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Abstract: Screening and diagnostic tests are used to classify people with and without a disease.
Diagnostic accuracy measures are used to evaluate the correctness of a classification in clinical research
and practice. Although this depends on the uncertainty of measurement, there has been limited
research on their relation. The objective of this work was to develop an exploratory tool for the
relation between diagnostic accuracy measures and measurement uncertainty, as diagnostic accuracy
is fundamental to clinical decision-making, while measurement uncertainty is critical to quality and
risk management in laboratory medicine. For this reason, a freely available interactive program
was developed for calculating, optimizing, plotting and comparing various diagnostic accuracy
measures and the corresponding risk of diagnostic or screening tests measuring a normally distributed
measurand, applied at a single point in time in non-diseased and diseased populations. This is done
for differing prevalence of the disease, mean and standard deviation of the measurand, diagnostic
threshold, standard measurement uncertainty of the tests and expected loss. The application of
the program is illustrated with a case study of glucose measurements in diabetic and non-diabetic
populations. The program is user-friendly and can be used as an educational and research tool in
medical decision-making.

Keywords: diagnostic accuracy measures; ROC curve; measurement uncertainty; diagnostic tests;
screening tests; risk

1. Introduction

An increasing number of in vitro screening and diagnostic tests are extensively used as binary
classifiers in medicine, to classify people into the non-overlapping classes of populations with and
without a disease, which are categorized as quantitative and qualitative. The quantitative and many
qualitative screening or diagnostic tests are based on measurements. There is a probability distribution
of the measurements in each of the diseased and non-diseased populations. To classify the patients
with and without a disease, using a test based on a measurement, a diagnostic threshold or cutoff

point is defined. If the measurement is above the threshold, the patient is classified as test-positive;
otherwise, the patient is classified as test-negative (Figure 1) or inversely. The possible test results are
summarized in Table 1.

Table 1. A 2 × 2 contingency table.

Populations

Non-Diseased Diseased

Test Results
Negative true negative (TN) false negative (FN)

Positive false positive (FP) true positive (TP)
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Figure 1. Probability density function plots. The probability density function plots of a measurand in 
a non-diseased and diseased population. 
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2. Overall diagnostic accuracy (ODA), which is defined conditionally on the true disease status and 
is prevalence-dependent. 

3. Positive predictive and negative predictive value (PPV and NPV), which are defined 
conditionally on the test outcome and are prevalence-dependent. 

The natural frequency and the equivalent probability definitions of the diagnostic accuracy 
measures derived from Table 1 and analyzed by the program are presented in Table 2. The symbols 
are explained in Appendix A. 

Receiver operating characteristic (ROC) curves are also used for the evaluation of the diagnostic 
performance of a screening or diagnostic test [3]. ROC curves are plots of Se against 1-Sp of the test. 

A related summary measure of diagnostic accuracy is the area under a ROC curve (AUC) [4,5]. 
The area over a ROC curve (AOC) has been proposed as a complementary summary measure of the 
diagnostic inaccuracy [6]. 

Recently, the predictive receiver operating characteristic (PROC) curves have also been 
proposed. PROC curves are plots of PPV against 1-NPV of the test [2]. 

For the optimization of binary classifiers, objective or loss functions have been proposed. They 
are based on diagnostic accuracy measures that can be maximized or minimized by finding the 
optimal diagnostic threshold. These measures include Youden’s index (J) [7], Euclidean distance of a 
ROC curve point from the point (0, 1) (ED) [8] and the concordance probability measure (CZ) [9]. The 
abovementioned measures are defined conditionally on the true disease status and are prevalence 
invariant. Their respective probability and natural frequency definitions are presented in Table 2. 

The risk of a diagnostic or screening test is related to its diagnostic accuracy and is defined as its 
expected loss. Therefore, it depends upon the following (Table 2): 

Figure 1. Probability density function plots. The probability density function plots of a measurand in a
non-diseased and diseased population.

From the large number of diagnostic accuracy measures (DAM) appearing in the literature, only a
few are used for evaluating the diagnostic accuracy in clinical research and practice [1]. These include
the following:

1. Sensitivity (Se), specificity (Sp), diagnostic odds ratio (DOR), likelihood ratio for positive or
negative result (LR + and LR −, respectively), which are defined conditionally on the true disease
status [2] and are prevalence invariant.

2. Overall diagnostic accuracy (ODA), which is defined conditionally on the true disease status and
is prevalence-dependent.

3. Positive predictive and negative predictive value (PPV and NPV), which are defined conditionally
on the test outcome and are prevalence-dependent.

The natural frequency and the equivalent probability definitions of the diagnostic accuracy
measures derived from Table 1 and analyzed by the program are presented in Table 2. The symbols are
explained in Appendix A.

Receiver operating characteristic (ROC) curves are also used for the evaluation of the diagnostic
performance of a screening or diagnostic test [3]. ROC curves are plots of Se against 1-Sp of the test.

A related summary measure of diagnostic accuracy is the area under a ROC curve (AUC) [4,5].
The area over a ROC curve (AOC) has been proposed as a complementary summary measure of the
diagnostic inaccuracy [6].

Recently, the predictive receiver operating characteristic (PROC) curves have also been proposed.
PROC curves are plots of PPV against 1-NPV of the test [2].

For the optimization of binary classifiers, objective or loss functions have been proposed.
They are based on diagnostic accuracy measures that can be maximized or minimized by finding the
optimal diagnostic threshold. These measures include Youden’s index (J) [7], Euclidean distance of
a ROC curve point from the point (0, 1) (ED) [8] and the concordance probability measure (CZ) [9].
The abovementioned measures are defined conditionally on the true disease status and are prevalence
invariant. Their respective probability and natural frequency definitions are presented in Table 2.

The risk of a diagnostic or screening test is related to its diagnostic accuracy and is defined as its
expected loss. Therefore, it depends upon the following (Table 2):

1. The expected loss for the testing procedure, for a true negative result, for a false negative result,
for a true positive result and for a false positive result, defined on the same scale.

2. The probabilities for a true negative result, for a false negative result, for a true positive result
and for a false positive result.
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Table 2. Natural frequency and probability definitions of diagnostic accuracy measures.

Measure Natural Frequency Definition Probability Definition

Sensitivity (Se) TP
FN+TP Pr(T|D)

Specificity (Sp) TN
TN+FP Pr

(
T
∣∣∣D)

Positive Predictive Value (PPV) TP
FP+TP Pr(D|T)

Negative Predictive Value (NPV) TN
TN+FN Pr

(
D
∣∣∣T)

Overall Diagnostic Accuracy
(ODA)

TN+TP
TN+FN+TP+FP Pr(D) Pr(T|D) + Pr

(
D
)

Pr
(
T
∣∣∣D)

Diagnostic Odds Ratio (DOR) TN TP
FN FP

Pr(T|D)

Pr(T|D)

Pr(T|D)
Pr(T|D)

Likelihood Ratio for a Positive
Result (LR+)

TP(FP+TN)
FP(FN+TP)

Pr(T|D)

Pr(T
∣∣∣D)

Likelihood Ratio for a Positive
Result (LR−)

FN(FP+TN)
TN(FN+TP)

Pr(T
∣∣∣D)

Pr(T
∣∣∣D)

Youden’s Index (J) TN TP−FN FP
(TN+FP)(FN+TP) Pr(T|D) + Pr

(
T
∣∣∣D)
− 1

Euclidean Distance (ED)
√(

FN
FN+TP

)2
+

(
FP

TN+FP

)2
√

Pr
(
T
∣∣∣D)2

+ Pr
(
T
∣∣∣D)2

Concordance Probability (CZ) TN TP
(TN+FP)(FN+TP) Pr(T|D) Pr

(
T
∣∣∣D)

Risk (R) l0 +
lTNTN+lFNFN+lTPTP+lFPFP

TN+FN+TP+FP

l0 + lTNPr
(
D
)
Pr

(
T
∣∣∣D)

+

lFNPr(D)Pr
(
T
∣∣∣D)

+

lTPPr(D)Pr(T|D) +

lFPPr
(
D
)
Pr

(
T
∣∣∣D)

The symbols are explained in Appendix A.

Risk is defined conditionally on the true disease status and is prevalence-dependent.
As there is inherent variability in any measurement process, there is measurement uncertainty,

which is defined as a “parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand” [10]. The parameter
may be the standard measurement uncertainty (u), expressed as a standard deviation and estimated
as described in “Expression of Measurement Uncertainty in Laboratory Medicine” [11]. Bias may be
considered as a component of the standard measurement uncertainty [12].

The measurement uncertainty is gradually replacing the total analytical error concept [13].

Relation between Diagnostic Accuracy and Measurement Uncertainty

Although the estimation of measurement uncertainty is essential for quality assurance in laboratory
medicine [11], its effect on clinical decision-making and consequently on clinical outcomes is rarely
quantified [14]. As direct-outcome studies are very complex, a feasible first step is exploring the
effect of measurement uncertainty on misclassification [15] and subsequently on diagnostic accuracy
measures and the corresponding risk. Exploring this relation could assist the process of estimation of
the optimal diagnostic threshold or the permissible measurement uncertainty.

2. Materials and Methods

For the calculation of the diagnostic accuracy measures, the following is assumed:

1. There is a reference (“gold standard”) diagnostic method classifying correctly a subject as diseased
or non-diseased [16].

2. The parameters of the distributions of the measurand are known.
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3. Either the values of the measurand or their transforms [17,18] are normally distributed in each of
the diseased and non-diseased populations.

4. The measurement uncertainty is normally distributed and homoscedastic in the diagnostic
threshold’s range.

5. If the measurement is above the threshold the patient is classified as test-positive otherwise
as test-negative.

Hereafter, we use the term measurand to describe either the normally distributed value of a
measurand or its normally distributed applicable transform.

Consequently, if σ is the standard deviation of the measurements of a screening or diagnostic test
applied in a population (P), u the standard measurement uncertainty and σp the standard deviation of
the measurand in the population, then we get the following equation:

σ =
√
σ2

P + u2 (1)

The definitions of the diagnostic accuracy measures can be expressed in terms of sensitivity (Se)
and specificity (Sp). These definitions are derived from Table 2 and presented in Table 3.

Table 3. Definitions of diagnostic accuracy measures against sensitivity and specificity.

Measure Definition

Positive Predictive Value (PPV) Se v
Se v+(1−Sp)(1−v)

Negative Predictive Value (NPV) Sp (1−v)
Sp (1−v)+(1−Se)v

Overall Diagnostic Accuracy (ODA) Se v + Sp (1− v)

Diagnostic Odds Ratio (DOR)
Se

1−Se
1−Sp

Sp

Likelihood Ratio for a Positive Result (LR+) Se
1−Sp

Likelihood Ratio for a Positive Result (LR−) 1−Se
Sp

Youden’s Index (J) Se + Sp− 1

Euclidean Distance (ED)
√
(1− Se)2 + (1− Sp)2

Concordance Probability (CZ) Se Sp

Risk (R) l0 + lTNSp (1− v) +lFN(1− Se)v + lTPSe v
+lFP(1− Sp)(1− v)

The symbols are explained in Appendix A.

The functions of sensitivity (Se) and specificity (Sp), hence the functions of all the above diagnostic
accuracy measures, can be expressed in terms of the cumulative distribution function of the normal
distribution and therefore of the error function and the complementary error function.

The error function, erf (x), is defined as follows:

er f (x) =
2
√
π

∫ x

0
e−t2

dt, x ≥ 0 (2)

while the complementary error function, erfc (x), is defined as follows:

er f c(x) = 1− er f (x) =
2
√
π

∫
∞

x
e−t2

dt, x ≥ 0 (3)
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Following the definition of the sensitivity and specificity of a test (Table 2), the respective functions
against diagnostic threshold (d) are calculated as follows:

se(d,µD, σD, u) = 1−Ψ
(
d,µD,

√
σ2

D + u2
)
=

1
2

1 + er f

 −d + µD√
2
(
σ2

D + u2
)

 (4)

sp
(
d,µD, σD, u

)
= Ψ

(
d,µD,

√
σ2

D
+ u2

)
=

1
2

er f c


−d + µD√
2
(
σ2

D
+ u2

)
 (5)

where Ψ denotes the cumulative distribution function of a normal distribution; µD the mean and σD

the standard deviation of the measurand of the test in the diseased population; µD the mean and σD
the standard deviation of the measurand of the test in the non-diseased population; and u the standard
measurement uncertainty of the test.

Then, the sensitivity function of a test against its specificity (z) is calculated as follows:

sesp
(
z,µD, σD, µD, σD, u

)
= 1−Ψ

(
Ψ−1

(
z,µD,

√
σ2

D
+ u2

)
,µD,

√
σ2

D + u2
)
=

1
2

1 + er f

µD−µD+

√
2
(
σ2

D
+u2

)
+er f c−1(2z )√

2(σ2
D+u2)


, 0 ≤ z ≤ 1

(6)

The specificity function of a single test against its sensitivity (y) is calculated as follows:

spse
(
y,µD, σD, µD, σD, u

)
= Ψ

(
Ψ−1

(
1− y,µD,

√
σ2

D
+ u2

)
,µD,

√
σ2

D
+ u2

)
=

= 1
2 er f c

−µD+µD+
√

2(σ2
D+u2)er f c−1(2−2y)√

2
(
σ2

D
+u2

)
, 0 ≤ y ≤ 1

(7)

Following Table 3 and Equations (4)–(7), the diagnostic accuracy measures of a test are defined
as functions of either its diagnostic threshold, sensitivity, or specificity. Consequently, the derived
parametric equations defining each measure can be used to explore the relations between any
two measures.

Following the definition of the ROC curves and assuming a normal probability density function of
the measurands of each of the diseased and non-diseased populations, the ROC function is calculated
as follows:

roc
(
t, µD, µD, σD,, σD, u

)
= S

(
S−1

(
t, µD,

√
σ2

D
+ u2

)
, µD,

√
σ2

D + u2
)
, 0 ≤ t ≤ 1 (8)

where S denotes the survival function of normal distribution.
Consequently, we get the following:

roc
(
t, µD, µD, σD, σD, u

)
=

1
2

er f c


−µD + µD +

√
2
(
σ2

D
+ u2

)
er f c−1(2t)√

2
(
σ2

D + u2
)

, 0 ≤ t ≤ 1 (9)

The function of the area under the ROC curve is defined as follows:

auc
(
µD, µD, σD,, σD, u

)
=

∫ 1

0
roc

(
t, µD, µD, σD, σD, u

)
dt (10)
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Moreover, it is calculated as follows:

auc
(
µD, µD, σD,, σD, u

)
= Φ

 µD − µD√
σ2

D
+ σ2

D + 2u2

 (11)

where Φ denotes the cumulative distribution function of the standard normal distribution.
The function of the area over the ROC curve is defined as follows:

aoc
(
µD, µD, σD,, σD, u

)
= 1− auc

(
µD, µD, σD,, σD, u

)
(12)

Another ROC curve related quantity is the Euclidean distance (ED) of a ROC curve point(
t, roc

(
t, µD, µD, σD, σD, u

))
from the point (0, 1) or equivalently the Euclidean distance of the point (Se,

Sp) from the point (1, 1) of perfect diagnostic accuracy. The respective function is defined as follows:

ed
(
t, µD, µD, σD, σD, u

)
=

√
t2 +

(
1− roc

(
t, µD, µD, σD, σD, u

))2
(13)

The predictive ROC (PROC) curve relation is defined as follows [2]:

proc
(
t, µD, µD, σD,, σD, u

)
= ppv

(
npv−1

(
1− t, µD, µD, σD,, σD, u

)
, µD, µD, σD,, σD, u

)
(14)

This relation cannot be expressed in terms of elementary or survival functions.
To explore the relation between diagnostic accuracy measures or the corresponding risk and

measurement uncertainty, an interactive program written in Wolfram Language [19] was developed in
Wolfram Mathematica®, ver. 12.1 [20]. This program was designed to provide five modules and six
submodules for calculating, optimizing, plotting and comparing various diagnostic accuracy measures
and the corresponding risk of two screening or diagnostic tests, applied at a single point in time
in non-diseased and diseased populations (Figure 2). The two tests measure the same measurand,
for varying values of the prevalence of the disease, the mean and standard deviation of the measurand
in the populations and the standard measurement uncertainty of the tests. The two tests differ in
measurement uncertainty. It is assumed that the measurands and the measurement uncertainty are
normally distributed.

Parts of this program have been presented in a series of demonstrations, at Wolfram Demonstration
Project of Wolfram Research [6,21–27].

The program is freely available as a Wolfram Mathematica® notebook (.nb) at: https://www.hcsl.c
om/Tools/Relation.nb. It can be run on Wolfram Player® or Wolfram Mathematica® (see Appendix B).
Detailed description of the interface of the program is available as Supplementary Material.

https://www.hcsl.com/Tools/Relation.nb
https://www.hcsl.com/Tools/Relation.nb
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Figure 2. Program flowchart. The flowchart of the program with the number of input parameters and
of output types for each module or submodule (DAM: diagnostic accuracy measure).

3. Results

3.1. Interface of the Program

The modules and the submodules of the program include panels with controls which allow the
interactive manipulation of various parameters, as described in detail in Supplementary Material.
These are the following:

3.1.1. ROC Curves Module

The receiver operating characteristic (ROC) curves or the predictive receiver operating characteristic
(PROC) curves of the two tests are plotted.

A table with the respective AUC and AOC and their relative difference is also presented with the
ROC curves plot (Figure 3).
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Figure 3. ROC curves module screenshot. ROC curves plots of two screening or diagnostic tests
measuring the same measurand with different uncertainties, with the settings at the left.

3.1.2. Diagnostic Accuracy Measures Plots Module

It includes the following submodules:

• Diagnostic accuracy measures against diagnostic threshold

The values of the diagnostic accuracy measures or the corresponding risk of the two tests,
their partial derivatives with respect to standard measurement uncertainty, their difference, relative
difference and ratio are plotted against the diagnostic threshold of each test (Figure 4).

• Diagnostic accuracy measures against prevalence

The values of the diagnostic accuracy measures or the corresponding risk of the two tests,
their partial derivatives with respect to standard measurement uncertainty, their difference, relative
difference and ratio are plotted against the prevalence of the disease (Figure 5).
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Figure 5. DAM plots module, DAM against prevalence submodule screenshot. Ratio of the negative
predictive value (NPV) of the two screening or diagnostic tests measuring the same measurand with
different uncertainties, against prevalence (v) of the disease curve plot, with the settings at the left.

• Diagnostic accuracy measures against standard measurement uncertainty

The values of the diagnostic accuracy measures or the corresponding risk of a test are plotted
against the standard measurement uncertainty of the test (Figure 6).
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3.1.3. Diagnostic Accuracy Measures Relations Plots Module

It includes the following submodules:

• Diagnostic accuracy measures against sensitivity or specificity

The values of the diagnostic accuracy measures or the corresponding risk of the two tests,
their partial derivatives with respect to standard measurement uncertainty, their difference, relative
difference and ratio are plotted against either the sensitivity or the specificity of each test (Figure 7).

• Diagnostic accuracy measures against sensitivity and specificity

The values of the diagnostic accuracy measures or the corresponding risk of the two tests or
their partial derivatives, with respect to standard measurement uncertainty, are plotted against the
sensitivity and the specificity of each test in three-dimensional line plots (Figure 8).
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Figure 8. DAM relations plots module, DAM against sensitivity and specificity submodule screenshot.
Likelihood ratio for a positive test result (LR +) of two screening or diagnostic tests measuring the same
measurand with different uncertainties, against sensitivity (Se) and specificity (Sp) curves plot, with the
settings shown at the left.

• Diagnostic accuracy measures relations

As any two of the diagnostic accuracy measures can be expressed as functions of their sensitivities,
their respective parametric equations are plotted to show the relations between the values of the two
measures of each test (Figure 9).
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3.1.4. Diagnostic Accuracy Measures Calculator Module

The values of various diagnostic accuracy measures and the corresponding risk of each of the two
tests and their respective relative differences, at a selected diagnostic threshold, are calculated and
presented in a table (Figure 10).

3.1.5. Optimal Diagnostic Accuracy Measures Calculator Module

An optimal diagnostic threshold for each test is calculated according to a selected objective or loss
function. Then the values of various diagnostic accuracy measures and the corresponding risk of each
of the two tests, at the respective optimal threshold, are presented in a table (Figure 11).
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3.2. Illustrative Case Study

The program was applied to a bimodal joint distribution, based on log-transformed blood glucose
measurements in non-diabetic and diabetic Malay populations, during an oral glucose tolerance test
(OGTT) [28]. Briefly, after the ingestion of 75 g glucose monohydrate, the two-hour postprandial blood
glucose of 2667 Malay adults, aged 40–49 years, was measured with reflectance photometry. To apply
the program, it was assumed that the prevalence of diabetes was 0.067, the measurement coefficient
of variation and bias were equal to 4% and 2%, respectively and the log-transformed measurands of
each population were normally distributed, as shown in Figure 1. The normalized log-transformed
measurand means and standard deviations in the diseased and non-diseased populations, the standard
measurement uncertainty and the diagnostic threshold were expressed in units equal to the standard
deviation of the log-transformed measurand in the non-diseased population. The normalized
log-transformed diagnostic threshold 2.26 corresponds to the American Diabetes Association (ADA)
diagnostic threshold for diabetes of the two-hour postprandial glucose during OGTT that is equal to
11.1 mmol/L [29]. The normalized log-transformed standard measurement uncertainties 0.023 and
0.23 correspond to standard measurement uncertainties equal to 1% and 10% of the mean of the
measurand of the non-diabetic population or equivalently to a coefficient of variation equal to 1% and
10%, respectively.

The parameter settings of the illustrative case study are presented in Table 4. The results of the
application of the program are presented:

1. In the plots of Figures 3–9, Figures 12–17.
2. In the tables of Figures 10 and 11.
3. In Table 5.

Table 4. The parameter settings of Figures 12–17 and Table 5.

Settings Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Table 5

µD 2.99 2.99 2.99 2.99 2.99 2.99 2.99
σD 0.75 0.75 0.75 0.75 0.75 0.75 0.75
µD 0.0 0.0 0.0 0.0 0.0 0.0 0.0
σD 1.0 1.0 1.0 1.0 1.0 1.0 1.0
v 0.067 0.067 − 0.067 0.067 0.067 0.067
d 2.26 2.26 2.26 − − −

ua − − 0.023 0.023 0.023 0.023 0.023
ub − − 0.23 0.23 0.23 0.23 0.23
l0 − − 1 − 1 1 1

lTN − − 0 − 0 0 0
lFN − − 100 − 100 100 100
lTP − − 0 − 0 0 0
lFP − − 76 − 76 76 76

The symbols of the settings column are explained in Appendix A.

Table 5. Optimal diagnostic thresholds.

Optimal Diagnostic Threshold

First Test Second Test Relative Difference

Optimizing
DAM

Youden’s index J 1.637 1.623 0.009

Euclidean distance ED 1.676 1.663 0.008

concordance
probability CZ 1.640 1.627 0.008

Risk R 2.258 2.290 −0.014

The optimal diagnostic thresholds with the respective parameters in Table 4.
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Figure 12. DAM against uncertainty plots. Plots of (a) sensitivity (Se), (b) specificity (Sp), (c) positive
predictive value (PPV) and (d) negative predictive value (NPV) against standard measurement
uncertainty (u) curves, with the respective parameters in Table 4.

In this case, the measurement uncertainty has relatively little effect on the ROC and PROC curves,
on AUC, sensitivity, specificity, overall diagnostic accuracy, positive predictive value, negative predictive
value, Euclidean distance and concordance probability of the test, in accordance with previous
findings [30,31]. Measurement uncertainty has a relatively greater effect on diagnostic odds ratio,
on likelihood ratio for a positive or negative result, Youden’s index and risk.

As a result, the measurement uncertainty has relatively little effect on the optimal diagnostic
thresholds maximizing the Youden’s index or the concordance probability or minimizing the Euclidean
distance. Conversely, it has a relatively greater effect on the optimal diagnostic thresholds minimizing
risk (Table 5).
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Figure 14. DAM relative differences against prevalence plots. Plots of the relative difference of the
(a) positive predictive value (PPV), (b) negative predictive value (NPV), (c) overall diagnostic accuracy
(ODA) and (d) risk (R) of two diagnostic or screening tests measuring the same measurand with
different uncertainties, against prevalence (v) curves, with the respective parameters in Table 4.
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Figure 15. DAM relative differences against diagnostic threshold plots. Plots of the relative difference
of the (a) likelihood ratio for a positive result (LR +), (b) likelihood ratio for a negative result (LR
−), (c) diagnostic odds ratio (DOR) and (d) Youden’s index (J) of two screening or diagnostic tests
measuring the same measurand with different uncertainties, against diagnostic threshold (d) curves,
with the respective parameters in Table 4.
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Figure 16. DAM partial derivatives against diagnostic threshold plots. Plots of partial derivatives of
(a) overall diagnostic accuracy (ODA), (b) Youden’s index (J), (c) positive predictive value (PPV) and
(d) risk (R), with respect to measurement uncertainty, of two diagnostic or screening tests measuring
the same measurand with different uncertainties, against diagnostic threshold (d) curves, with the
parameters in Table 4.
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Figure 17. DAM relations plots. Plots of the relations between (a) negative predictive value (NPV)
and overall diagnostic accuracy (ODA); (b) positive predictive value (PPV) and Youden’s index (J);
(c) likelihood ratio for a negative result (LR −) and risk (R); and (d) Euclidean distance (ED) and
diagnostic odds ratio (DOR), of two diagnostic or screening tests measuring the same measurand with
different uncertainties, with the respective parameters in Table 4.

4. Discussion

The purpose of this program is to explore the relation between diagnostic accuracy measures
and measurement uncertainty, as diagnostic accuracy is fundamental to clinical decision-making,
while defining the permissible measurement uncertainty is critical to quality and risk management in
laboratory medicine. The current pandemic of the novel corona virus disease 2019 (COVID-19) has
demonstrated these convincingly [32–37].

There has been extensive research on either diagnostic accuracy or measurement uncertainty;
however, such research is very limited on both subjects [14,38,39].

This program demonstrates the relation between the diagnostic accuracy measures and the
measurement uncertainty for screening or diagnostic tests measuring a single measurand (Figures 3–17).
This relation depends on the population parameters, including the prevalence of the disease (Figures 5
and 14) and on the diagnostic threshold (Figures 4, 15 and 16). In addition, measurement uncertainty
affects the relation between any two of the diagnostic accuracy measures (Figures 7–9 and 17).
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As the program provides plots of the partial derivative of the diagnostic accuracy measures
with respect to the standard measurement uncertainty, it offers a more detailed insight (Figure 16).
In antithesis to the complexity of the relation, the program simplifies its exploration with a
user-friendly interface.

Furthermore, it provides calculators for the calculation of the effects of measurement uncertainty
on the diagnostic accuracy measures and corresponding risk (Figure 10) and for calculating the
diagnostic threshold optimizing the objective and loss functions of Section 1 (Figure 11).

The counterintuitive finding that the measurement uncertainty has relatively little effect on the
ROC and PROC curves, on AUC, sensitivity, specificity, overall diagnostic accuracy, positive predictive
value, negative predictive value, Euclidean distance and concordance probability suggests that we
should reconsider their interpretation in medical decision-making. However, further research is needed
to explore the effect of measurement uncertainty on diagnostic accuracy measures with different
clinically and laboratory relevant parameter settings. Furthermore, clinical laboratories should consider
including measurement uncertainty in each test result report.

Compared to the risk measure, a shortcoming of Youden’s index, Euclidean distance of a
ROC curve point from the point (0, 1) and concordance probability as objective functions is that
they do not differentiate the relative significance of a true negative and a true positive test result
or equivalently of a false-negative and a false-positive test result. Accordingly, in the case study,
the optimal diagnostic thresholds maximizing the Youden’s index or the concordance probability
or minimizing the Euclidean distance are considerably less than the ADA diagnostic threshold for
diabetes of the two-hour postprandial glucose during OGTT (Table 5). Nevertheless, the optimal
diagnostic threshold minimizing the risk can be close to the ADA threshold, with specific expected loss
settings (Figure 11). Although risk assessment is evolving as the preferred method for optimization of
medical decision-making [40] and for quality assurance in laboratory medicine [41], the estimation
of expected loss for each test result (Tables 2 and 3) is still a complex task. In the future, as the
potential of the data analysis will increase exponentially, expected loss could be estimated by using
evidence-based methods.

Shortcomings of this program are the following assumptions used for the calculations:

1. The existence of a “gold standard” diagnostic method. If a “gold standard” does not exist,
there are alternative approaches for the estimation of diagnostic accuracy measures [42].

2. The parameters of the distributions of the measurand are assumed to be known. In practice,
they are estimated [43].

3. The normality of either the measurements or their applicable transforms [17,18,44,45]; however,
this is usually valid. There is related literature on the distribution of measurements of
diagnostic tests, in the context of reference intervals and diagnostic thresholds or clinical
decision limits [46–50].

4. The bimodality of the measurands that is generally accepted, although unimodal distributions
could be considered [51,52].

5. The measurement uncertainty homoscedasticity in the diagnostic thresholds range.
If measurement uncertainty is heteroscedastic, thus skewing the measurement distribution,
appropriate transformations may restore homoscedasticity [53].

As the program neither estimates the parameters of the distributions of the measurand, nor
calculates any confidence intervals, it is not intended to analyze samples of measurements, but to
be used as an educational and research tool, to explore and analyze the relation between diagnostic
accuracy measures and measurement uncertainty.

All major general or medical statistical software packages (Matlab®, NCSS®, R, SAS®, SPSS®,
Stata® and MedCalc®) include routines for the calculation and plotting of various diagnostic accuracy
measures and their confidence intervals. The program presented in this work provides 269 different
types of plots of diagnostic accuracy measures (Figure 2), many of which are novel. To the best of our
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knowledge, not one of the abovementioned programs or any other software provides this range of
plots without advanced statistical programming.

5. Conclusions

The program developed for this work clearly demonstrates various aspects of the relation between
diagnostic accuracy measures and measurement uncertainty and can be used as a flexible, user-friendly,
interactive educational or research tool in medical decision-making, to explore and analyze this relation.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2075-4418/10/9/610/s1.
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Appendix A

Notation

1. Populations

D: nondiseased population
D: diseased population

2. Test Outcomes

T: negative test result
T: positive test result
TN: true negative test result
TP: true positive test result
FN: false negative test result
FP: false positive test result

3. Diagnostic Accuracy Measures

Se: sensitivity
Sp: specificity
PPV: positive predictive value
NPV: negative predictive value
ODA: overall diagnostic accuracy
DOR: diagnostic odds ratio
LR +: likelihood ratio for a positive test result
LR −: likelihood ratio for a negative test result
J: Youden’s index
ED: Euclidean distance of a ROC curve point from the point (0,1)
CZ: concordance probability
R: risk
ROC: receiver operating characteristic curve
AUC: area under the ROC curve
AOC: area over the ROC curve
PROC: predictive receiver operating characteristic curve

http://www.mdpi.com/2075-4418/10/9/610/s1
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4. Parameters

µP: mean of the measurand of a single test in the population P
σP: standard deviation of the measurand of a single test in the population P
v: prevalence of the disease
d: diagnostic threshold of a single test
u: standard measurement uncertainty of a single test

5. Expected Loss

l0: expected loss for the testing procedure
lTN: expected loss for a true negative result
lFN: expected loss for a false negative result
lTP: expected loss for a true positive result
lFP: expected loss for a false positive result

6. Functions and Relations

se (d,...): sensitivity function of a single test against its diagnostic threshold d
sp (d,...): specificity function of a single test against its diagnostic threshold d
sesp(z, . . .): sensitivity function of a single test against its specificity z
spse(y, . . .): specificity function of a single test against its sensitivity y
roc(. . .): receiver operator characteristic function of a screening or diagnostic test
auc(. . .): function of the area under the receiver operator characteristic curve
aoc(. . .): function of the area over the receiver operator characteristic curve
proc(. . .): predictive receiver operator characteristic relation of a screening or diagnostic test
ed(t, . . .): Euclidean distance function of the ROC curve point (t, roc(t, . . .)) from the point (0, 1)
Φ(x): cumulative distribution function of the standard normal distribution, evaluated at x
Ψ(x,µ, σ): cumulative distribution function of a normal distribution with mean µ and standard

deviation σ, evaluated at x
S(x,µ, σ): survival function of a normal distribution with mean µ and standard deviation σ,

evaluated at x
er f (x): error function, evaluated at x
er f c(x): complementary error function, evaluated at x
Pr (a): probability of an event a
Pr(a|b): probability of an event a given the event b
F−1(. . .): The inverse function F

Appendix B

Software Availability and Requirements

Program name: Relation
Available at: https://www.hcsl.com/Tools/Relation.nb
Operating systems: Microsoft Windows, Linux, Apple iOS
Programming language: Wolfram Language
Other software requirements: Wolfram Player®, freely available at: https://www.wolfram.com/

player/ or Wolfram Mathematica®

System requirements: Intel® Pentium™ Dual-Core or equivalent CPU and 2GB of RAM
License: Attribution - NonCommercial - ShareAlike 4.0 International Creative Commons License

https://www.hcsl.com/Tools/Relation.nb
https://www.wolfram.com/player/
https://www.wolfram.com/player/
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