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During Chagas disease, the Trypanosoma cruzi can induce some changes in the host
cells in order to escape or manipulate the host immune response. The modulation of
the lipid metabolism in the host phagocytes or in the parasite itself is one feature that
has been observed. The goal of this mini review is to discuss the mechanisms that
regulate intracellular lipid body (LB) biogenesis in the course of this parasite infection
and their meaning to the pathophysiology of the disease. The interaction host–parasite
induces LB (or lipid droplet) formation in a Toll-like receptor 2-dependent mechanism in
macrophages and is enhanced by apoptotic cell uptake. Simultaneously, there is a lipid
accumulation in the parasite due to the incorporation of host fatty acids. The increase
in the LB accumulation during infection is correlated with an increase in the synthesis
of PGE2 within the host cells and the parasite LBs. Moreover, the treatment with fatty
acid synthase inhibitor C75 or non-steroidal anti-inflammatory drugs such as NS-398
and aspirin inhibited the LB biogenesis and also induced the down modulation of the
eicosanoid production and the parasite replication. These findings show that LBs are
organelles up modulated during the course of infection. Furthermore, the biogenesis of
the LB is involved in the lipid mediator generation by both the macrophages and the
parasite triggering escape mechanisms.

Keywords: T. cruzi, lipid droplets, prostaglandin, infectious diseases, inflammation, lipid mediators, parasite
replication, Chagas disease

INTRODUCTION

Chagas disease represents an infectious condition classified by the World Health Organization
(WHO) as a neglected illness. It is caused by the protozoan Trypanosoma cruzi and presents
several symptoms, leading to a continuous inflammatory process that results in the replacement
of functional health tissues by connective tissue, and thereafter, function loss of tissues and organs,
which may lead to death (Teixeira et al., 1978, 2002; Parada et al., 1997; Rodriguez-Salas et al., 1998;
Huang et al., 1999; Machado et al., 2008).

Studies in T. cruzi experimental infection models have established a strong immunological
response in the acute phase, characterized by an intense infiltration of activated macrophages with
the ability to process and present antigens, cytokines synthesis, and give co-stimulatory signals
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demonstrating their essential function in innate immune
responses, in order to control the parasite multiplication and
elimination (Teixeira et al., 2002). A distinguishing aspect of
Chagas disease-triggered macrophages is the increased numbers
of distinct cytoplasmic organelles called lipid bodies (LBs)
(Figure 1) (Melo et al., 2003; D’Avila et al., 2011).

Lipid bodies are lipid rich-organelles that have been found
in almost all organisms from bacteria to humans (Alvarez et al.,
1996; Waltermann et al., 2005; Murphy, 2012). In mammalians,
LBs are found in the major part of leukocytes and other cellular
types, such as endothelial cells, fibroblasts, and mastocytes
(Dvorak et al., 1993; Bozza et al., 2007) and can be involved
directly or indirectly in numerous cellular functions, such
as lipid metabolism, membrane traffic, intracellular signaling
and the production of several inflammatory mediators (Bozza
et al., 2007). LBs within infected cells are involved in the
production of inflammatory mediators which can potentially
inhibit the host Th1 response, thus, modulating parasite
growth (Snijdewint et al., 1993; Kalinski, 2012). Interestingly, a
recent study established that T. cruzi LBs are also active and
producing immunosuppressive inflammatory mediators which
may represent not only an evasion strategy but also a survival
factor exhibited by the parasite (Toledo et al., 2016).

The purpose of this mini review is to present the recent
progress in elucidating the structure, formation mechanisms and
functions of intracellular LBs within both infected host cells and
the protozoan parasite T. cruzi, as well as their impact on the host
response and parasite escape mechanism during Chagas disease.

LIPID BODY CHARACTERIZATION AND
STRUCTURE

Lipid bodies, also known as lipid droplets or adiposomes, are
multi-functional organelles associated with lipid homeostasis in
virtually all cells (Figure 1). Although, the cellular and molecular

mechanisms of LBs biogenesis remain to be determined; it is
currently known that the endoplasmic reticulum (ER) structure
may have an important role during LB biogenesis. In eukaryotic
cells, LBs are formed de novo from the ER (Jacquier et al.,
2011; Kassan et al., 2013; Choudhary et al., 2015). The most
accepted model suggests that it was as a building model,
where enzymes, such as diacyltransferase DGAT1 and DGAT2,
produce triacylglycerols (TAG). Moreover, these enzymes are
involved in lipid metabolism localized in specific compartments
of the ER, favoring the synthesis of neutral lipid between the
two membrane leaflets of the ER, producing a hydrophobic
neutral lipid core (Murphy and Vance, 1999; Bozza et al., 2009;
Walther et al., 2017). After reaching a determined size, nascent
LBs carried with proteins lacking trans-membrane spanning
domains bud off from ER into the cytoplasm and finally
the lipids are coated by a phospholipid monolayer from the
cytoplasmic leaflet of the ER membrane (Murphy, 1999, 2001;
Martin and Parton, 2005; Bozza et al., 2009; Walther et al.,
2017).

In general, the LB structure consists of a neutral lipid core,
containing TAG and cholesterol ester (CE) in its majority,
surrounded by an outer monolayer of phospholipids because
LBs besides being heterogeneous organelles also lack a true
delimiting unit membrane structure (Tauchi-Sato et al., 2002).
Moreover, LBs are structured by perilipin (PLIN) family
proteins, including perilipin/PLIN1, PLIN2/ADRP (adipose
differentiation-related protein), PLIN3/TIP47 (tail-interacting
protein of 47 KDa) (Figure 1B) (Brasaemle et al., 1997;
Wolins et al., 2006; Dalen et al., 2007; Welte, 2007). The
protein content can be diverse once proteomic studies have
shown ribosomal, mitochondrial, and vesicular transport
proteins, such as Ras-associated binding protein (RAB)s,
ADP-ribosylation factor (ARF)s, caveolins and ER components
compartmentalized in the LBs, suggesting their role in fusion
and fission with other LBs or organelles, as well as cell
signaling and inflammatory mediator proteins under different

FIGURE 1 | Lipid bodies (LBs) biogenesis and components in both the host cell cytoplasm during the interaction and/or infection with T. cruzi and in the
trypomastigotes forms of T. cruzi. (A) LBs accumulation (green) in murine infected macrophage after staining with BODIPY R© 493/503. Nuclei of macrophage and
internalized parasites were stained with DAPI (4′,6-diamidino-2-phenylindole; blue). (B) Schematic representation of the structural composition of a LB. Colored
objects represent LBs surface-bound proteins located in the phospholipid monolayer. Prostaglandin E2 (PGE) 2, arachidonic acid (AA), diacilclycerols (DAG),
triacylglycerols (TAG), and cholesterol esters (CE) are found in the neutral lipid core. (C) Electron micrograph showing a LB in the trypomastigote form of T. cruzi.
From: Melo, RCN (courtesy); Toledo, DAM and D’Avila, H.
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conditions. However, the lipid and protein content depend
on the cell type and condition of the cellular activation
(Dvorak et al., 1993; Bozza et al., 1997; Yu et al., 1998, 2000;
Wu et al., 2000; Fujimoto et al., 2001; Chen et al., 2002; Umlauf
et al., 2004; Ozeki et al., 2005; Bartz et al., 2007; Bostrom et al.,
2007; Hodges and Wu, 2010).

LIPID BODY FORMATION DURING
T. cruzi INFECTION

The mechanism of formation of LBs in host cells is a
highly regulated event. Upon leukocytes activation LBs
are formed rapidly in response to different stimuli and
pathological conditions, such as infection by distinct pathogens:
mycobacteria (Cardona and Ausina, 2000; D’Avila et al.,
2006; Almeida et al., 2009, 2014; Mattos et al., 2010, 2011),
virus (Ferguson et al., 2017) or protozoan, such as T. cruzi
(Melo et al., 2003; D’Avila et al., 2011), Leishmania major (Rabhi
et al., 2016), L. amazonensis (Pinheiro et al., 2009; Lecoeur
et al., 2013), and Toxoplasma gondii (Gomes et al., 2014;
Mota et al., 2014).

During in vivo studies in T. cruzi infection, it was
demonstrated that this disease promotes an important
inflammatory response featured by intense macrophage
migration to the infectious sites, mainly the heart (Melo and
Machado, 2001; Melo et al., 2003). Melo et al. (2006) showed
LBs enhancement in inflammatory macrophages associated with
increased myocardial parasitism (Melo et al., 2006). Moreover,
during T. cruzi infection, LBs show a diversity electron-density,
which suggest a diverse composition associated with recruitment
and/or in situ production of lipid inflammatory mediators (Melo
et al., 2003, 2006).

In macrophages, the T. cruzi internalization potentiates LB
biogenesis; however, the phagocytosis is neither sufficient nor
essential for triggering the biogenesis. It has been demonstrated
that after a 24 h period of infection with T. cruzi, peritoneal
macrophages with internalized parasites, as well as non-
parasitized cells show increased number of LBs compared to
control (D’Avila et al., 2011). Although not fully elucidated,
the formation of LBs in host macrophages seems to involve
the pathogen recognition by surface receptors, as well as
paracrine signaling that soluble factors secreted by parasites or
infected cells might induce LB biogenesis in non-parasitized
cells.

Our group demonstrated that, in murine macrophages,
the in vitro T. cruzi infection induced LBs formation
through recognition via toll like receptor 2 (TLR-2)
(Figure 2) (D’Avila et al., 2011). In fact, some groups
of researchers have identified different molecular motifs
from this parasite able of activating TLRs in macrophages,
such as Glycosylphosphatidylinositol-anchored mucin-like
glycoproteins (tGPI-mucin) present in the parasite membrane
and capable of inducing the inflammatory response through
an activation of TLR2 (Almeida et al., 1999; Campos et al.,
2001; Gravina et al., 2013). However, the identification of
downstream signaling pathways involved in this processes

during T. cruzi infection needs to be more elucidated. TLR4
has also been involved in the immune response during the
first stage of infection (Rodrigues et al., 2012); nonetheless,
it was not able to mediate the LB formation in macrophages
(D’Avila et al., 2011).

During T. cruzi infection, the induction of apoptosis,
especially of T and B lymphocytes (Freire-de-Lima et al.,
2000; DosReis, 2011) and neutrophils (Magalhaes et al., 2017)
represents an important mechanism that contributes to the
parasite replication, due to the immunomodulatory effects
on the host immune response (Decote-Ricardo et al., 2017).
Consequently, the efferocytosis or phagocytic clearance of these
apoptotic cells by macrophages has profound consequences on
innate and adaptive immune responses in inflamed tissues (Elliott
et al., 2017). Moreover, it has been shown that the formation
of LBs during T. cruzi infection in macrophages is potentiated
in the presence of apoptotic, but not necrotic or living cells
(D’Avila et al., 2011).

The uptake of apoptotic cells through the αvβ3 integrin
(vitronectin receptor) is critical in the induction of LBs during
T. cruzi infection (Figure 2). In addition, the treatment with
flavoridin, a desintegrin that blocks binding via avβ3, completely
abolished the LB-formation induced by the apoptotic cells uptake
(D’Avila et al., 2011). Furthermore, some groups have shown that
the interaction of apoptotic cells and phagocytic cells induces
the production of cytokines such as IL-10 and TGF-β (Voll
et al., 1997; Xiao et al., 2006, 2008) causing these cells to be
more permissive to T. cruzi infection (Freire-de-Lima et al.,
2000; D’Avila et al., 2011). Studies in vitro have shown that the
TGF- β produced by macrophages could induce LBs in these
cells. The use anti-TGF β1 neutralizing antibody inhibited the
secretion of TGF- β, and abolished the LB formation induced
by this cytokine, demonstrating that this mediator can directly
trigger LB formation (Figure 2) (D’Avila et al., 2011). Even
though the attachment of other co-receptors cannot be ruled
out, these data suggest that efferocytosis by macrophages through
αvβ3 receptor triggers TGF-β1-dependent potentiating the LB
biogenesis.

LIPID BODY FORMATION IN THE
PROTOZOAN T. cruzi

In recent years, it has become of interest the study of the
biogenesis, structure, composition, and function of LBs formed
within protists parasites, such as T. cruzi. These parasites are able
to acquire host lipids or to codify their own lipid biosynthesis
machinery, thus allowing LBs biogenesis independently of their
host (D’Avila et al., 2012; Herker and Ott, 2012).

Toledo et al. (2016) showed that metacyclic trypomastigote
forms from T. cruzi, co-cultured with peritoneal macrophages
for 1 h had enhanced LB biogenesis, suggesting that the
interaction of infective forms of parasite with inflammatory
host leukocytes such as macrophages might quickly modulate
the LB formation in the T. cruzi (Figure 2). Moreover,
ultrastructural analyses of LBs from amastigote forms inside
macrophages, showed the presence of a typical monolayer
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FIGURE 2 | Lipid bodies formation in response to interaction macrophage- T. cruzi favors parasite replication. The uptake of trypomastigotes through TLR2 induces
LBs formation in macrophages, which is potentiated by phagocytosis of apoptotic cells through αvβ3 receptor. The interaction of parasite–macrophage also induces
LBs accumulation in extracellular trypomastigotes and intracellular amastigotes, which can serve as lipid sources for parasite growth. In addition, the TGF-β
produced by infected macrophages acts autocrinally contributing for LBs increase. New formed LBs from parasite and macrophage are sites for PGE2 synthesis,
because they compartmentalize the substrate (AA) and the enzymes as (COX-2 and PGE2 synthase) for their production. PGE2 is a potent lipid mediator that,
together with TGF- β, potentially reduces the host Th1 immune response, thus decreasing the microbicidal capacity of the macrophage. The macrophages treatment
with Aspirin, NS-398 or C75 can inhibit LBs accumulation and LBs-derived PGE2 synthesis, controlling the parasite replication. AA, arachidonic acid; COX-2,
cyclooxygenase -2, TGF-βR, TGF- βR receptor.

of phospholipids with varied electron-density, similar for
the one of the mammals cells. In addition, the electron
density was dependent on the cell activation state and the
LBs from the amastigotes inside heart macrophages, during
in vivo infection, were more electron-dense, than the LBs from
peritoneal macrophages, during in vitro infection (Toledo et al.,
2016).

Furthermore, it has been showed that the arachidonic acid
(AA) is a potent inductor of LB formation in eukaryotic cells
(Weller et al., 1991b; Bozza et al., 1996) and that these organelles
incorporate AA, mostly esterified in phospholipids (Weller and
Dvorak, 1985; Weller et al., 1991a). Interestingly, trypomastigotes
forms of T. cruzi stimulated by AA in vitro presented an enhanced
number of LBs when compared to unstimulated parasites in
a time- and dose-dependent manner, with a peak at 24 h of
in vitro stimulation. Raman spectroscopy and MALDI-TOF mass
spectroscopy confirmed that both parasites stimulated by AA can
incorporate a higher content of unsaturated fatty acids, such as
AA inside parasite LBs (Toledo et al., 2016). These organelles,
formed as the outcome of host interaction, suggest that the high

content of AA can be captured from host cell by the parasite
(Figure 2).

LIPID BODIES ARE SPECIALIZED IN THE
EICOSANOIDS SYNTHESIS IN BOTH
PARASITE AND HOST CELLS

As described before, LBs can accumulate AA, suggesting that
these LBs are potentially efficient to initiate intracellular signaling
pathways that culminate in the formation of lipid inflammatory
mediators, such as eicosanoids (Weller and Dvorak, 1985; Weller
et al., 1991a). Prostaglandins (PG) are eicosanoids derived from
AA, which are converted by cyclooxygenase (COX-1 and COX-2)
into PGH2, which in turn is converted in vivo and in vitro
into various arachidonate metabolites, such as PGD2, PGE2,
and PGF2a (Hayaishi and Urade, 2002; Miller, 2006). The
PGE2 sustains homeostatic functions and mediates pathogenic
mechanisms, including the inflammatory response associated
with parasitic disease (Kubata et al., 2007). In fact, previous
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works documented LBs as sites of compartmentalization of
eicosanoid-forming enzymes (Yu et al., 1998; Bozza et al.,
2002; D’Avila et al., 2006, 2011), and in situ production of
eicosanoids, such as leukotrienes and prostaglandins, were really
identified in these organelles within activated cells during an
inflammatory situation (Bandeira-Melo et al., 2001; Pacheco
et al., 2002; Vieira-de-Abreu et al., 2005; D’Avila et al.,
2006).

Earlier works have demonstrated that macrophages infected
by T. cruzi were positively immunostained for COX-2, and COX-
2 expression was increased when macrophages were co-cultured
with apoptotic cells (Freire-de-Lima et al., 2000; D’Avila et al.,
2011). In addition, D’Avila et al. (2011) confirmed that COX-2
is localized within LBs as well as in the perinuclear membrane
in infected cells. Using Eicosacell technique, a strategy developed
for direct in situ immunolocalization of eicosanoid synthesis
(Bandeira-Melo et al., 2011), new formed PGE2 was produced in
LBs induced by T. cruzi infection in the presence of apoptotic cells
(D’Avila et al., 2011).

After the findings on the synthesis of PGE2 in LB-induced
by T. cruzi in macrophages, it was showed that LBs from
trypomatigotes forms of T. cruzi, are capable to incorporate
AA and might be sources of PGE2 synthesis, suggesting an
activation of the AA cascade and a likely pathway for PGE2
production in the parasite (Toledo et al., 2016). Moreover,
the parasites produce PGs, like eukaryotic cells possessing the
enzymatic machineries for PG biosynthesis (Daugschies and
Joachim, 2000; Kubata et al., 2002; Noverr et al., 2003). However,
the homologs of mammalian COX have not been found in any
parasitic protozoan so far, although proteins called COX-like
enzymes, that are similar to the mammalian COX-1 and COX-
2 have already been identified (Kubata et al., 2002). Indeed,
trypomastigotes forms of T. cruzi, stimulated by AA led to
quantitative increases in LBs biogenesis in parallel with PGE2
secretion and PGE2 synthase expression (Toledo et al., 2016).
Thus, the co-localization of LB and PGE2 sites within stimulated
trypomastigotes, give credence to the LBs as organelles to the
sites for newly formed PGE2 during the activation (Toledo
et al., 2016). This is also true for the T. cruzi infection in
macrophages (D’Avila et al., 2011). These data suggest that
LBs may be the source of lipid and inflammatory mediators,
in response to the host–parasite interaction. Furthermore,
PGE2 may be a powerful immunomodulator and acts in
the immunosuppression that occurs during T. cruzi infection,
indicating a function for PGs from T. cruzi in the Chagas disease
pathogenesis.

LIPID BODY INHIBITION AS INFECTION
CONTROL STRATEGY

Based on the effects that T. cruzi infection and apoptotic
cell uptake cause on LBs formation in the host cell, it has
been investigated whether modulation of the formation of
this organelle could impact the replication of the parasite
(D’Avila et al., 2011). It was tested the effect of two non-
steroidal anti-inflammatory drugs (NSAIDs), aspirin (COX-1

and COX-2 inhibitor) and NS- 398 (COX-2 inhibitor) which,
in addition to their COX inhibitory effect, also inhibit COX-
independent LB formation (Bozza et al., 1996, 2002). Both
aspirin and NS-398 inhibited the LB biogenesis in infected
macrophages in the presence or absence of apoptotic cells,
suppressing the T. cruzi effects on LB-derived PGE2 synthesis,
and reversing the enhancement on parasite replication induced
by apoptotic cells (Figure 2). Therefore, the biogenesis of
the LBs in both the T. cruzi infection and in the parasite
interaction has a direct role in the ability of the macrophages
to synthesize increased amounts of PGE2, which may have
an impact on the course of the disease (D’Avila et al.,
2011).

In parallel, LB biogenesis seems to request de novo lipid
synthesis in a cellular mechanism controlled by fatty acid
synthase (Schmid et al., 2005; D’Avila et al., 2006; Accioly
et al., 2008). Therefore, the fatty acid synthase inhibitor
C75 significantly inhibited LB biogenesis induced by T. cruzi
infection, with or without the uptake of apoptotic cells, through a
mechanism independent of the inhibition of the COX-2 enzyme
(Figure 2). Remarkably, it was demonstrated that the treatment
with C75 also reversed the parasite replication in macrophages as
well as the formation of LBs (D’Avila et al., 2011).

In conclusion, it is safe to say that these organelles show
an important role in the inflammatory response, especially
against intracellular pathogens, since their biogenesis leads to
the production of inflammatory mediators, suppressing the
macrophage effectiveness to respond and reduce its capacity to
eliminate the parasite and control the infection. In this mini
review, we analyzed the structure, composition and function of
the LBs in the parasite and host cell during T. cruzi infection
(Melo et al., 2003; D’Avila et al., 2011). The increases in LB
numbers in T. cruzi, associated with changes in LB ultrastructure
highlight the fact that LBs parasites are also plastic, dynamic
and active organelles, which are efficient in modifying their
structure and composition in line with immune cell activation
mechanisms.

CONCLUDING REMARKS

Studies have investigated the intriguing formation of LBs, both
in the host cell and in the parasite itself (D’Avila et al., 2011;
Toledo et al., 2016). Newly formed host LBs are distinguished for
their efficiency to synthesize lipid inflammatory mediators, such
as PGE2 and to compartmentalize eicosanoid-forming enzymes,
such as COX-2 (Yu et al., 1998; Bozza et al., 2002; D’Avila et al.,
2006, 2011).

Host leukocytes LBs triggered by T. cruzi infection and
increased by the phagocytosis of apoptotic cells are accepted
not only as inflammatory organelles and structural markers of
parasite-induced cell activation, but also as organelles efficient
in the orchestration of the host cell metabolism (D’Avila et al.,
2011). A recent work supports the idea that the T. cruzi
itself is capable of producing LB-derived PGE2 after contact
with the host cell to facilitate its own survival (Toledo et al.,
2016). This is evidence that parasites have adapted to their
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lipid hosts modulation mechanisms by taking advantage of
the cellular metabolism favoring the diseases progression.
However, the effects of modulating the formation of LBs by
distinct drugs and their influence in the control of parasite
replication experimentally, suggest mechanisms that could
help in the discovery of new effective therapies for Chagas
disease.
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