of I𝜅B releases NF-
𝜅Bby permitting its translocation into the nucleus, its binding
withNF-𝜅Bmotifs, and the subsequent activation of its target
genes.There is, in turn, an enzymatic complex responsible for
I𝜅B phosphorylation in specific serine residues, the so-called
I𝜅B kinases (IKK). Activation of IKK is essential to induce
NF-𝜅B activity [154].

In the ischemic brain, a wide range of stimuli may trigger
activation of NF-𝜅B including, among others, the following:

hypoxia [155]; IL-1, and TNF-𝛼 [156]; OS [157]; glutamate
[158], and NOS activity, such as nNOS and iNOS [159]. Over-
activation of NF-𝜅B after ischemia has been documented
in neurons [147], astrocytes [53], microglia [160], and in
endothelial cells [149]. Although in some hippocampal neu-
rons NF-𝜅B have a constitutive action related with neuronal
survival [150], overactivation of the p50/p65 heterodimer in
neurons, glial, and endothelial cells due to ischemia, appears
to contribute to acute neurodegeneration. In neurons, NF-𝜅B
translocation has been associated with apoptosis [146, 147],
while in glia and in vascular endothelium, NF-𝜅B activates a
proinflammatory phenotype [53, 149, 160].

Therefore, blocking inflammatory phenotype activation
of NF-𝜅B could disrupt the cascade of events that culmi-
nate in proinflammatory brain tissue destruction. In human
endothelial cells, the addition of exogenous NO through
GSNO limits TNF-𝛼 activation of NF-𝜅B in a time- and
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in I𝜅b degradation and NF-𝜅B translocation and activation. This action exerts different effects depending on the cell line. In endothelial
cells, NF-𝜅B promotes a proinflammatory phenotype, with the expression of cellular adhesion molecules and proinflammatory cytokines
that induce leukocyte migration to the ischemic territory and promote acute inflammation. In glial cells, NF-𝜅B leads to the expression
of iNOS, COX-2, and proinflammatory cytokines. These effects contribute to nitrosative, oxidative, and inflammatory damage. Finally, in
neurons, NF-𝜅B induces the expression of apoptosis pathways. NOD can act at different levels in this pathway: NOD-derived NO diffuses
across target cell membranes, where it is able to nitrosylate kinases located upstream of NF-𝜅B, such as IKK, thereby suppressing their ability
to phosphorylate [1]. This inhibition prevents I𝜅b phosphorylation and its degradation; thus the release of NF-𝜅B. NO can also increase
I𝜅b gene transcription and stabilize the complex formed by I𝜅b and NF-𝜅B [2]. Furthermore, NOD-derived NO is capable of nitrosylating
directly into the p50 and p65 subunits of NF-𝜅B, which blocks their ability tomigrate to the nucleus [3]. All of these actions prevent the nuclear
translocation of NF-𝜅B, therefore the expression of their target genes [4]. (B) Cerebral ischemia-reperfusion increases nNOS activity, which
enhances its NO production. This NO can react with free radicals to produce ONOO− and also activates the JNK3 pathway.The result is c-Jun
phosphorylation and mitochondrial dysfunction, with an increase in Bcl2 phosphorylation and cytochrome C release into the cytoplasm.
In addition, this activates caspase-3 and leads to neuronal apoptosis. NOD-derived NO downregulates neuronal apoptosis by inhibiting
increased phosphorylation of JNK, c-Jun, and Bcl-2 [5].This is achieved by S-nitrosylation of nNOS, which interferes with its NO production
[6]. NO is also capable of nitrosylating caspase-3 directly [7]. All of these effects, along with an increase in CBF, reduce brain damage after
the ischemia-reperfusion event. Bcl2, B-cell lymphoma 2; CBF, cerebral blood flow; COX-2, cyclooxygenase 2; Cytoc, cytochrome; ICAM,
intercellular adhesion molecule; IkB, inhibitors of kB; IKK, I𝜅b kinase; IL-1𝛽, interleukin 1 beta; iNOS, inducible nitric oxide synthase; JNK3,
c-Jun N-terminal kinases 3; NF-𝜅B, nuclear factor kappa B; NIK, NF-𝜅B-inducing kinase; nNOS, neuronal nitric oxide synthase; NO, nitric
oxide; NOD, nitric oxide donors; ONOO−, peroxynitrite; TNF-𝛼, tumor necrosis factor alpha; [n] S-nitrosylation.

concentration-dependent manner [161]. This is also achieved
by SNP upon stimulation with IL-1𝛼, IL-1𝛽, IL-4, and LPS
[162]. NF-𝜅B inhibition is in fact sustained by the consti-
tutive activity of eNOS, because its inhibition, without an
inflammatory stimulus, triggers nuclear translocation of NF-
𝜅B [156, 161, 162]. By inhibiting activation of the transcription
factor, NO effectively blocks monocyte adhesion, as well as
the expression of the proinflammatory target genes of NF-𝜅B,
such as TNF-𝛼, IL-6, iNOS, V-CAM, ICAM-1, E-selectin, and
COX-2 [70, 156, 162–164].

In astrocytes and microglial cells, NOD also exhibits an
anti-inflammatory profile through downregulation ofNF-𝜅B.
In primary rat astrocytes and in a BV2 microglial cell line,
GSNO mitigates iNOS production by inhibiting the ability

of NF-𝜅B to bind to DNA [53]. Therefore, NOD are capable
not only of regulating NF-𝜅B at the vascular level, but also
they possess the capability of influencing glial cell reactivity
and limiting their production of iNOS, proinflammatory
cytokines, and other molecules and prooxidant enzymes that
are potentially harmful to neuronal cells.

Inhibition of NF-𝜅B by exogenous NO has been docu-
mented at different levels. In the brain ischemic environment,
activation of NF-𝜅B occurs, at least in part, via ROS [165].
Former researches have shown that one of the most signif-
icant sources of ROS in the ischemic brain is through the
metabolism of arachidonic acid by Cyclooxygenase (COX)
[166, 167]. COX-2 expression is increased in brain tissue after
global [168] and focal [167, 169] cerebral ischemia. ROS are
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produced by the peroxidase step of the COX reaction in
which prostaglandin G2 is converted into prostaglandin H2
[170, 171]. Hence, reducing COX-2 activity reduces oxidative
damage of the ischemic brain [167, 169]. The NO donors
GSNO and SNP are able to downregulate LPS-induced
COX-2 protein expression via inhibition of NF-𝜅B DNA
binding activity in murine monocytes [172]. Therefore, both
drugs may be candidates for neuroprotective antioxidants in
cerebral ischemia. In addition, NO is a superoxide scavenger;
hence, NO may inhibit NF-𝜅B by scavenging superoxide
anion [162].

Furthermore, SNP is capable of interfering directly with
the ability of NF-𝜅B to translocate into the nucleus. Specifi-
cally, SNP inactivates NF-𝜅B by nitration of the p65 subunit
at Tyr-66 and Tyr-152. This protein modification suppresses
iNOS mRNA expression and prevents the activation of NF-
𝜅B target genes by TNF-𝛼 stimulation [164]. S-nitrosylation
of the p50 subunit at Cys-62 has also been demonstrated as a
major mechanism of NO regulation by inhibition of the p50
binding to its consensus DNA target sequence [173].

With respect to I𝜅B-𝛼, exogenous NO increases mRNA
I𝜅B levels and stabilizes the complex formedwithNF-𝜅B [161,
172]. This stabilization is related with S-nitrosylation of the
Cys-179 of IKKß, which decreases its ability to phosphorylate
I𝜅B [174]. Additionally, NO interferes with the transient
degradation of I𝜅B-𝛼 induced by cytokines [70]. These three
actions induce negative regulation of NF-𝜅B DNA-binding
activity by NOD. Figure 2 sums up the neuroprotective
actions of NOD.

4. Concluding Remarks

Understanding the interaction between the CNS and the
immune system will provide greater insight into several
different pathologies that involve CNS inflammation and the
increase in the number of potential pharmacological targets.

The great variability in the observed effects elicited by
NOD, from neuroprotection to toxicity, could be due to
the great diversity in doses used in the experiments, which
in fact are mainly distant from the existing physiological
concentrations. Clarity about the NO concentrations that
exists physiologically is essential for developing a quantitative
understanding of NO signaling, for performing experiments
with NO that emulate reality, and for knowing whether or
not NO concentrations become abnormal in disease states
[175]. Several independent lines of evidence suggest that NO
operates physiologically at concentrations that are orders
of magnitude lower than the near-micromolar order once
considered correct.

Accordingly, physiological NO concentrations range
from 100 pM (or below) up to 5 nM (reviewed in [175]).
Therefore, the establishment of reliable methods for direct-
ing microelectrode measurement of NO concentrations and
the (most foreseeable) progression of newly developed NO
biosensors for quantitative imaging of NO signaling in
subcellular dimensions and in real time in tissues in vivo
will facilitate advances in this fundamental, but yet unsettled,
area.

In addition to NOD concentration, it is relevant to con-
sider the administration pathway (intravascular, intraperi-
toneal, or directly into the culture media in vitro), as well as
the cell type in which the donor exerts its action, together
with the cell redox state (reduction-oxidation), because these
factors are determining ones in selecting the signaling path-
way that will be affected or modified by the action of these.

Therefore, therapeutic use of these molecules must be
performed carefully, because they can be beneficial for one
tissue or cell type and harmful for others. Given their
short therapeutic window, NOD appear appropriate for use
during neurosurgical procedures involving transient arterial
occlusions or in very early treatment of acute ischemic stroke
[87].

At present, translation from in vitro to in vivo preclinical
stroke models requires further research, as clearly as that
required for the case for translation from in vivo animal
models to the clinical condition of drugs for treatment of
acute ischemic stroke, which requires overcoming phase III
trials in patients.
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